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Chemotaxis and autochemotaxis play an important role in many
essential biological processes. We present a self-propelling arti-
ficial swimmer system that exhibits chemotaxis as well as neg-
ative autochemotaxis. Oil droplets in an aqueous surfactant
solution are driven by interfacial Marangoni flows induced by
micellar solubilization of the oil phase. We demonstrate that
chemotaxis along micellar surfactant gradients can guide these
swimmers through a microfluidic maze. Similarly, a depletion of
empty micelles in the wake of a droplet swimmer causes neg-
ative autochemotaxis and thereby trail avoidance. We studied
autochemotaxis quantitatively in a microfluidic device of bifurcat-
ing channels: Branch choices of consecutive swimmers are anti-
correlated, an effect decaying over time due to trail dispersion.
We modeled this process by a simple one-dimensional diffusion
process and stochastic Langevin dynamics. Our results are con-
sistent with a linear surfactant gradient force and diffusion con-
stants appropriate for micellar diffusion and provide a measure
of autochemotactic feedback strength vs. stochastic forces. This
assay is readily adaptable for quantitative studies of both artifi-
cial and biological autochemotactic systems.
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Locomotion of living bacteria or cells can be random or ori-
ented. Oriented motion comprises the various “taxis” strate-

gies by which bacteria or cells react to changes in their environ-
ment (1). Among these, chemotaxis is one of the best-studied
examples (2, 3): Cells and microorganisms are able to sense
certain chemicals (chemoattractants or chemorepellents) and
move toward or away from them. This is an essential function
in many biological processes, e.g., wound healing, fertilization,
pathogenic species invading a host, or colonization dynamics (4,
5). When the chemoattractant or chemorepellent is produced by
the microorganisms themselves, the system exhibits positive or
negative autochemotaxis. Thus, chemotaxis provides a mecha-
nism of interindividual communication. Modeling such commu-
nication strategies is key to understanding the collective behav-
ior of microorganisms (6–8) as well as flocks of animals like fire
ants (9, 10).

To model the swimming motion of microorganisms, vari-
ous self-propelling artificial swimmer systems have been devel-
oped based on different mechanisms. Generally, there are two
classes of swimmers: systems driven by and aligning with exter-
nal fields (11–14), including chemotactic gradients, and self-
propelled swimmers, which move autonomously in homogeneous
environments (15–21). Many autonomous swimmers additionally
react to external fields, e.g., phototactic gradients (22).

Biological autochemotactic systems exhibit very complex
behaviors (23, 24), where physical effects are intermingling
with effects from various bioprocesses such as cell migration,
metabolism, and division. To untangle these effects, there have
been some design proposals for artificial systems, such as in ref.
25, and simulations on the dynamics of simple autochemotactic
microswimmers (26–30). Studies exist on collective effects like
autochemotaxis-induced clustering (31–33), but generally, there
is still a lack of well-controllable and quantifiable experimental
realizations of autochemotactic artificial swimmers. We demon-

strate chemotaxis and autochemotaxis in microfluidic geometries
for a highly symmetric and tunable artificial model swimmer sys-
tem: self-propelling oil droplets in an aqueous surfactant solution
(15, 34, 35).

The quantitative study of chemotaxis with traditional methods
such as micropipette assays has been limited to observational
studies (36, 37), as experimental conditions such as gradient
strength are difficult to set in such geometries. Using microflu-
idic techniques, experimental conditions can be much better con-
trolled; e.g., a linear gradient can be generated and kept con-
stant, or even fast switched (38, 39), the object distribution can
be easily analyzed (40), and the objects can be tracked individu-
ally (41–43). In this paper we present a microfluidic assay for the
quantitative study of autochemotaxis. We have not only observed
autochemotaxis reproducibly, but also been able to directly mea-
sure system parameters like diffusion constants. This enables fur-
ther quantitative experimental studies on the dynamics of simple
autochemotactic swimmers.

Self-Propelling Droplet Swimmers
When an oil droplet dissolves in a surfactant solution, oil
molecules will continuously migrate into the surfactant micelles
until the entire droplet is solubilized. The final equilibrium state
of the system is a homogeneous micellar nanoemulsion, com-
posed of a mixture of empty micelles, oil-filled micelles, and free
surfactant molecules at the critical micelle concentration (CMC).
The droplet locomotion is caused by a self-sustained Marangoni
flow due to the inhomogeneous interfacial surfactant coverage
and only observable in the nonequilibrium state of solubilization
(Fig. 1) (35). While incorporating oil molecules, micelles grow
in size, incorporating free surfactant molecules from the aque-
ous phase and increasing the total area of oil–water interfaces in
the system. A boundary layer forms around the droplet with a
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Fig. 1. Schematic drawing of a droplet swimmer moving in surfactant solu-
tion. Due to the micellar solubilization of the oil phase, filled micelles dis-
perse from the droplet into the solution, as shown by the yellowish shadow.
Close to the droplet the free surfactant molecules are depleted, as shown by
the white circle. When the droplet moves, it encounters more empty micelles
in the front and leaves more filled micelles behind. The inhomogeneous
interfacial surfactant coverage on the droplet then starts the Marangoni
flow and sustains the motion. Drawing is not to scale.

reduced density of free surfactant that in turn depletes the sur-
factant coverage of the droplet interface. This depletion is coun-
teracted by the disintegration of empty micelles approaching the
droplet either via diffusion or, if the droplet is moving, via advec-
tion. Advection will lead to more available empty micelles in
front of the droplet and a trail of filled micelles behind it. In con-
sequence, the depletion at the droplet apex is less pronounced
and the resulting Marangoni flow will drive the droplet farther
forward toward even more empty micelles. At sufficiently high
surfactant concentrations, small fluctuations in the droplet posi-
tion or surfactant density are sufficient to start sustained self-
propulsion. In flow equilibrium, set by the balance of Marangoni
forces and viscous dissipation, the swimmer moves at a constant
speed controlled by the global surfactant concentration.

The system presented in this study uses the ionic surfactant
tetradecyltrimethylammonium bromide (TTAB); the oil phase
consists of the nematic liquid crystal 4-pentyl-4’-cyano-biphenyl
(5CB). Nematic droplet swimmers of pure 5CB exhibit a strong
curling instability (44) in their propulsion, which is absent in
isotropic droplets. For this study, we use only isotropic droplets,
either by keeping the ambient temperature above the nematic–
isotropic transition at TNI = 35◦C or by substituting a mixture
of 5CB and 1-Bromopentadecane (BPD) with a volume ratio of
10:1. Henceforth, we refer to the respective droplet types using
the notations 5CB and 5CB/BPD. Droplets are mass produced
in microfluidic flow-focusing devices with high monodispersity
(<5%) and sizes adjustable between 30 µm and 100 µm. The
observation time is on the order of hours. Droplet speed and
trajectory persistence are well controllable via temperature and
surfactant concentration (44). The droplet propulsion is initiated
at surfactant concentrations above 4 wt% TTAB.

Chemotactic Maze Solving
Following the argument above, an external gradient of surfac-
tant, i.e., empty micelles, will result in an alignment of the
Marangoni flow with the gradient direction; as a result the
droplet swimmer will move toward higher surfactant concentra-
tions. This behavior is typical for chemotaxis: The swimmer has
no preferred direction in a homogeneous medium, yet moves
directionally in the presence of a chemical gradient.

To demonstrate the chemotactic nature of our droplet swim-
mers, we used a design inspired by Lagzi et al. (11) consist-
ing of two reservoirs connected by a microfluidic maze (Fig. 2).
Chemoattractant released at the exit spreads into the maze, with

the local concentration depending on the path distance to the
exit. By moving up gradients, swimmers will then prefer the
shortest path, as shown in chemotactic experimental systems (11,
12) and simulations (45).

To initiate droplet propulsion, the maze is prefilled with a
micellar TTAB solution at 5 wt%. Directly after the droplet
swimmers (5CB/BPD) are released into the entrance reservoir,
solid TTAB is added to the exit reservoir, acting as a chemoat-
tractant. The TTAB gradually dissolves and spreads into the
maze via convective diffusion, i.e., significantly faster than simple
micellar diffusion. Thus, there will be a positive gradient along
the optimum path through the maze, attracting the swimmers,
whereas dead ends and detours will feature negative gradients,
repelling the swimmers back toward the shortest path. In a con-
trol experiment, we prefilled the maze again with a 5 wt% TTAB
solution, but added no solids, such that the overall concentration
was homogeneous.

Fig. 2 shows results from our experiment. In Fig. 2A, we imaged
the surfactant spreading inside the maze qualitatively by mixing
the solid TTAB with the fluorescent Nile Red dye, which is insol-
uble in water and therefore comoves with the surfactant micelles.
The still image in Fig. 2A is taken 60 min after the release of solid
TTAB; the additional surfactant has spread to the maze entrance
and its concentration decreases along side branches.

Fig. 2 C and D shows the trajectories of swimmers in a gradient
(Fig. 2C) and a control experiment (Fig. 2D) during a 90-min
time interval. The trajectories are color coded by time from blue
to red. In the presence of a surfactant gradient, (Fig. 2C), the
trajectory density is highest along the shortest path, with detours
occurring primarily in the first 20 min, before the surfactant has
spread sufficiently. In the control experiment without a gradient
(Fig. 2D), the swimmers move freely and explore the entire maze,
with no correlations in time.

Fig. 2B compares trajectory lengths between gradient and con-
trol experiments for all swimmers that successfully traversed
the maze, sorted by the time at which they entered the maze.

A B

C D

Fig. 2. Maze solving by chemotactic droplet swimmers. White arrows indi-
cate maze entrance and exit. (A) Solid TTAB mixed with fluorescent Nile Red
spreading in the maze; distribution after 60 min. “Source” marks the point
of release (the excitation LED was shaded in this area to improve contrast).
(C and D) Trajectories with and without TTAB gradient. We selected only
swimmers that passed both entrance and exit points. Line colors correspond
to the time in the experiment. In C, detours are mostly for early times (pur-
ple) whereas in D there is no correlation. (B) Plot of path lengths vs. entry
time, compared with the shortest path length (6 mm) (Movies S1–S3).
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Initially, trajectory lengths are comparable between both experi-
ments. After 20 min, in the presence of a well-established gradi-
ent (blue circles), over 80% of the recorded trajectories approach
the optimum length of 6 mm, with an average trajectory length
of 9.2 mm over the entire duration of the experiment. Without
a gradient (red diamonds), the trajectory length is on average
(15.5 mm) more than twice the optimum length and there is no
time dependence. Time-lapse Movies S1–S3 correspond, respec-
tively, to Fig. 2 A, C, and D.

Swimmers Exhibiting Negative Autochemotaxis
While a droplet swimmer moves through the solution, it will
leave a trail of filled micelles behind, such that the fraction of
empty micelles in the trail decreases. Because the swimmers are
sensitive to the density of empty micelles, they will therefore
avoid their own trail, i.e., exhibit negative autochemotaxis.

This is shown qualitatively in Fig. 3. Fig. 3A shows a 5CB
droplet swimming in a surfactant solution of high concentration
(25 wt% TTAB) and high temperature (37 ◦C), resulting in a
high solubilization rate. A trail of oil-filled micelles, dispersing
over time in the wake of the droplet, can be inferred from varia-
tions in the refractive index in the aqueous phase.

In Fig. 3B we have plotted three trajectories of isotropic 5CB
swimmers (T = 37◦C, 7.5 wt% TTAB) interacting in a Hele–
Shaw cell, with markers on the trajectories labeling the time since
the start of observation. The first swimmer, marked 1, moves in
an unperturbed manner, but swimmer 2 is repelled from swim-
mer 1’s trail, even though swimmer 1 passed 20 s earlier. Swim-
mer 3 approaches swimmer 2’s trajectory more closely, 5 s after
2’s passage, but is turned away sharply. This is consistent with
a steep gradient in filled micelles in the not yet strongly dis-
persed trail directly behind a swimmer, leading to a stronger and
more short-ranged chemotactic repulsion than in the interaction
between swimmers 1 and 2. Note that due to the quasi-2D geom-
etry of the cell, hydrodynamic interactions are suppressed for
droplet distances exceeding the cell height of 50–55 µm.

Branch Choice by Autochemotactic Signaling
Autochemotactic processes are generally treated considering the
following aspects: the secretion and decay of the chemical con-
stituting the trail, the diffusion of the trail, and the interac-
tion of the swimmer with the self-generated chemical gradient.
Appropriate simulations on autochemotaxis (26, 28) have been

A B

Fig. 3. (A) A droplet swimmer leaves a trail that can be seen under phase-
contrast microscopy from the slightly different refractive index. (B) Free
swimmers avoiding each other’s trails. Sphere drawings (to scale) mark the
trajectory end points, timing marks on trajectories’ time points in the exper-
iment (Movies S4 and S5).

A B C
Fig. 4. Swimmers moving through bifurcating channels choose alternating
branches. Two trajectories of different swimmers are plotted in lines and
marked by solid circles (first) and open triangles (second) in the order of
passage [Movie S6 and Fig. S1 (cell design)].

conducted using parameters extracted from experimental stud-
ies (24, 37). Inspired by Ambravaneswaran et al. (46), we have
designed a microfluidic experiment to study autochemotactic
processes quantitatively by having multiple swimmers consecu-
tively pass a series of bifurcations in a channel.

The autochemotaxis problem is reduced to a simple measure
of correlated binary branch choices, resulting in a high statisti-
cal yield. We have fitted such correlation data with an analytical
model balancing a gradient force against a stochastic noise term.
In the model, we assume that the coupling between the gradi-
ent in filled micelles and the repulsive chemotactic force is lin-
ear and that micellar diffusion determines the gradient evolution
over time.

We begin with an example experimental run: In Fig. 4, we
have drawn a channel pattern with three bifurcations A, B, and
C (white mask) and overlaid it with two selected trajectories for
5CB/BPD swimmers. The channel connects an entrance with a
large exit reservoir; symmetric bifurcations are generated by a
series of pillars, which are tear shaped with the pointed end fac-
ing the exit reservoir to keep the swimmers from turning back
around the pillar. This pinch-off design is quite efficient: in our
experiments, 75% of swimmer interactions with the pillar con-
tained only one passage through a single branch. Note that there
is no overall flow or surfactant gradient between the entrance
and exit of the channel. The trajectories are marked by a solid
circle (swimmer 1) and an open triangle (swimmer 2), in the
order of passage. Swimmer 2 enters the channel approximately
20 s after swimmer 1. The two swimmers are anticorrelated in
their choice at all bifurcations.

The trail secretion of a solubilizing droplet (β molecules per
swimmer per second) can be established from the solubilization
rate—i.e., the time-dependent droplet size. Contrary to most bio-
logical autochemotactic systems, there is no decay of the secre-
tion products. Because the width and height of the channel,
w = 100µm and h = 110µm, are of the order of the initial swim-
mer diameter 2r = 100 µm, we assume the filled-micelle density
to be constant over the channel cross-section. We can therefore
map our model of trail diffusion and autochemotactic branch
choice to a one-dimensional (1D) problem along the channel
midline around the pillar. The number density of the solubi-
lized oil molecules in the trail directly behind the swimmers is
c0 =β/(vwh), with the speed of the swimmers v and the channel
width w extracted from the experiment. We approximate the ini-
tial secretion profile c(x ) in the channel by a 1D step function.
The average duration of a channel passage is ca. 15 s and we set
the time origin t = 0 to the instant when the first swimmer leaves
the bifurcation at x = − l . Because the step function approxima-
tion is not valid for short times and we expect pressure equilibra-
tion flows around the pillar when the first droplet leaves, we use
only events for data fitting where the second droplet enters the
junction more than 20 s after the first one left it (∆t > 20 s).

To model the diffusion of the oil-filled micelles, we approxi-
mate the bifurcation by a circular pillar of radius R = 2l/π and
use a polar coordinate at fixed radius x =R · θ with the angle
θ= 0 at the top of the pillar, progressing counterclockwise, such
that the entrance bifurcation is at x = l (Fig. 5A). Without loss
of generality, we assume that the swimmer enters the bifurcation
from the left at x = l and chooses the top branch.
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A B

Fig. 5. (A) Schematic drawing of a bifurcation. The trail of a swimmer fills
the top branch and diffuses into the bottom branch around the pillar. The
bifurcation is mapped to a fixed radius polar coordinate x = (2l/π) · θ with
the origin at the top of the bifurcation and x = l at its entrance. (B) Trail
dispersion, characterized by the concentration profile of micellar-solubilized
oil molecules c, approximated by 1D diffusion from a step function between
reflecting boundaries, with calculated profiles for times between 0 s and
600 s. Red dotted rectangle marks the gradient at x = l.

In our circular pillar approximation, the diffusion problem
is symmetric around x = 0, and we neglect diffusion into the
main channel at x = ± l . The gradient evolution at x = l can be
mapped onto the problem of 1D diffusion between two reflecting
or periodic boundaries at x = ± 2l (Fig. 5B). The concentration
profile in the region −2l ≤ x ≤ 2l evolving over time from a step
function c(−l ≤ x ≤ l) = c0 is (47)

c(x , t) =
c0
2

∞∑
n=−∞

(
erf

(4n + 1)l − x√
4Dft

− erf
(4n − 1)l − x√

4Dft

)
,

[1]

where Df denotes the diffusion coefficient of the filled micelles,
which are the carriers of the solubilized oil. We provide a full
derivation in the Supporting Information.

Using parameters appropriate to our experimental system
[l ≈ 200 µm, Df≈ 100 µm2·s−1 (48)], we calculate and plot exam-
ples of concentration profiles at different times in Fig. 5B. We
expect the anticorrelation between the choices of two consecu-
tive swimmers to decay in time, depending on the decrease of the
gradient at x = l . In the long time limit, after the environment in
the two branches becomes homogeneous again, the choice of a
swimmer between the two branches should be completely ran-
dom, i.e., independent of the choice of the previous swimmer.

The swimmers make their choice at the entrance x = l under
both the gradient force and the stochastic force. In all experi-
ments, we did not observe swimmers reversing direction once
past the bifurcation. This indicates that the choice is made within
a small region x ∈ [l − d , l + d ], as sketched in Fig. 5A, with
d on the order of the droplet diameter or channel width, and
on a timescale τ much shorter than the timescale t of the trail
dispersion. Hence, the motion of the swimmer x (τ) during the
decision process can be approximated as a 1D Brownian motion
under a constant gradient force between two absorbing bound-
aries at l ± d , described by the following overdamped Langevin
equation:

dx

dτ

∣∣∣∣
x=l

= κ∂xc +
√

2DΓ(τ). [2]

Here, κ is a linear coefficient quantifying the sensitivity to
the chemorepellent gradient ∂xc. Because the chemorepellent
is self-produced, κ corresponds to the autochemotactic feedback
strength used in the literature (26–30). Note that κ is not identi-
cal to the chemotactic strength as applicable to the maze exper-
iments, which is based on a gradient in empty micelles. Γ(τ) is
a normalized Gaussian noise term with 〈Γ(τ)〉= 0, 〈Γ(τ),Γ(τ +
∆τ)〉= δ(∆τ). The velocity of the active swimmer is not included
in Eq. 2, as the branch choice direction is orthogonal to the

incoming swimmer. D denotes the diffusion coefficient of a pas-
sive swimmer and is presumably larger than the Stokes–Einstein
value of kBT/6πηr , because the micellar solubilization process
provides an additional source of stochastic noise.

The position of the swimmer x (τ) can be written as

x (τ)− l = κ∂xc τ +
√

2DB◦(τ), [3]

where B◦(τ) is a standard Brownian motion process and
x (0) = l .

The probability P of anticorrelated branch choices between
two consecutive swimmers is then the probability that the biased
Brownian motion process x (τ) reaches l + d before l − d (49):

P =
1− exp (−2ξ)

exp (2ξ)− exp (−2ξ)
, ξ = −κ · d

2D
∂xc. [4]

In our data analysis, we record events of correlated branch
choices between consecutive swimmers as C= 1 and anticorre-
lated choices as C=−1. If the interaction of a swimmer and a
pillar contains several passages, i.e., the swimmer orbits the pil-
lar, we consider only the last passage of the preceding swim-
mer and the first passage of the following swimmer. To study
the time-dependent decay of the (anti)correlation, we bin the
experimental result according to the time interval ∆t between
the preceding swimmer leaving the bifurcation and the following
swimmer entering it. Using Eq. 4 with a concentration gradient
∂xc at x = l , t = ∆t , the average correlation between the choices
of consecutive swimmers is

〈C〉 = −1 · P + 1 · (1− P) = tanh (ξ(∆t)) . [5]

The statistical result for 〈C〉 from a series of branch-choosing
experiments is shown in Fig. 6. Because some microfluidic bifur-
cations can be biased due to fabrication errors, we accepted only
results from bifurcations where the overall preference for a sin-
gle branch was less than 75%. The bias-corrected dataset con-
tains 4,160 correlation events, omitting 283 rejected events. The
data are binned by the time interval ∆t ; the average correlation
〈C〉 of each bin is plotted vs. the corresponding average ∆t (blue
bars). To account for the steep correlation decay for short times
and decreasing statistics for long times, we use a constant number
of events (100 swimmer pairs) per bin, resulting in an increasing
range of time intervals, indicated by the bar width.

Fig. 6. Correlation 〈C〉 between branch choices of consecutive swimmers
vs. the time interval ∆t between passages. Data were binned by ∆t using
100 events per bin and then averaged (the corresponding ∆t range is
marked by the bar width). 〈C〉 decorrelates with increasing ∆t, with the
limits of〈C〉∈ [−1, 0] for perfect anticorrelation (−1) and no correlation (0).
The parameters a = − 3.6 ± 0.2 and b = (4.3 ± 1.2) × 102s for the fitted
〈C〉= tanh(ξ) were derived by fitting ξ using Eqs. 5–7. Correlation data for
∆t< 10 s (red bars) were omitted from the fitting to rule out hydrodynamic
drag effects. Supplementary data on the effects of TTAB concentration and
channel geometry are provided in Figs. S2 and S3.
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When ∆t is small, the choices of swimmers show a clear anti-
correlation up to −0.8; i.e., 90% of the following swimmers
choose the branch that the preceding swimmer did not pass.
As ∆t increases, this average anticorrelation decreases to val-
ues close to zero; i.e., swimmers enter branches randomly and
independent of the preceding swimmer.

With Eq. 5, ξ can be easily calculated from the anticorrelation
data. We truncate the concentration profile from Eq. 1 to the
n = 0,±1 terms and fit ξ with

ξ = − a√
t
(2 exp(−b/t)− 1− 2 exp(−4b/t) + exp(−9b/t)),

[6]

with two parameters, a prefactor a and a time constant b:

a =
κ

D
· β d

4vwh
√
πDf

, b =
l2

Df
. [7]

The corresponding function for the average correlation 〈C〉 is
then plotted in Fig. 6 as black dashes.

With b≈ 436 s from fitting the experimental data and
l ≈ 200 µm, we calculated Df≈ 92 µm2·s−1, which agrees with
calculated and literature values (Df≈ 100 µm2·s−1) (48). In our
expression for a in Eq. 7, all quantities except the autochemo-
tactic coupling strength κ and the droplet diffusion coefficient
D can be measured or calculated independently. We can there-
fore use a as a direct measure of the strength of chemotactic vs.
stochastic forces, κ/D .

Conclusion and Summary
We studied a system of self-propelled droplets that exhibits
chemotaxis comparable to that of biological systems. The motion
of the oil-in-water droplets is driven by a Marangoni flow, which
is caused by a self-sustained interfacial tension gradient during
the solubilization of the droplet in a micellar surfactant solution.
In a homogeneous solution, the swimmers show no directional
preference, whereas they move up surfactant gradients, i.e., gra-
dients in empty micelles, whose effect we have used to guide
them through microfluidic mazes.

A related effect is trail avoidance by negative autochemotaxis,
due to gradients of oil-filled micelles in the wake of a droplet.
We have studied this effect quantitatively, observing anticorre-
lated branch choices between consecutive droplets in microflu-
idic channel bifurcations. We could model the time-dependent
correlation decay analytically, assuming a force on the droplets
proportional to the local empty micelle gradient.

Fitting our data yielded two system parameters: a time con-
stant b depending on the micellar diffusion timescale and a lin-

ear prefactor a , containing the secretion rate β and the strength
of (auto)chemotaxis κ over stochastic force D . In biological sys-
tems, where various physical effects and bioprocesses are inter-
twined, these parameters are often difficult to measure inde-
pendently. Microfluidic assays as presented above can provide
reproducibly quantitative experimental data for statistics and
comparative studies. In our droplet swimmer system, we will use
insights from this study to predict and control autochemotac-
tic effects in more complicated geometries and to compare the
swimmer dynamics with theoretical models (26–30).

Materials and Methods
Chemicals. We obtain 5CB, BPD, TTAB, and Nile Red from commercial sup-
pliers (Synthon Chemicals and Sigma-Aldrich) and use them as is.

Microfluidic Devices. We fabricate microfluidic devices using standard soft
lithography procedures: We create photomasks in a 2D AutoCad application
and have them printed as a high-resolution emulsion film by an external
company (128,000 dots per inch; JD Photo-Tools). A Si wafer (Wafer World
Inc.) is spin coated with a negative photoresist (SU-8; Micro Resist Technol-
ogy) in a clean room environment. UV light exposure through a photomask
and subsequent chemical development produce a master wafer containing
the microstructures.

We then use the master wafer in a polymer molding step to cast the
microstructure into PDMS (polydimethylsiloxane; Sylgard 184; Dow Corn-
ing). After degassing and heat curing at 75 ◦C for 2 h, we peel the PDMS
replica off the wafer, cut it into single pieces, and punch in fluid inlets and
outlets. We then seal the molded PDMS blocks from below by glass slides.
Covalent bonding between PDMS and glass is achieved by pretreating all
surfaces in an air plasma (Pico P100-8; Diener Electronic GmbH + Co. KG) for
30 s.

We produce droplets in standard flow-focusing microfluidic devices,
mounting syringes (Braun) on a precision microfluidic pump (NEM-B101-
02B; Cetoni GmbH) and connecting them to the inlets and outlets with
Teflon tubing (39241; Novodirect GmbH). To create oil-in-water emulsions,
we first activate the originally hydrophobic PDMS surfaces by a 1:1 volumet-
ric mixture of H2O2/HCl, then fill the channels with a silanization solution
[(C2H2O)n C7H18O4Si] for 30 min, and finally rinse them with milli-Q water.

During experiments, we introduce a concentrated droplet stock solution
into microfluidic devices, using standard pipettes.

Image Recording and Analysis. We record swimmers (still images and movies)
on an Olympus IX-73 optical microscope connected to a commercial digital
camera (Canon EOS 600D) at four frames per second. Images are processed
(swimmer tracking and trajectory analysis) using software written in-house
in Python/openCV.
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