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Complex behaviors are typically associated with animals, but the
capacity to integrate information and function as a coordinated
individual is also a ubiquitous but poorly understood feature of
organisms such as slime molds and fungi. Plasmodial slime molds
grow as networks and use flexible, undifferentiated body plans to
forage for food. How an individual communicates across its net-
work remains a puzzle, but Physarum polycephalum has emerged
as a novel model used to explore emergent dynamics. Within
P. polycephalum, cytoplasm is shuttled in a peristaltic wave driven
by cross-sectional contractions of tubes. We first track P. poly-
cephalum’s response to a localized nutrient stimulus and observe
a front of increased contraction. The front propagates with a
velocity comparable to the flow-driven dispersion of particles.
We build a mathematical model based on these data and in the
aggregate experiments and model identify the mechanism of sig-
nal propagation across a body: The nutrient stimulus triggers
the release of a signaling molecule. The molecule is advected by
fluid flows but simultaneously hijacks flow generation by causing
local increases in contraction amplitude as it travels. The molecule
is initiating a feedback loop to enable its own movement. This
mechanism explains previously puzzling phenomena, including
the adaptation of the peristaltic wave to organism size and
P. polycephalum’s ability to find the shortest route between food
sources. A simple feedback seems to give rise to P. polycephalum’s
complex behaviors, and the same mechanism is likely to function
in the thousands of additional species with similar behaviors.
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One of the great challenges of unraveling biological complex-
ity is understanding what kind of and how much compu-

tational power is required for an organism to generate sophis-
ticated behaviors. Behaviors are typically associated with a
nervous system, but many organisms without nervous systems
integrate information and function as coordinated individuals
(1); examples range from the ability of Escherichia coli to move
up chemical gradients (2) to the ability of a multicellular fungus
to sense and precisely explore unoccupied space (3). A recently
published and striking example of a complex behavior involves
bacteria within a biofilm: When a Bacillus subtilis biofilm is
deprived of nutrients, bacteria are able to grow networks of chan-
nels and evaporatively pump flows, creating intricate structures
that benefit the entire community (4).

Perhaps the archetypal example of an apparently simple
organism able to generate sophisticated behaviors is the slime
mold Physarum polycephalum, whose behaviors are repeatedly
characterized as “intelligent.” This slime mold is able to navi-
gate mazes by finding the shortest route between different food
sources (5) and has used its ability to reconstruct the transporta-
tion maps of major cities (6). The organism can structure its con-
nections to different nutrient sources to optimize its diet (7).

How the organism coordinates complex tasks in the absence
of a nervous system remains unknown. P. polycephalum is uni-
cellular, and as it forages the slime mold develops as a retic-
ulated network of tubes. There is no obvious organizing cen-

ter. Tubes are made of a gel-like outer layer and interior cyto-
plasmic fluids. The outer layer houses an actin–myosin cytoskele-
ton and the cytoskeleton generates periodic contractions of tube
walls. Contraction amplitude and frequency generally increase
or decrease organism-wide when encountering an attractant or
repellant, respectively (8–11). Contractions drive periodic cyto-
plasmic fluid flows, and these extend across an entire individual.
Intriguingly, the fluid flows are highly coordinated (12), and the
phase of oscillations is tuned such that there is exactly one wave-
length across an individual, regardless of an individual’s size. Data
suggest P. polycephalum is somehow able to measure its size.

Although data also suggest P. polycephalum can communi-
cate across its entire body (13), we have no knowledge of the
nature of communication. Signals may propagate via elastic waves
(14) or an advected molecular stimulus (15, 16) or electrical
impulses (17). Our very recent work tentatively suggests the sec-
ond hypothesis; flows generated from the coordinated contrac-
tions of tube walls are used to increase the effective dispersion
of molecules substantially beyond their pure molecular diffusiv-
ity, a phenomenon known as Taylor dispersion (18). However,
these different possibilities can be definitively distinguished by
their velocities for signal propagation, which differ dramatically,
and recognition of this fact opens up the possibility of understand-
ing communication, the key to understanding behaviors.

Building on our previous observations (12, 18), we now report
and characterize the mechanism of communication in P. poly-
cephalum and demonstrate that a simple feedback between a
signaling molecule and a propagating contraction front is suffi-
cient to explain P. polycephalum’s sophisticated behaviors. The
key experiment demonstrates that a localized nutrient stimulus
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triggers an increase in contraction amplitude initiating at the
stimulus site. The amplitude front propagates across the organ-
ism with a velocity comparable to the dispersion of particles in
cytoplasmic fluid flows. We use unrelated trace particles in the
cytoplasm to measure flow velocities. We build a mathematical
model based on these data and in the aggregate experiments and
the model identify the mechanism of signal propagation across
a body: The nutrient stimulus triggers the release of a signal-
ing molecule. The molecule is advected by fluid flows but simul-
taneously hijacks flow generation by causing local increases in
contraction amplitude as it travels. The molecule is initiating a
feedback loop to enable its own movement. Although the chem-
ical nature of the signaling molecule so far remains unidenti-
fied the discovery of the mechanism of signal propagation itself
allows us to understand P. polycephalum’s complex dynamics.
The mechanism implies that the peristaltic wave matches organ-
ism size, explaining our previous observation (12). Moreover the
mechanism, working in tandem with tube radius adaptation in
response to the increased flow, seems sufficient to explain how
P. polycephalum is able to solve a maze and build efficient trans-
port networks.

Network before and after stimulation
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Fig. 1. Propagating amplitude front. (A) Bright-field images of a P. polycephalum network before (−3 s, including approaching pipette) and after stim-
ulation with a droplet of nutrient media. Droplet added at 0 s. Tubes swell where they make contact with the droplet (green arrow). (Scale bar, 2 mm.)
(B) The same time points as in A showing contraction amplitude relative to the average over the last 10 periods before stimulation. Stimulation site marked
by black arrow. The front (hot colors) spreads preferentially through tubes of larger radii. (C) Amplitude front and particle speeds extracted from bright-
field dataset. (i) Locations of particle speed (blue) and front speed (magenta) measures. (ii) Contraction patterns at three different points further and
further away from stimulation site. Dotted vertical lines mark sudden changes in contraction amplitude. (iii) Kymograph along trace in i showing change in
contraction amplitude, observed as increased contrast during a contraction cycle. Front of increased amplitude propagates over time (red dashed line). (iv)
Inset of iii: Particles advected along the tube appear as dark spotted trajectories. (v) Representative maximal speeds of particles (blue), located as pictured
in i. Average front propagation speed (red) along trajectory in i as shown in iii.

Results
P. polycephalum Responds to a Stimulus with a Propagating Change
in Contraction Dynamics. To follow the propagation of a stimu-
lus throughout a P. polycephalum network we first observed net-
works before and after stimulation using bright-field microscopy
over the course of 2 to 3 h. Data were analyzed to extract
and track contractions along each tube (Materials and Meth-
ods). A nutrient stimulus gives rise to immediate changes in
tube contraction dynamics and these propagate spatially over
time (Fig. 1 and Movie S1). After a short delay, the response
begins with a localized inflation of the tubes directly exposed to
the nutritive liquid (green arrow in Fig. 1). A uniform reduc-
tion in tube volume elsewhere follows and is caused by the fixed
amount of fluid within a network. Analysis of the wave patterns
shows a clear increase in oscillation amplitude at the stimula-
tion site (Fig. 1B and Movie S2); see ref. 22 for an indepen-
dent dataset done in an entirely different context. Our dataset
shows the change in amplitude subsequently propagates along
the tubes with a speed of about 13 µm/s (Fig. 1C, i and ii).
The spread of the change is not symmetric in space around
the stimulation site; instead, the change in amplitude obviously
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propagates more quickly along larger tubes compared with
tubes with smaller radii. These observations are reproducible
(Fig. S1).

As we tracked contraction dynamics we simultaneously
observed unrelated particles or vacuoles moving with shuttle flow
within tubes. These appear as dark streaks in the kymograph
(Fig. 1C, ii). Because of the ephemeral nature of the particles net
transport velocity could not be calculated, but the streaks allow
us to measure the maximal fluid flow velocity along a tube during
a given contraction period. Fig. 1C, iii compares maximal flow
speeds with speeds of the propagation front; the front propaga-
tion velocity is about two- to threefold slower than the maximal
flow velocity and as such is likely to be similar to the net transport
velocity within the cytoplasm (Fig. S2).

Mechanism of Signal Propagation. Experimentally we observe
a propagating change in contraction amplitude triggered by
a localized stimulus. The velocity of the amplitude front,
1− 20 µm/s, is significantly slower than expected from propa-
gation mechanisms involving elastic waves, > 0.2 m/s, or action
potentials, > 2.7 mm/s, but is in the range expected from an
internally advected signal (Fig. 2). Data also rule out the diffu-
sive spread of a stimulus within the agar substrate: This mecha-
nism would result in a radially symmetric increase in contraction
amplitude around the stimulus site, but we observe an asymmet-
ric spread along larger tubes with higher flow velocities. Exper-
iments suggest a basic feedback mechanism: An initial stimulus
triggers release of a signaling molecule and the molecule changes
local wall contractions, increasing local fluid flow. Greater flow
increases the dispersion of the signaling molecule away from
its source, and the molecule continues to trigger wall contrac-
tions downstream. The process repeats itself and creates a self-
propagating front across the entire organism.

To test whether this mechanism can explain experiments, we
now translate it into a formal mathematical model, using param-
eters measured from the organism itself (Materials and Meth-
ods). Cytoplasmic flows are well described as a low-Reynolds-
number (Re ∼ 10−3), incompressible fluid. The tube radius
a0 is much smaller than the oscillatory boundary layer thick-
ness

√
ν/ω, defined by the ratio of kinematic viscosity ν and

oscillation frequency ω. Thus, the flow velocity, ~u = (u, v),
with the flow longitudinal u and radial v flow components
in a cylindrical coordinate system, follows from the Stokes
equations

µ∇2~u = ∇p − ~f , ∇ · ~u = 0, [1]

where µ denotes fluid viscosity and p pressure. The force~f repre-
sents force on the cell wall caused by the active tension T gener-
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Fig. 2. Front speed identifies mechanism. (A) Propagation speeds for elastic waves (red), action potentials (blue), (19, 20), and P. polycephalum (green).
Wave velocity in a fluid filled elastic tube varies between wave speed in the elastic wall (lower bound) and the fluid only (upper bound) (21). (B) Front
speed increases with tube radius as predicted by the model. Amplitude fronts along tubes of a network centrally stimulated by nutrient droplet. Data show
average speed and tube diameter with one SD error measured at five locations along the corresponding route (Inset). (Scale bar, 5 mm.)

ated by the actin–myosin cytoskeleton embedded in tube walls, as
well as the elastic restoring force FE . We represent these effects
through

~f = (T + FE )δ(r − a)~er , [2]

so the force density is localized at the tube boundary where
r = a(z , t), oriented radially with the unit vector ~er . Because the
thickness h of the tube wall is small compared with the base
radius a0, we can approximate the elastic restoring force using
the linear law

FE =
E

h
(a − a0),

where E characterizes the wall elasticity (23). The orientation
of the restoring force is negative for a < a0, thus counteract-
ing tension, while acting in parallel with tension for a > a0.
Experiments have shown that the tension in the tube wall of
P. polycephalum oscillates with a well-defined frequency (24, 25).
A typical period is around 120 s. Oscillations seem independent
of cytoplasmic flows because they persist if cytoplasm is replaced
by air (26), even though they become spatially uncorrelated if
flows are stalled (26, 27). We incorporate this into our model by
taking T = γ cos(ωt), where the tension strength γ depends on
the concentration of the signaling molecule c. We expect actin–
myosin to respond to a time average 〈c〉 of the signal concen-
tration, so that γ= γ(〈c〉), which for simplicity we assume to be
linear, γ(〈c〉) = γ〈c〉.

We note an important simplification of the fluid mechanics:
Because the characteristic length scale of the contraction is much
larger (i.e., organism size) than the radius of the tube, the Stokes
equations (Eq. 1) simplify via lubrication theory (SI Text). This
gives the flow velocity in the tube as a response to the forcing,

ū = − a2

8µ

∂

∂z
(T + FE ), [3]

where ū is the cross-sectional average advection velocity in the
tube. This equation is supplemented by the incompressibility
condition, an equation for conservation of mass (Eq. 5), which
holds throughout the closed tube.

Finally, to complete our model, we must specify the dynamics
of the signaling molecule itself. This is given by

∂c

∂t
= ∇(−~uc + κ∇c), [4]

where κ is the molecular diffusivity. In the limit that the timescale
for diffusion across the radius of the tube (a2/κ) is fast relative to
a typical time for transport along the tube, the transport dynamics
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simplify to Taylor dispersion (Eq. 7) (28, 29). Specifying the
dynamics of the cross-sectionally averaged concentration by Tay-
lor dispersion shows that the quick diffusion across the tube cross-
section augments diffusion proportional to the flow velocity.

Altogether the complete equations governing flow and trans-
port are given by

∂a2

∂t
= − ∂

∂z

(
a2ū

)
[5]

ū = − a2

8µ

∂

∂z

(
γ〈c〉 cos(ωt) +

E

h
(a − a0)

)
, [6]

∂c

∂t
=

∂

∂z

{
− ūc +

(
κ+

ū2a2

48κ

)
∂c

∂z

}
, [7]

∂〈c〉
∂t

= −〈c〉 − c

τ
, [8]

where we omitted higher-order correction terms in Taylor dis-
persion due to nonuniform tube radius (30). Eq. 8 time-averages
the concentration c over a timescale τ . The precise value of τ
does not affect model predictions as long as it is of the order of a
period of contraction.

Amplitude Fronts Propagate by Taylor Dispersion. First we use
our model (Eqs. 5–8) to explore the dynamics of flow and trans-
port of a signal generated by a localized stimulus, as shown in
Fig. 3. We find that the dynamics give rise to a self-propagating
front of increased contraction amplitude. The localized signal’s
concentration causes nonzero contraction amplitudes through-
out the tube that peak with the peak in concentration. The con-
tractions drive a shuttle flow and thus both signal concentration
and increased contraction amplitude self-propagate with the flow
through the tube. The propagation of the region of high ampli-
tude is a diffusive process, because in a shuttle flow advective con-
tributions cancel out over each period of contraction (Fig. S3A).
The observed diffusivity of the concentration matches the Taylor
dispersion coefficient κ+ ū2a2

48κ
(see Eq. 7), where flow velocity

and radius are averaged in between the fronts of the central-
ized stimulus (Fig. S3B). The speed of the diffusively propa-
gating front is therefore smaller than the maximal flow velocity
within the tube, in agreement with experimental observations.
Because the region of elevated contraction amplitude is diffus-
ing and not being advected the speed of the increased amplitude
frontslowsdownover time. Inexperimentalnetworks, theslowing-
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Fig. 3. Signal propagation in a theoretical model. (A) Sketch of a tube and the concentration of a signaling molecule within the tube over time (color gra-
dient, see legend of C). The signal increases the amplitude of radial contractions (smaller radius at high concentration) and so establishes a self-propagating
front of increased signal concentration and contraction amplitude. When a region of large contraction amplitude contracts (between two white lines mark-
ing amplitude front location) surroundings expand, or vice versa. (B) Kymograph of tube radius along the tube over time. Amplitude front is marked by
phase jump between stimulated region and surroundings (white line). (C) Map of the time-averaged signal concentration; spread is caused by flow. The
location of the front as measured by the position of the phase jump coincides with the mean averaged concentration across the tube at every time point
(white line).

down effect is hard to observe because the front propagates
with different speeds in tubes of different radii; exceptions show-
ing slowing down are given in Fig. 1B, Movie S2, and Fig. S1A.

In simulations, we find that the front speed is strongly affected
by parameters that control flow velocity according to Eq. 6.
Specifically, an increase in tube radius a , tension strength γ, and
overall concentration c0 increases front velocity, whereas fluid
viscosity µ and tube length L decrease it. In an experiment we
then tested the model’s prediction that front velocities increase
with tube radius. We stimulated a P. polycephalum network at its
center and induced a propagating increase in amplitude along
both larger and smaller tubes. We find the amplitude fronts
to propagate more quickly within larger tubes compared with
smaller tubes (Fig. 2).

Conservation of Mass Allows Calculation of Mean Concentration. In
simulations the region of greatest contraction amplitude is easily
distinguished from its surroundings by a jump in the contraction
phase of value π (Fig. 3B). The phase jump is caused by conser-
vation of fluid volume within a closed tube. An entire tube can-
not contract (or expand) synchronously; instead, when one zone
contracts the other must expand, and vice versa. In mathemati-
cal terms we can rationalize the observed phase jump from Eq. 6.
Given that both tension and elastic forces are far bigger than the
resulting small flow velocity, tension and elastic restoring force
almost balance. Balanced forces imply tube dynamics of

a = a0 −
γ

E/h
(〈c(z , t)〉 − 〈c̄(t)〉) cos(ωt). [9]

〈c̄(t)〉 marks the time-averaged signaling molecule concentra-
tion where the phase jump of π occurs. Where concentrations
are larger than this reference concentration the tube contracts,
whereas for smaller concentrations the tube extends. The ampli-
tude of the radial contractions is small compared the the tube’s
base radius a0. From conservation of fluid volume in the tube,
that is, d

dt

∫ L

0
πa2(z )dz = 0, it follows that the reference concen-

tration is just the spatial mean of the averaged concentration at
a given time 〈c̄(t)〉=

∫ L

0
〈c(z , t)〉dz (SI Text). 〈c̄(t)〉 calculated

from concentration dynamics exactly predicts the phase jump
(Fig. 3). Contraction and flow dynamics are also well captured by
Eq. 9 (Fig. S4). This finding implies that the mechanism of signal
propagation enables the system to calculate the mean signaling
molecule concentration.

System Size Is Calculated by Contraction-Driven Gradient Generation.
P. polycephalum adapts the wavelength of its contractions to
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match a network’s longest dimension, independent of network
size (12). To test whether our model elucidates this adaptation
we probe contraction dynamics and begin with a single tube
encompassing three wavelengths of radial undulations coupled
to a slightly randomized but otherwise constant concentration
of signaling molecule (Fig. 4). Over time, undulations in the
tube’s radius and the resulting perturbations in concentration die
out in favor of a single contraction wavelength coupled to sin-
gle concentration wavelength; this pattern persists through time.
Although the ad hoc expected pattern would be a uniform con-
centration, uniformity would require homogeneous contractions
of the tube and this would violate conservation of fluid volume.
Thus, the closest state to a uniform concentration, namely a sin-
gle wavelength, is observed, which itself entails a measure of sys-
tem size and single wavelength in contractions.

Signal Propagation Increases Flow Disproportionately Through
Shorter Routes and Therefore Drives Selection of the Shortest Route.
P. polycephalum is notorious for its complex morphological
dynamics; for example, the organism can find the shortest route
through a maze connecting two food sources (5). Both food
sources are external stimuli that would, according to our obser-
vations and model, trigger self-propagating fronts of increased
contraction amplitude. Fronts would propagate into the network
from both ends of the incipient route. Increases in contraction
amplitude will increase the flow rate in a route proportional to
the average amplitude increase along the entire route. There-
fore, longer routes will experience a smaller increase in flow
rate compared with shorter ones. Following the reasoning of
Tero et al. (6) tube radii will grow because of an increased
flow rate at the expense of tubes with less flow rate. Thus,
the self-propagating amplitude fronts strengthen the shortest
route between the two food sources by increasing the flow rate
along it. The flow feedback-driven mechanism of signal propaga-
tion explains P. polycephalum’s ability to find the shortest route
through a maze (5) and its ability to link multiple food sources
into an efficient transport network (6, 31).

Discussion
The slime mold P. polycephalum coordinates complex behaviors
using a simple feedback. An external stimulus triggers a change
in contraction amplitude and the amplitude front propagates
with a velocity equivalent to a particle’s diffusive transport. These
experimental data and a model elucidate the mechanism of com-
munication across the network: The stimulus triggers the release
of a signaling molecule advected with cytoplasmic flows. The
molecule hijacks flows by increasing local contraction amplitude
and generating additional cytoplasmic flows to carry itself fur-
ther into the network, where it again increases local contraction
amplitude and again generates cytoplasmic flows. This mecha-
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nism explains the experimental observation of a self-propagating
increase in contraction amplitude across a body; moreover, the
model solves the puzzle of how an individual can measure its
own size and match the wavelength of pulsatile contractions
to its size. The mechanism also reveals how P. polycephalum
finds the shortest route through a maze (5) or connects multi-
ple food sources with shortest routes into an efficient transport
network (6, 31).

The signaling molecule remains unidentified but among the
molecules known to oscillate in P. polycephalum (ATP, cAMP,
H+, and Ca2+), the most likely candidate is calcium. Calcium
regulates actin–myosin dynamics and these dynamics drive net-
work oscillations (25). Contrary to electron micrographs indicat-
ing calcium release during contraction and sequestering during
relaxation (32), direct measurements observe calcium at low con-
centrations within contracting tubes of P. polycephalum, and at
high concentrations in relaxed tubes (33). The latter is in agree-
ment with the dynamics of our model’s signaling molecule. Cal-
cium is a universal driver of metabolism (34), and it is fascinating
to speculate that it also drives the rich and complex behavioral
dynamics of slime molds.

P. polycephalum is a charismatic model and a tool to under-
stand how other apparently simple organisms generate sophis-
ticated behaviors. The mechanism of communication we iden-
tify involves basic features: a signaling molecule, fluid flows, and
an interaction between the signal and fluid flows. These features
may be common to thousands of species (35, 36) and even to
species distantly related to slime molds, including, for example,
fungi. The mechanism is likely to be a general one and may serve
as a broad explanation for the complex behaviors of many organ-
isms without nervous systems.

Materials and Methods
Preparation and Imaging of P. polycephalum. Plasmodia of P. polycephalum
(Carolina Biological Supply) were grown on 1.5% (wt/vol) agar without
nutrients and fed every other day with oat flakes (Quaker Oats Co.). Twenty-
four hours before imaging, newly colonized oat flakes were transferred to
a new agar surface. Each plasmodium was allowed to explore the agar sur-
face and form a mature network of well-defined tubes. Sections of network
were prepared by scraping away excess tissue immediately before imaging
so that the entire network would fit within the field of view. Networks were
imaged using transmitted light on a Zeiss Axio Zoom V16 stereomicroscope.
Images were taken every 3 s. A 1-µL drop of medium was used to stim-
ulate the network after approximately 1 h of recovery time and imaging
continued for 2 to 3 h. The medium used for stimulus followed the recipe
of Daniel and Rusch (37) with hematin (5 µg per mL) replacing the chicken
embryo extract (38). The medium gave a stronger and more reproducible
response, compared with glucose (25) alone. Adding a source of protein, for
example tryptone or yeast extract, to glucose worked best.

Image Analysis. Key time-variant parameters were calculated from every
point of a network using custom MATLAB (The MathWorks) code. Briefly,
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an image from a time series was thresholded to extract just the plasmodial
tubes then skeletonized and separated into a connected map of nodes and
edges. The skeleton was used to recover the tube radius at every point
by finding the largest circle that would still entirely fit within a tube.
Local amplitudes of contractions were extracted. Contraction amplitude was
recovered by first detrending the oscillations and then using a windowed
Hilbert transform. To record relative changes, amplitudes were normalized
to values documented in the 10 periods immediately before the applica-
tion of a stimulus. To visualize and measure propagation fronts, kymographs
were created along tubes intersecting with the stimulation site. Kymographs
were also used to measure typical, maximal particle speeds along the same
routes of propagation.

Simulation. Model Eqs. 5–8 were solved numerically using a custom,
weighted Crank–Nicolson scheme using MATLAB (The MathWorks). Param-
eters chosen to model P. polycephalum include a base tube radius of
a0 = 50 µm, wall height h = 0.1a0, tube length L = 0.5 cm, contraction
frequency ω0 = 120s, dynamic viscosity of cytoplasm µ= 6.4 · 10−3Ns/ m2

(39), and molecular diffusivity of a smaller molecule (i.e., ATP in cytoplasm)
κ= 10−10 m2/s, resulting in Re = 2ua0/ν∼ 0.0008. To estimate the elastic
modulus we used the calculated value of myosin-generated elastic stress
T = 50 Pa during Dictyostelium discoideum cleavage (40) and T/E = 1.15
for myosin activity in HeLa cells (41) to estimate E = 44 Pa and a Poisson’s
ratio of ν= 0.4 (42). Velocity of an elastic wave in tube wall follows using
c =

√
E/ρ(1− ν2). For a fluid elastic wave water’s parameters are used. The

averaging time window was chosen as about two periods τ = 190 s, and
tension strength was chosen to be in the linear regime of the front velocity
γ= 10− 50 Pa.
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