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Neurons sharing similar features are often selectively connected
with a higher probability and should be located in close vicinity to
save wiring. Selective connectivity has, therefore, been proposed
to be the cause for spatial organization in cortical maps. In-
terestingly, orientation preference (OP) maps in the visual cortex
are found in carnivores, ungulates, and primates but are not found
in rodents, indicating fundamental differences in selective connec-
tivity that seem unexpected for closely related species. Here, we
investigate this finding by using multidimensional scaling to
predict the locations of neurons based on minimizing wiring costs
for any given connectivity. Our model shows a transition from an
unstructured salt-and-pepper organization to a pinwheel arrange-
ment when increasing the number of neurons, even without
changing the selectivity of the connections. Increasing neuronal
numbers also leads to the emergence of layers, retinotopy, or
ocular dominance columns for the selective connectivity corre-
sponding to each arrangement. We further show that neuron
numbers impact overall interconnectivity as the primary reason for
the appearance of neural maps, which we link to a known phase
transition in an Ising-like model from statistical mechanics. Finally,
we curated biological data from the literature to show that neural
maps appear as the number of neurons in visual cortex increases
over a wide range of mammalian species. Our results provide a
simple explanation for the existence of salt-and-pepper arrange-
ments in rodents and pinwheel arrangements in the visual cortex
of primates, carnivores, and ungulates without assuming differ-
ences in the general visual cortex architecture and connectivity.
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Models assuming short cables and fast signal propagation in
the circuit predict the precise placement of neurons and

brain areas (1–4), the existence of topographic maps (5), and the
existence of ocular dominance (OD) columns and orientation
preference (OP) maps in the visual cortex (6, 7). The latter ex-
amples have become model systems to study structured neural
maps because of the combination of striking striped patterns of
OD and the intricate arrangement of OPs in a radial symmetry
around pinwheel-like structures (8–11). A number of modeling
approaches have been shown to predict different map properties
and their possible biological origin (12–15). Examples are the link
between the shape of the visual cortex and the overall stripe
pattern of OD columns (16, 17) as well as the link between
monocular deprivation and stripe thickness (16, 18). In accor-
dance with these observations, the enlargement of specific brain
areas has been predicted by competitive Hebbian models
(Kohonen maps) in regions with increased input (19) and has
been found in monkeys and cats (20, 21). Furthermore, the order
of OD and OP map development has been linked to the ratio
between OD and OP wavelength (22), and a constant density of
pinwheels relative to the cortical hypercolumn size has been
predicted in models and confirmed by experiments (14, 23).
Although particular models can predict some properties of vi-

sual cortex maps very well (7), other properties are absent or

contradictory to experimental observations (24, 25). Structured
maps in the visual cortex have been described in primates, carni-
vores, and ungulates but are reported to be absent in rodents,
which instead exhibit unstructured, seemingly random arrange-
ments commonly referred to as salt-and-pepper configurations
(26–28). Phase transitions between an unstructured and a struc-
tured map have been described in a variety of models as a function
of various model parameters (12, 13). Still, the biological correlate
of the phase transition and therefore, the reason for the existence of
structured and unstructured neural maps in closely related species
remain unknown. Models in which minimal wiring constraints are
applied to neurons arranged on a grid show that switching from a
nonselective to a selective connectivity between neurons of similar
OP can lead to a transition between salt-and-pepper and pinwheel
arrangements (6). The results from these models indicate that a
difference in selective connectivity could lead to the formation of
unstructured vs. structured maps. However, similar grid-like ar-
rangements using Ising-like XY models that also can predict
pinwheel arrangements as well as OD columns (29, 30) show an
alternative transition of unstructured to structured maps. This
phase transition occurs even with a fixed connection selectivity
while varying the so-called temperature, a measure that relates to
the entropy or the amount of noise in the system (Methods). These
results indicate that a simple transition to organized neural maps
could occur without a direct alteration of the connectivity (31).
Such a transition would be compatible with the pronounced se-
lective connectivity between neurons of similar OP observed in
mice with their salt-and-pepper organization (32–35). We show
here by using a neural placement model based on multidimen-
sional scaling (MDS) and a modified XY model that, in both
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models, changes in a parameter characterizing the amount of
interconnectivity between orientation-selective neurons can lead
to the phase transition. We further show that this parameter is
directly related to the temperature in our XY model. We conclude
that increasing the interconnectivity, which is reflected in higher
total numbers of neurons, may lead to structured maps without
changing the connection selectivity, a theory that we support with
biological data, which we curated from the available literature.

Results
In the following section, we use a general method to predict the
optimal placement of neurons given an arbitrary connectivity
based on MDS (36). MDS can be used to find locations with
pairwise distances that match a given set of target values by
minimizing a respective stress function. To predict the positions of
neurons, we use their corresponding connection similarities as
distances. Thus, we ensure that neurons with similar connectivity
in the circuit are located in close vicinity and hence, that the
amount of wiring length is optimized (Methods). This model
allowed us to dissect the variables leading to the organization of
neural maps. To show our method, we first used a surrogate binary
connection matrix that we obtained from the geometric proximity
of randomly distributed points in a square arrangement arbitrarily
divided into six layers. Because the connection matrix then reflects
the spatial relations between nearby points, it should be possible to
retrieve the location of all points from the binary connectivity
matrix alone. Using MDS, we were indeed able to faithfully re-
cover the original locations (Fig. 1A), indicating that our optimal
placement method conserved neighborhood relations present in
the connectivity and favored short distances between connected
points. Under these conditions, the mean deviation between
original and recovered positions was about 2.4% of the side length
of the square after careful alignment of the points (average over
51 trials). Using the optimized locations, the amount of cable
required to connect the points according to the binary matrix was
then only about 35% of the cable required when using a random
placement. The reconstruction worked precisely over a wide range
of levels of connection sparsities.
Using the same method, we then predicted the optimal place-

ment of orientation-selective neurons. With the simple assumption
that neurons with similar OPs are selectively connected, we pre-
dicted the arrangement of a single pinwheel (Fig. 1B). As expected
from previous optimal wiring models (6), increasing the specific
selectivity in the connection probability (γ in Fig. 1B) resulted in
the appearance of pinwheel arrangements. Unexpectedly, how-
ever, we observed a transition from a salt-and-pepper to a pin-
wheel configuration when increasing the number of neurons (Fig.
1C, left to right and Fig. S1) for any fixed selectivity. Increasing the
number of neurons effectively increases the interconnectivity (i.e.,
the overall number of neurons that a neuron is connected to)
without altering the specificity. Interestingly, total interconnectivity
is reduced when increasing selectivity γ in our connection function,
indicating that seemingly opposing forces determine how much
structure is in the final neural map (SI Text and Figs. S2 and S3).
We quantified the amount of resulting structure by calculating
correlation coefficients between OP and azimuth in the putative
pinwheels, clearly visualizing the transition in the parameter space
(10) (Methods, Fig. 1D, and Fig. S1). Incidentally, when using
relatively unselective connection functions, we still predicted pin-
wheels for cell numbers above 1,000, thereby matching the numbers
found in the cat visual cortex (10). Also, the amount of cable used
was around 75% compared with random placements for all pa-
rameter values, with a slight improvement for more selective con-
nectivities (Fig. 1E). Seemingly unstructured salt-and-pepper
arrangements, therefore, still minimize the amount of cable used and
are precisely ordered (6), albeit at higher spatial frequencies com-
pared with the lower spatial frequencies found in pinwheel maps.
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Fig. 1. Optimal placement of orientation-selective neurons switches from
salt and pepper to pinwheel. (A) Validation of optimal placement using MDS
(Methods). From left to right, random locations in a unit square divided into
six layers by color, connection probabilities obtained from Euclidean dis-
tances [f(d)], binary connection matrix obtained by random instantiation
from the connection probability matrix, and recovered positions of neurons
using MDS to minimize the amount of cable for the binary connectivity
matrix. Colors correspond to layers in the original locations. (B) Optimal
placement for orientation-selective neurons. From left to right, connection
probability obtained as a periodic function of the difference between ran-
domly selected OPs between n neurons illustrated here for different values
of γ, the selectivity of the connection (constants a and b are set to 0.1 and
0.2, respectively); connection probability matrix for γ = 0.6 and 300 neurons
with uniformly distributed random OPs; randomly instantiated binary con-
nectivity from connection probability matrix; and positions of neurons as
determined using MDS. (C) Transition between salt and pepper and pin-
wheels. Optimal placement for different numbers of neurons n and different
selectivity values γ. (D) Absolute values of correlation coefficients r between
OP and azimuth for three values of γ from C using the mean of 40 instanti-
ations of connectivity matrices (in steps of 100 cells) for each parameter
combination. (E) Amount of cable used after optimal placement using MDS
compared with random (rand) placement (same data as D).
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Although the MDS model robustly showed a structural transition
with increasing interconnectivity, it did not become clear why this
transition occurred or how general it was with respect to other neural
arrangements. To address these questions, we used XY models from
statistical mechanics that calculate interactions of continuous peri-
odic spins on a lattice. These models are known to exhibit well-
defined characteristic phase transitions in the resulting geometric
arrangements of their spins (37, 38). Such Ising-like models have
previously been shown to predict OP and OD maps when using a
nonlocal type of interactions with a “Mexican-Hat” shape, corre-
sponding to neural models of lateral inhibition (29, 30, 39).
In our XY model, we considered n neurons with the following

pairwise interaction between two neurons i and j:

Jij ∼
�
dði, jÞ
u

�−α

,

where d(i,j) is the distance from neuron i to j, α is the decay
power of the interaction strength with distance, and u= ρ · λ1=α is
the degree of interconnectivity. Here, the interconnectivity is
composed of the neuronal density ρ and the average neuronal
span λ as described later. The interaction strength can be inter-
preted as the connection probability between two neurons that
increases with neuronal interconnectivity and decays with dis-
tance as a power law. It was previously shown that, when the
decay power α is greater than or equal to four, this class of
models becomes similar to a short-range XY model described
previously (37, 38) and exhibits similar phase transitions (40, 41).
Incorporating the connection probabilities into the partition
function (details are in Methods)

Z =
X
θ

exp

 
uα

T

Xn
i=1

Xn
j=i+1

dði,jÞ−αcos�2θi − 2θj
�!

allows the study of phase transitions in the XY model that are
known to occur when changing the temperature T, a model pa-
rameter that is related to the entropy of the system and there-
fore, the amount of disorder in the resulting map. Varying the
amount of interconnectivity u is inversely proportional to varying
T, because they both combine to an effective temperature T=uα
in the partition function. Therefore, the same phase transitions
that are known to occur when changing the temperature will
occur when changing either the neuronal span or the density.
To illustrate this relationship, we performed numerical simula-
tions using a hybrid Monte Carlo algorithm to produce output
patterns for a range of different values of u and T (Methods and
Fig. 2). The transition was clearly observed when changing not
only T but also the amount of interconnectivity u.
Our results show a phase transition that is dependent on the

interconnectivity, the connection selectivity, and the noise of the
system. In both models, map structure can be influenced by
changing the interconnectivity by varying either n in the MDS
model or u in the XY model. We provide a detailed explanation
of the relationship between our MDS and XY models as well as
the role of all parameters involved in SI Text (Figs. S2–S4).
The progression from unstructured to structured arrangements

seen in both the XY model and the MDS model for OP ar-
rangements is, therefore, likely to be a general feature of neural
maps. To show that this is also the case for simple topographic
arrangements, we calculated the optimal placement of neurons
selectively connected as groups on various grid configurations with
a probability that decayed as a function of the Manhattan distance
(Fig. 3A). Neural maps conserving neighborhood relations from
the grid configurations emerged in all cases. A 1D chain of six
groups of neurons led to six distinct layers (Fig. 3B), a 2D 4 ×
4 connectivity led to a typical topographic map as observed in

various systems throughout the brain (Fig. 3C), and a 3D grid
connecting a 4 × 4 grid input from one eye with a 4 × 4 grid from
the other eye (Fig. 3A, Right shows connection probability) led to a
2D arrangement conserving the neighborhood relations in both
grids and forming a map of OD columns typical of the ones ob-
served in the visual system (Fig. 3D). As is the case with OP maps,
OD maps in biology exist in cats and monkeys (5) but are absent in
rodents (42, 43) and tree shrews (44), adding to the evidence that
the transition that we observe in the model could be pertinent to
neural maps in general. In all three cases shown in Fig. 3, higher
interconnectivity through a larger number of neurons led to more
structure in the resulting topographic maps. Incidentally, increasing
the feature space (i.e., from one to three dimensions between Fig. 3
B–D) also seemed to increase the threshold number of neurons
required for the emergence of structured maps, indicating that the
number of features also played a role in determining the amount of
structure in the neural map.
To support our theory with experimental data, we curated the

available literature for numbers of neurons in mammalian V1
(Table S1) and their corresponding expression of OP and ODmaps
(Table S2) in a broad range of species and body sizes. According to
our curated data, map structure seems to be critically dependent on
the number of neurons in V1 (Fig. 4A), which directly relates to
neuron numbers and interconnectivity in our models (Discussion).

Discussion
We have shown that connectivity and neural placement are
consistent with optimal wiring as has been previously suggested
(5, 6) but that a phase transition between an unstructured and a
structured map can occur without changing the selectivity of the
connections. This finding is in line with recent experimental
measurements that indeed have shown a selective connectivity in
the salt-and-pepper arrangements in rodents (32–35) (Fig. 4B).
Phase transitions between unstructured and structured maps

have previously been observed in a number of modeling studies

u (interconnectivity)
2-1

40

20 2221 23

41

42

43

44

T 
(n

oi
se

)

Fig. 2. Phase transitions in the XY model with network interconnectivity.
Single realizations for 25 different combinations of two parameters T and u
of our adaptation of the XY model after evolving the spins on a regular
lattice with up to 10 million iterations using a hybrid Monte Carlo algorithm
(as described in Methods). Values are given in arbitrary units.
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(12, 13), including those using elastic net models (7, 16, 22) and
competitive Hebbian models (Kohonen map models) (45).
There, phase transitions depending on receptive field (7, 16, 22)
and neighborhood size (19, 45) are reminiscent of the phase
transition depending on the interconnectivity in our models.
Elastic net models have been shown to predict the order of map
development for a set of given features with respect to the sizes
of their particular cortical hypercolumn, indicating a possible
link between the phase transition and cell numbers similar to our
own results (22). The similarity of the resulting neural maps and
the corresponding phase transitions in all of these models (46–
49) indicate a common underlying theme. Accordingly, the XY
and the MDS model are related. It is, therefore, not surprising
that we find analogous relationships regarding the phase tran-
sition in both models, and we would predict equivalent phase
transitions with interconnectivity to be present in other models.
However, despite their similarities, different models highlight
different aspects of visual cortex maps (12, 50).
In our MDS model, the relationships between interconnectivity,

neuron numbers, and maps became particularly visible. Changing
the number of neurons n in the MDS model naturally led to an

increase in the number of connections per neuron (i.e., the
interconnectivity) if the connection selectivity was fixed. Likewise,
in the XY model, the interconnectivity was proportional to the cell
density ρ and the neuronal span λ if one assumes a fixed con-
nection probability within the interaction range of a neuron (Fig.
4C). Therefore, changing the interconnectivity u in the XY model
was analogous to changing the number of neurons n in the MDS
model. To better study this relationship, we also decoupled the
interconnectivity from the number of neurons in the MDS model
(Fig. S3). This study confirmed that changing the number of
neurons without increasing the interconnectivity has no visible
effect on the obtained map layouts. However, direct application of
noise in the MDS model, analogous to changing the temperature
T in the XY model, unsurprisingly resulted in unstructured maps.
A higher number of neurons then increased the resistance to such
noise (Fig. S2) similarly to increasing u in the XY model. Overall,
the numerical analysis of the phase transition in the MDS model
showed that noise and interconnectivity affect the map structure
similarly as in the XY model, indicating a similarity of the phase
transition in both models (Fig. S4).
We validated our model prediction by curating absolute num-

bers of neurons in mammalian V1 from the available literature
(Fig. 4 A and B and Table S1) and found that neuronal map
structure increases with the number of neurons. The question then
emerges as to how the number of neurons in V1 relates to neuronal
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Fig. 4. Interpretation of the parameters and biological data. (A) Numbers
of neurons in visual cortex (V1) of species from different orders (color-coded)
and their relation to map structure. OD and OP map structure are given by
the positions of the dot and star symbol, respectively on the y axis of the
plot. Number of V1 neurons and map structure were both curated from the
literature and are summarized in Tables S1 and S2. The following species are
shown: (a) mouse, (b) rat, (c) gray squirrel, (d) rabbit, (e) ferret, (f) tree shrew,
(g) agouti, (h) sheep, (i) cat, (j) marmoset, (k) galago, (l) owl monkey, (m)
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numbers for species denoted with a star are only estimates (Table S1).
(B) Connection selectivity given by the connection probability between
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tion within λ is constant. This relationship is illustrated as an example for one
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interconnectivity. Because V1 represents the visual field in a reti-
notopic manner, for potential pinwheels (or any type of cortical
hypercolumns) to exist, these pinwheels should not exceed a
maximum relative size. Otherwise, no part of the visual field would
represent the entire feature space (51). The absolute number of
neurons in V1, therefore, directly determines the maximum num-
ber of neurons available to form a pinwheel. Accordingly, for a
fixed relative connectivity, the amount of interconnectivity would
increase with the absolute number of neurons in V1.
Based on our findings, we believe that cortical maps did not

“evolve” to fulfill a certain function (52). Our results rather in-
dicate that cortical maps emerge as a consequence of optimal
wiring and connectivity requirements. This conclusion is also
supported by a number of strong arguments. From an evolutionary
perspective, it is unlikely that fundamental differences in neural
maps in closely related species are caused by differences in the
visual cortex architecture (53). Our theory is further supported by
experimental studies, which show that the emergence of visual
cortex map patterns depends on the input (54–56) and that OD
columns are capriciously expressed in some New World monkeys,
excluding functional consequences from having structured OD
maps (57, 58). OP maps have also been observed in birds (59),
which altogether lack a cortical architecture (60), further in-
dicating that neural maps in the visual system are more likely to be
a product of neuronal optimization principles based on the af-
ferent input. These findings may lead to the conclusion that
structured maps could be a sign of increased neural organization
or superior optimization compared with homologous areas
without structured maps in different species. We would argue
against such a conclusion based on our MDS model results, be-
cause wiring length is similarly optimized in unstructured and
structured map layouts (Fig. 1E). In conclusion, our model results
suggest a simple explanation for the difference of visual cortex
maps between rodents and primates, carnivores, ungulates, and
tree shrews without assuming a difference in the general func-
tional architecture or how optimal the network layout is.
Although data for connection selectivity between neurons of

similar tuning are available only for cats and mice, a higher con-
nection selectivity in carnivores and possibly, primates and tree
shrews together with a generally higher number of neurons could
explain the presence of structured visual cortex maps in those
species and their absence in rodents. However, it has been shown
that sheep show some form of a structured map (61) and that
ungulates in general possess similar neuronal scaling rules as ro-
dents (62). The emergence of a structured map in larger rodents
is, therefore, likely. The agouti is a rodent with neuronal numbers
in V1 that are as high as those of other species with structured OP
maps (Fig. 4A and Tables S1 and S2). Although occurrences of
structured maps in the agouti and the even larger capybara have
not yet been reported, they likely possess OP maps. The existence
of structured visual cortex maps in rodents has mainly been
questioned because of a study that showed the presence of an
unstructured map in the gray squirrel—a highly visual rodent (27).
Here, it has been claimed that ferret, tree shrew, and gray squirrel
possess similar V1 sizes and visual acuity, leading to the conclusion
that visual cortex map structure cannot be determined by these
factors (27). However, the gray squirrel has a smaller V1 than the
tree shrew and the ferret (Table S1). Most likely, it also has a
smaller neuronal density than tree shrew and ferret and as a
consequence, a much lower number of neurons in V1. Thus, the
results obtained for the gray squirrel (27) do not contradict
our results.
In addition to a sharp separation of map structures given by

the neuronal numbers in V1, there seems to be a progression in
the strength of the expression of the maps depending on the
number of neurons (Tables S1 and S2). For example, tree shrews
that are on the lower end of the spectrum show an intermediate
OP map pattern, which is characterized by a more stripe-like

appearance in large parts of their V1 (63). Additionally, they
lack an OD map entirely (64–66). New World monkeys with
V1 neuron numbers between those of tree shrews and macaques
(Table S1) show a robust OP map (Table S2) but an intermediate
OD map pattern, which is, furthermore, erratically expressed
between different individuals (57, 58). Also, carnivores seem to
show a progression of map structure depending on the number of
neurons in V1. The OP and OD map of the ferret have been
described as less structured and regular than those of the cat, and
neuronal numbers in cat V1 are very likely to be greater than
those in the ferret V1 (Tables S1 and S2).
Our models suggest that a certain number of neurons per hy-

pothetical hypercolumn are necessary to form a structured OP
map. The area of V1 required for a pinwheel should, therefore,
vary with neuronal density, and hypercolumn sizes would scale
accordingly (14, 23). In the light of our results, the different
hypercolumn sizes observed in different species could be explained
by individual neuronal densities in visual cortex. In line with this
argument, neuronal density in cat was shown to be about one-half
of the density measured in macaque, but hypercolumn sizes were
twice as large (Table S1) (44). Although we provide biological data
that are as reliable and comprehensive as possible, the collected
data are largely fragmented over more than a dozen different
studies and confined in the diversity of species that they provide
(Tables S1 and S2). To confirm our theory, additional experiments
providing better data for more species are necessary. Neuronal
numbers and connection selectivities should be obtained by stan-
dardized methods, ideally in the same individuals where the map
structure is assessed. However, it would be particularly interesting
to see whether structured visual cortex maps are expressed in the
largest existing rodent, the capybara, and conversely, whether they
are missing in the smallest primates, carnivores, or ungulates.

Methods
To show the transition between unstructured and structured circuit arrange-
ments, we take advantage of two separate models that generate the patterns
of OP maps. The first model is our own model based on optimal placement of
neurons to minimize wiring in the circuit using MDS; the second model is
based on an adaptation of the Ising-like XY model, where spatial patterns
emerge from interactions between nodes on a regular lattice.

Determining Connection Probabilities from Euclidean Distances. The connec-
tion probabilities in Fig. 1A were calculated from the Euclidean distances
between each pair of nodes i,j using the following function:

pði, jÞ =
�
1−min

�
1,
dði, jÞ
dmax

��
, [1]

where d(i,j) is the Euclidean distance between nodes i and j, and dmax is the
maximum distance to establish a connection. In Fig. 1A, we used 1,000 neurons
uniformly distributed in a square area. We divided the square into six layers of
the same size and attributed to each layer a unique color that we corre-
spondingly assigned to the neurons of the respective layer. For calculating the
connection probabilities, a dmax of 0.4 was used.

Calculating Connection Dissimilarity for the MDS Model. Given a binary con-
nectivity matrix C for n neurons, we determined the connection dissimilarity
δi,j of two connected neurons i and j by calculating the Jaccard distance

JD= 1− JC
�
Ci ,Cj

�
= 1−

jCi ∩Cj j
jCi ∪Cj j, [2]

where Ci = fk :Ci,k = 1,  k∈ f1, . . . ,ngg denotes the set of nonvanishing in-
dices of the ith row of C, and Ci,k is the entry at the ith row and kth column
of C. After calculating the dissimilarity for all connected neurons, we
obtained the remaining dissimilarities by summing up the calculated dis-
similarity values over the shortest paths between nonconnected neurons.

Optimal Placement Using MDS. MDS finds positions X of n nodes in r di-
mensions, such that the Euclidean distances d(i,j) between the nodes i and j
best match given dissimilarity values δi,j. For calculating the optimal neural
placement, we used the dissimilarity of the connectivity between neurons i
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and j as defined above to calculate their 2D positions by ordinal MDS. The
positions X are calculated in MDS by minimizing the stress function σ:

σd
Xn
i=1

Xn
j=i+1

�
f
�
δi,j
�
−dði, jÞ�2, [3]

where f(δi,j) transforms the dissimilarity values into spatial distances. In or-
dinal MDS, this function f has to be monotonic, must only fulfill the condi-
tion δi,j < δk,j ⇔ fðδi,jÞ≤ fðδk,jÞ, and is also computed such that it minimizes σ
(36). We used the MATLAB function mdscale to perform the ordinal MDS.

Optimal Placement for a Single Pinwheel Using MDS. Random OPs θ ∈ [0, π]
were associated with n neurons used for one pinwheel. The probability p of
connecting two neurons i and j was determined by

p
�
θi , θj

�
= a+b ·

��
cos
�
2θi − 2θj

�
+ 1
�

2

�γ
, [4]

a function of the preferred orientations θi and θj of both neurons. This type
of periodic connectivity is analogous to previous models predicting OP maps
(6). Here, a defines the constant connection probability between all n neu-
rons, and b is the maximum connection probability between two neurons i
and j. The selectivity of the connection is given by γ, a parameter of crucial
importance in Fig. 1.

Estimation of Cable Saved by Optimal Placement. To quantify the amount of
cable that was saved by the optimal placement of n neurons, we compared
the arrangement obtained using MDS with the arrangement of n randomly
located neurons in an area with similar dimensions. Random positions were
obtained using a uniform distribution within the bounding box around the
positions determined using MDS (Fig. 1A) or for a circular bounding box (Fig.
1C). For any connectivity matrix C that has been used to calculate the neu-
ronal positions using MDS and the distance matrix D of the positions de-
termined by MDS, we calculated the total wiring length L as follows:

L =
Xn
i=1

Xn
j=1

Cij ·Dij . [5]

For the distances of the random positions Drand, the total wiring length
connecting the random positions Lrand was calculated analogously. The
proportion of wiring length compared to random was then defined in
percentage by 100·L/Lrand.

Correlation Coefficient Between Preferred Orientation and Pinwheel Azimuth.
To quantify how much the MDS neural placement followed a pinwheel ar-
rangement, we calculated the correlation between OP and azimuth for all
neurons in each modeled arrangement. A reference vector was defined by
the mean direction of the coordinates of the first 10 neurons, with a pref-
erence to the smallest orientations greater than or equal to 0. For each
neuron, the azimuth was then calculated with respect to the reference vector
and plotted against the preferred orientation (Fig. 1C). The Pearson corre-
lation coefficients for Fig. 1D were then calculated for data points with an
azimuth in the range between 1/4π and 7/4π to avoid data points that
possess an OP near π but reside near the 0 azimuth and vice versa. For the
results shown in Fig. 1D, 40 modeled neural arrangements were calculated
for each parameter pair, and we used the average of the absolute values of
the corresponding correlation coefficients.

XY Model for Studying the Phase Transition with Interconnectivity. The 2D XY
model is an Ising-like model (67), where the state of a single spin si can take
values θ from 0 to π. The interaction between two spins si·sj then is equal to
the scalar product of the two corresponding orientation vectors: cos(2θi − 2θj).
The system is described by the following Hamiltonian operator:

H = −J 
Xn
i=1

Xn
j=i+1

cos
�
2θi − 2θj

�
, [6]

where J is a positive constant. We modified the original XY model (67) to be
able to better compare it with variables from the MDS model and better
study the effect of interconnectivity by replacing the constant Jwith an n × n
matrix J that incorporates the strength of the interaction Jij between all pairs
of neurons i,j ∈ {1, . . ., n}. Assuming that neuronal connection probability
decays strongly with distance, we used a simple power law relationship: Jij ∼
λ(d(i,j)·ρ−1)−α, where d(i,j) is the distance between two neurons, ρ is the

neuronal density, and λ represents the neuronal span. For ease of notation,
we considered the following connection function:

Jij ∼
�
dði, jÞ
u

�−α

, [7]

where we introduced the interconnectivity as parameter u= ρ · λ1=α. It is
important to note that, when increasing the density of neurons, the average
distance between them will decrease. Increasing either the density ρ or the
average neuronal span λ will, therefore, increase the amount of inter-
connectivity u. The Hamiltonian operator then becomes

H=−
Xn
i=1

1
ki

Xn
i=j+1

�
dði, jÞ
u

�−α

  cos
�
2θi − 2θj

�
, [8]

where the factor ki =
P

k≠idði,kÞ−α has been introduced to ensure the ther-
modynamic limit of the system and its asymptotic independence on the
number of neurons (68).

In the limit of α → ∞, this model becomes equivalent to the common
short-range XY model that only takes into account interactions with the
nearest neighbors.

Increasing Radius of Interaction Is Equivalent to Decreasing Temperature. In a
statistical system, such as the Ising XY model that we used, the properties of
the system, including its characteristic phase transitions, can be obtained from
the partition function Z. This function is defined as the sum over all possible
configurations of its Boltzmann weights:

Z =
X
fθg

e−
Hðθ,uÞ

T . [9]

Inserting Eq. 8 into Eq. 9 leads to

Z =
X
fθg

exp

 
uα

T

Xn
i=1

1
ki

Xn
j=i+1

dði,jÞ−αcos�2θi − 2θj
�!

. [10]

It was shown previously (40, 41, 69) that, when α is greater than or equal to
four, the system described by Eq. 10 belongs to the Kosterlitz–Thouless
universality class (37, 38). The system thereby exhibits phase transitions
driven by the temperature T, a model parameter that is related to the en-
tropy of the system. Below the critical temperature, the system exhibits long-
range correlations that decay as a power law and share similarities with
cortical OP maps, including alternating clockwise and anticlockwise pin-
wheel formations. Above the critical temperature, the correlation length
decays exponentially, and mesoscopic patterns can exist only on a short
scale. Eq. 10 can be rewritten in terms of effective temperature: Teff = T=uα,
and it follows directly that changing the interconnectivity u is inversely
proportional to changing the temperature T. Increasing the interconnectivity
as well as decreasing the temperature, therefore, both lead to a phase tran-
sition in this class of systems (40, 41).

Numerical Simulations for XY Model Using a Hybrid Monte Carlo Technique. To
visualize the phase transition in the XYmodel with increasing interconnectivity,
we performednumerical simulations based ona standardmethod for XYmodel
predictions using a hybrid Monte Carlo method (70). The original Hamiltonian
operator of the system (Eq. 8) was considered as a potential that depends on
the n OPs of all neurons in the system. We introduced an additional parameter
ϕ for each of these dfs representing the velocity of each orientation:

Hðfθg, fϕg,uÞ=−
Xn
i=1

1
ki

Xn
j=i+1

�
dði, jÞ
u

�−α

cos
�
2θi − 2θj

�
+
1
2

Xn
i=1

ϕi
2. [11]

At each Monte Carlo iteration, all of the nodes of the grid evolved according to
the equation, whereas the system returned to its previous statewith a probability

Preject = 1−min
�
1, exp

�
−
ΔH
T

��
; [12]

10,000 neurons on a grid were associated with random initial orientations, and
up to 1,000 iterations were performed according to the following algorithm.

Algorithm.

i) Select n parameters from a normal distribution centered around zero
with an SD of T.
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ii) Numerically integrate

ϕi

�
Δt
2

�
=ϕið0Þ−

Δt
2

∂H
∂θi

θiðΔtÞ= θið0Þ+Δt
∂H
∂ϕi

ϕiðΔtÞ=ϕi

�
Δt
2

�
−
Δt
2

∂H
∂θi

[13]

for each node.

iii) Calculate the difference between the new and the old Hamiltonian
operators and accept the new values θ if the change is not rejected
according to the rejection probability (Eq. 12).

The resulting θ produced by this algorithm follows the same statistics as
the partition function. Fig. 2 was generated in this way for α = 4 and
25 different combinations of temperature and levels of interconnectivity.
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