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Abstract

This paper concerns the generation of distributed vector representations of biomedical concepts 

from structured knowledge, in the form of subject-relation-object triplets known as semantic 

predications. Specifically, we evaluate the extent to which a representational approach we have 

developed for this purpose previously, known as Predication-based Semantic Indexing (PSI), 

might benefit from insights gleaned from neural-probabilistic language models, which have 

enjoyed a surge in popularity in recent years as a means to generate distributed vector 

representations of terms from free text. To do so, we develop a novel neural-probabilistic approach 

to encoding predications, called Embedding of Semantic Predications (ESP), by adapting aspects 

of the Skipgram with Negative Sampling (SGNS) algorithm to this purpose. We compare ESP and 

PSI across a number of tasks including recovery of encoded information, estimation of semantic 

similarity and relatedness, and identification of potentially therapeutic and harmful relationships 

using both analogical retrieval and supervised learning. We find advantages for ESP in some, but 

not all of these tasks, revealing the contexts in which the additional computational work of neural-

probabilistic modeling is justified.
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1. Introduction

Methods for the generation of semantic vector representations of biomedical terms and 

concepts have been an active area of research over the past two decades, with applications 

that include information retrieval, literature-based discovery and text categorization (for a 

review, see [1]). Recently, there has been a surge in popularity in the application of neural 

network based language models as a means to obtain such vectors, with encouraging 

empirical results in both the general [2, 3, 4] and biomedical domains [5, 6, 7]. These results 

are part of a larger trend in machine learning research, where considerable progress has been 

made by learning vector representations of entities from large unlabeled data sets, obviating 

the need for extensive feature engineering [8, 9]. Though approaching the problem from a 

different perspective, the current crop of neural language models have much in common 

with methods of distributional semantics that preceded them (for reviews, see [1, 10, 11]), 

and it has been argued that the performance of preexisting distributional models on certain 

tasks can be improved using insights derived from their neurologically-inspired counterparts 

[12].

In this paper, we evaluate the extent to which such insights might be applied to improve 

upon an approach we have developed for representing structured information, called 

Predication-based Semantic Indexing (PSI) [13, 14]. PSI differs from traditional 

distributional models in that it attempts to derive high-dimensional vector representations of 

concepts from concept-relationship-concept triplets, such as “haloperidol TREATS 
schizophrenia”, known as semantic predications. In the biomedical domain, large numbers 
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of such predications have been extracted from the biomedical literature by SemRep [15], a 

natural language processing (NLP) system, and have been made publicly available to the 

research community [16]. PSI derives vector representations of concepts from the 

predications in which they occur, using reversible vector transformations to encode the 

nature of the relationship between these concepts. This permits the resulting vector space to 

be searched for concepts that relate to a cue concept in particular ways, or for the nature of 

the relationship between a pair of concepts.

Nonetheless, PSI has much in common with the vector representations obtained through 

neural embeddings, as well as with prior approaches such as Latent Semantic Analysis 

(LSA) [17]. SemRep’s predications are extracted from mentions in text, so are often 

repeated. Because of this, PSI is a distributional model, in the sense that the distribution of 

the contexts that a particular concept occurs in determine its vector representation - concepts 

that occur in similar contexts with similar frequency will have similar vector representations. 

These vector representations are also distributed representations [18, 19], in the sense that 

the information they encode is distributed as a pattern of continuous values spread across the 

components of a vector, rather than through identification of a particular feature of the 

underlying data (such as the presence of a term) with a unique vector component.

In this paper we adapt the skipgram-with-negative-sampling (SGNS) algorithm of Mikolov 

and his colleagues [3] to develop a novel variant of the PSI approach to representing 

concept-relationship-concept triples, an approach we call Embedding of Semantic 

Predications (ESP). We evaluate this approach for its ability to retrieve encoded information, 

the correlation of similarity between the resulting vectors with human judgment, and as a 

means to facilitate the prediction of both therapeutic and harmful relationships between 

drugs and medical conditions. The paper proceeds as follows. First we describe RI, the 

distributional model that provides the basis for PSI. We then describe the SGNS approach, 

and highlight the similarities and differences between it and RI. We then proceed to describe 

the origin and implementation of the reversible vector transformations that are used to 

encode the nature of the relationships between concepts, how these are applied in PSI and 

ESP, and our empirical experiments in which we compare PSI to ESP across a number of 

tasks. We conclude with a discussion of our results, related work in the field, and directions 

of interest for future research.

2. Background

2.1. Random Indexing

RI emerged during the 1990’s as a scalable alternative to LSA, on account of its ability to 

construct a reduced-dimensional approximation of a term-by-context matrix without the 

need to explicitly represent the full matrix [20]. This approximation procedure is motivated 

by the Johnson-Lindenstrauss Lemma, which provides bounds on the extent to which 

distance relationships between points in high-dimensional space are distorted, when they are 

projected into a randomly-selected subspace [21]. In the current discussion, we focus on the 

sliding-window variant of RI introduced in [22]. This variant of RI considers proximal 

relationships within a sliding window moved through the text. Consider, for example, the 
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phrase “management of psychosis in schizophrenia”. A “2+2” sliding window centered on 

the term “psychosis” is shown in Table 1.

The goal is to generate similar vector representations for terms that occur in similar contexts. 

In RI, this is accomplished by initializing a semantic vector for each term in the corpus 

(stoplists or frequency thresholds may be applied to limit this vocabulary), and also 

initializing a context vector for each of these terms. Semantic vectors are initialized as zero 

vectors, of a dimensionality specified by the modeler (a value on the order of 1,000 is 

typical). Context vectors are initialized stochastically. A typical scheme involves initializing 

a zero vector, and setting a small number (a value on the order of 10 is typical) of the 

components of this vector to +1 or −1 at random. On account of their sparsity, and the 

statistical properties of high-dimensional space, these vectors have a high probability of 

being mutually orthogonal, or close-to-orthogonal (see [13, 23, 24] for further discussion of 

this point). Once initialization has occurred, a sliding window is moved through the text, and 

the semantic vector for the focus term (F) is updated by adding to it the context vectors for 

the surrounding terms in the window. In symbols, with S(term) and C(term) as the semantic 

and context vectors for terms in the corpus, F as the focus term, and t ∈ T as the other terms 

in the window, the update process for a single sliding window proceeds as follows:

(1)

These superposition operations may be weighted in accordance with the position within the 

window such that proximal context terms receive greater emphasis [22]. Other weighting 

metrics may also be applied. For example, Inverse Document Frequency (IDF) may be 

applied such that context terms that occur less frequently in the corpus receive greater 

emphasis.

2.2. Neural Embeddings and SGNS

Current approaches to generating neural word embeddings extend earlier work on 

probabilistic language modeling using neural networks [25, 26]. These models share with 

other distributional models the aim of deriving distributed vector representations of words 

from their occurrence in natural language text. However, in neural models, this goal is 

framed probabilistically — the purpose is to derive a model that can predict the presence of 

a term given the terms that appear nearby to it, or vice versa.

Recent approaches, including the skip-gram with negative sampling (SGNS) approach 

developed by Mikolov and his colleagues [3], provide scalable solutions to the problem of 

inferring parameters for such models. The presentations in [27] and [28] provide deliberately 

more accessible accounts of the SGNS algorithm. However, the presentation below differs 

from previous descriptions of SGNS, as it attempts to elucidate the relationship between 

SGNS and RI, in order to reveal the features of SGNS we adapt for the purposes of the 

current research.
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Consider the neural network architecture illustrated in Figure 1, which has an input layer, a 

hidden layer and an output layer (black rectangles) each containing a number of nodes that 

are connected by weights. This provides an illustration of a SGNS architecture to derive 

five-dimensional word embeddings from a small corpus with a vocabulary of ten unique 

words. On the left of the diagram is a so-called “one-hot” vector representation for the word 

“psychosis”. These vectors exist for each word in the vocabulary-to-be-represented, and 

have a dimensionality of the number of unique words in this vocabulary (in this case, 10). 

The designation “one-hot” refers to the fact that each vector has only one non-zero activation 

value. So, though the network is fully-connected in theory, the only connection weights that 

will not be nullified during the feed-forward phase are those connecting the single non-zero 

activation node for this word to the hidden layer. The hidden layer has k nodes, where k is 

the preassigned dimensionality of the word vectors to-be-generated. The single k-

dimensional vector of weights that will not be nullified is the word embedding, or the 

semantic vector representation of this word – weight vectors are word vectors, and are 

initialized stochastically (a typical scheme involves initializing each weight from a uniform 

zero mean distribution, scaled by the dimensionality of the weight vectors). The weights 

connecting the hidden layer to the output layer, which also consists of “one hot” vectors, 

constitute the context vector for each word. In Figure 1 the semantic vector for “psychosis” 

and the context vector for “schizophrenia” are shown.

The goal of SGNS is to predict context words (wc) given an observed word (wo). Ideally, in 

the example shown in Figure 1 and the sliding window shown in Table 1, P(schizophrenia|

psychosis) ≈ 1, where P(context word|observed word) = σ(S(wo).C(wc)). That is to say, the 

probability of a context word given an observed word is estimated as the sigmoid function of 

the scalar product between the semantic vector of the observed word and the context vector 

of the context word. The normalized scalar product, or cosine metric, is the most widely-

utilized metric of similarity within the distributional semantics community. Words that have 

a high probability of occurring together in context should have a high degree of similarity 

between their semantic and context vectors, as measured by this metric. The sigmoid 

function derives from the (unnormalized) scalar product a value between zero and one, 

which can be interpreted probabilistically.

It is also desirable that the predicted probability of words that do not occur in the context 

(w¬c) of the observed word be close to zero. As adjusting the parameters of the context 

vector for every out-of-context word each time a word is observed would be computationally 

inconvenient, SGNS instead takes a sample of these unobserved words (a negative sample), 

drawn at random from the rest of the words in the corpus with a probability derived from 

their frequency in the corpus (usually around 5–15 such words are drawn with a probability 

of  where Z is the sum of the value of the numerator across all terms available for 

sampling). Words that do not occur in the context of the observed word should have a low 

predicted probability, which means that the scalar product between the word and context 

vectors concerned should be low. The optimization objective is then as follows [27]:
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(2)

The first term in this equation is the sum of the logarithms of the predicted probabilities for 

words that occur together within a sliding window moved through the corpus, (wo, wc) ∈ D. 

The second term is the sum of the logarithms of one minus the predicted probabilities for 

words that (probably) do not occur together in such windows, (wo, w¬c) ∈ D′ (as σ(−x) = 1 

− σ(x)). In SGNS, this objective is optimized by gradient descent. For each observed word 

pair, the incoming weight vectors, or semantic vectors (the word embeddings), are updated 

with the following step:

(3)

where α is the learning rate, which decreases linearly as the dataset is processed, and the 

term (1 − σ(S(wo).C(wc))) is the derivative of the first term in equation 2.1 So the update 

step involves adding C(wc) to S(wo).2 This superposition operation is weighted by the 

learning rate, α, and the difference between the ideal probability of 1 for this observed word-

context pair, and the estimated probability of σ(S(wo) · C(wc)). For an entire sliding window, 

the update step for the semantic vector of the focus term, S(F), proceeds as follows:

(4)

As is the case in RI, the context vector C(t) for every other term in the window is added to 

the semantic vector for the focus term S(F). However, unlike RI, this superposition operation 

will favor those context vectors that are not already similar to the evolving semantic vector 

for the focus term. In addition, this semantic vector will stabilize over time, with 

observations that occur early in training resulting in greater changes than those that occur 

later. Another important difference from RI is that the context vectors are also updated.3

(5)

1 
2From the perspective of backpropagation, this superposition corresponds to adjusting the incoming weights in accordance with their 
influence on the error function. Each incoming weight (a component of S(wo)) is multiplied by the corresponding outgoing weight (a 
component of C(wc)) to generate the scalar product S(wo) · C(wc). So the influence of a coordinate in S(wo) on the error is 
proportional to its counterpart in C(wc), and vice versa.
3This update procedure is usually described before the update of the semantic vectors, in accordance with the propagation of the error 
function from output node to input vectors as prescribed by the back-propagation algorithm. However, in both cases the superposition 
involves the pre-update state of the other vector concerned. We have chosen to proceed in the opposite direction to emphasize the 
relationship with RI.
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In our view, this is a particularly important difference from sliding-window based RI, as the 

context vectors that are added are updated over time, resulting in a second set of trained 

word vectors, which are usually discarded but have been leveraged to improve performance 

in some experiments [12]. A consequence of this is that, once the initial rounds of training 

are complete, semantic vectors are generated as superpositions of meaningful context 

vectors, rather than as superpositions of random context vectors in RI. These permits a form 

of similarity-based inference: the semantic vectors for terms that occur in the context of 

similar, but not necessarily identical terms, will be somewhat similar to one another.4

In addition, the semantic vector for the observed term and each randomly drawn context 

vector C(w¬c), representing a term that is unlikely to have been observed in this context 

window, are moved further apart from one another. In this case, the update procedures are as 

follows:

(6)

(7)

Which is to say, for negative samples, context vectors are subtracted from semantic vectors 

in proportion with the sigmoid function of the scalar product between them, and vice versa.5

In summary, though RI and SGNS are usually presented from different perspectives, they are 

both online training algorithms that generate semantic vector representations of words by 

superposing stochastically generated context vector representations of other words that occur 

in proximity. However, in the case of SGNS, these superposition operations are weighted in 

accordance with the learning rate, and the distance between these vector representations at 

this point in the training procedure. Furthermore, the context vector representations are also 

trained, which permits a form of similarity-based inference. Negative samples are used 

which accentuates the distinction between co-occurring and non-co-occurring terms, 

resulting in a more efficient use of available space.

With these additional features comes additional computational expense — the scalar product 

must be measured before each superposition operation, and the number of superposition 

operations is (2 + 2n) per observed pair, where n is the number of negative samples. So 

implementations of SGNS tend to be parallelized, which is readily permitted by the online 

nature of the algorithm. Optionally, this computational cost is offset to a degree using 

subsampling, which involves skipping over terms in the text with some probability. These 

serves the purpose usually fulfilled by weighting metrics in prior distributional models. For 

example, the size of the sliding window in SGNS is probabilistically determined, which 

4The superposition of partially-trained context vectors is similar in some respects to the superposition of iteratively trained context 
vectors in Reflective Random Indexing (RRI), an iterative variant of RI we developed to promote this sort of inference [29].
5Interestingly, aside from the learning rate, this expression corresponds to orthogonal projection (i.e. rendering S(C) orthogonal to 
C(¬w)) in quantum logic [30], which has been used in information retrieval to isolate documents that relate to a specific sense of a cue 
term [31].
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results in proximal context terms being processed more frequently. This serves the purpose 

of a “weighted” sliding window, emphasizing terms that occur in closer proximity to the 

focus term. Similarly, terms that occur above some frequency threshold may be skipped over 

with a probability derived from the extent to which they exceed this threshold, 

approximating the way in which weighting metrics such as IDF limit the emphasis of 

frequently occurring terms. In contrast, with RI a single superposition operation is required 

for each pair. Also superposition itself can be very efficient on account of the sparse nature 

of the context vectors, as only the non-zero values need to be considered. So 

implementations of RI tend not to utilize parallelization, though this would be easy to 

implement if needed as like SGNS, each context is considered independently.

2.3. Vector Symbolic Architectures and PSI

In this section, we describe Predication-based Semantic Indexing or PSI, an approach to 

encoding concept-relation-concept triples that uses the same underlying representational 

approach as Random Indexing. We will then describe how we modified this approach, 

incorporating features of the SGNS algorithm to develop ESP.

PSI was developed in order to encode the nature of the relationships between biomedical 

concepts into a distributed vector representation. The main idea is that a reversible vector 

transformation is associated with the nature of the relationship concerned. So, given a 

semantic predication of the form subject-predicate-object, the context vector for the object 

C(object) is added to semantic vector for the subject S(subject) only after undergoing a 

transformation that indicates the nature of the predicate.

The reversible vector transformations used in current implementations of PSI originated in 

the connectionist cognitive science community in the late 1980’s [32], as a way to represent 

composite structures such as variable-value pairs, using distributed vector representations. 

Initially, the tensor product was used for this purpose [33]. In an effort to circumvent the 

combinatorial explosion in dimensionality that would occur with sequential tensor 

operations, a number of authors developed alternative binding operators [34, 35, 36, 37, 38], 

resulting in a family of representational approaches that have come to be known collectively 

as Vector Symbolic Architectures (VSAs) [39, 40]. In our work with PSI, the VSA we have 

employed most frequently is known as the Binary Spatter Code (BSC) [34], and it is also the 

VSA we employ for the current experiments.

The BSC uses high-dimensional binary vectors (on the order of 10,000 bits) as a 

fundamental unit of representation. These are initialized at random, with a .5 probability of 

any component being initialized as 1. Binding, which we will denote with the symbol ⊗, is 

accomplished using the pairwise exclusive OR operator (XOR). This operator is its own 

inverse, but as this is not the case for all VSA implementations, we will denote the inverse of 

binding with the symbol ⊘, to maintain a consistent description across VSAs. Weighted 

superposition (+) is implemented using weighted voting for each dimension with 

probabilistic tie-breaking, including some tradeoff between floating point accuracy and 

computational efficiency [41].
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With both predications and concepts represented as distributed vectors, the update step for 

the semantic vector for “haloperidol” to encode the predication “haloperidol TREATS 

schizophrenia”, with P(PREDICATE) indicating the randomly generated vector representing 

a particular predicate, is:

(8)

This superposition operation is usually weighted with a global weighting metric that limits 

the influence of frequently occurring concepts (or predicates), and a local weighting metric 

that tempers the influence of repeated predications, though the weighting metrics used vary 

across experiments. The net result is a set of randomly generated context vectors for each 

concept, a randomly generated vector for each unique predicate, and a trained semantic 

vector for each concept. The vector space so constructed can be queried for concepts that 

relate to one another in particular ways, and for the nature of the relationship (or 

relationships) between pairs of concepts. Some illustrative searches are provided in Table 2, 

which shows how the space can be searched for concepts that relate to one another in 

particular ways, and Table 3 which shows how the relationships between pairs of concepts 

can be inferred from their vector representations.

As both concepts and predicates are represented as vectors in the same high-dimensional 

space, this provides a simple mechanism for solving proportional analogies of the form “a is 

to b as c is to ?”. For example, the nearest semantic vector to the bound product 

S(haloperidol) ⊘ C(schizophrenia) ⊗ C(major depressive disorder) in this space represents 

the antidepressant “lexapro”. The capacity to model analogy in this way has been an 

important point of focus of VSA-related research since these models were first introduced 

(see for example [42, 43, 44]). It also relates to one of the well-known features of neural 

word embeddings, which is that word embeddings trained on free text can be used to solve 

proportional analogy problems using addition and subtraction (famously 

, but also more subtle analogies such as 

 and (john) 

(coleman)). Unlike this work, however, work on analogical retrieval using VSAs, including 

PSI, tends to involve encoding the nature of the relationships between concepts explicitly.

With PSI, the explicit encoding of predicates has the desirable effect that analogical 

inference can proceed along longer paths, consisting of more than one predicate [45]. For 

example, applying the vector representation of the two-predicate path 

P(COMPARED_WITH) ⊘ P(TREATS-INV) to the semantic vector for the drug docetaxel 

results in the composite search cue S(docetaxel) ⊘ P(COMPARED_WITH) ⊗ P(TREATS-

INV), which is closest in the PSI space used to generate Table 2 to the semantic vectors for 

potential therapeutic applications of docetaxel. The logic in this case is that if a drug has 

been compared with other drugs that treat a condition (for example, in a clinical trial or cell 

line experiment), it may be a potential treatment for this condition itself. The two-predicate 

path P(COMPARED_WITH) ⊘ P(TREATS-INV) was inferred from the example concept 
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pair haloperidol::schizophrenia, so potential therapeutic applications of one drug have been 

identified using a reasoning pathway inferred from another.

This procedure, which we call Discovery-by-Analogy, has been applied successfully to 

recover held-out TREATS relationships in SemMedDB [46], identify relationships between 

drugs and adverse events [47], and predict the results of high-throughput screening 

evaluations against cancer cell lines [48]. It has been found that the accuracy of such 

predictions can be improved by combining multiple reasoning pathways to increase the 

breadth of the search [49], and extending the length of the pathways to increase search depth 

[50]. In the former case, this is accomplished by using the span of vectors to model logical 

disjunction (OR), following the approach developed in [51]. In the latter case, this is 

accomplished by superposing the semantic vectors representing concepts associated with the 

initial cue (e.g. superposing the vectors for all entities ASSOCIATED_WITH prostate 

carcinoma). For a comprehensive review of PSI-related work up until 2014, we refer the 

interested reader to [13].

2.4. Embedding of Semantic Predications

In this section we will describe a novel variant of PSI, called Embedding of Semantic 

Predications (ESP), that adapts elements of the SGNS algorithm to the task of modeling 

large stores of semantic predications. The following list enumerates these elements, and 

provides a high-level description of their implementation within ESP.

1. Gradient descent: Superposition operations are weighted by the extent to which 

they contribute to an error function, and by a linearly decreasing learning rate.

2. Evolving context vectors: Context vectors are similarly altered.

3. Negative sampling: For each encoded predication, a set of k negative subjects 
and k negative objects are drawn. These are concepts of the same UMLS 

semantic type as the positive subject and object for this predication, and are 

encoded in a manner analogous to the way in which negative samples are treated 

in SGNS.

4. Subsampling: Frequency thresholds are assigned for both concepts and 

predications. If a concept or predication occurs with a frequency greater than 

their respective threshold (e.g. more than 1 in 10,000 predications) the 

predication concerned will be ignored with a probability of , where T is 

the threshold and F is the frequency of the concept or predication.

Our hypotheses were that using gradient descent and negative sampling would lead to more 

efficient utilization of the available vector space, which should be further accentuated by the 

additional capacity to encode information provided by trained (rather than immutable) 

context vectors, and that these trained context vectors should permit a novel form of 

similarity-based inference. For example, S(haloperidol) ⊘ P(TREATS) should also be 

similar to the context vectors for entities that are similar to those entities that occur in a 

TREATS relationship with haloperidol explicitly. So, we anticipated ESP would better retain 

its performance as dimensionality decreased, and that ESP would have better performance in 
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predictive modeling tasks with shorter reasoning pathways. In the section that follows we 

provide a more granular account of the binary vector based implementation of ESP that was 

evaluated in our experiments.

2.5. Binary Vector ESP

Our current implementation of ESP uses the Binary Spatter Code, described in Section 2.3, 

as a VSA. Both semantic vectors (e.g. S(haloperidol)) and context vectors (e.g. 

C(haloperidol)) vectors for each represented concept are stochastically initialized, with a .5 

probability of a 1 or 0 in each dimension. For each encoded predication “s P o”, a set of k 
negative subjects (¬s) and k negative objects (¬o) are drawn, and updating of the semantic 

and context vectors occurs through the following steps:

(9)

(10)

(11)

(12)

where 

The first of the preceding steps draws the semantic vector for the subject closer to the bound 

product of the vector representing the predicate and the context vector for the object. 

Conversely, the context vector of the object is moved closer to the results of applying the 

“release” operator (the inverse of the bind operator) to the semantic vector of the subject and 

the vector representing the predicate. The subsequent two steps (Equations 11 and 12) are 

applied to each of the k negative objects — random samples of concepts of the same UMLS 

semantic type as the actual object, that (probably) do not occur in a predication of this type 

with the subject. The bound product P(P) ⊗ C(¬o) is subtracted from the semantic vector for 

the subject. Similarly, the product S(s) ⊘ P(P) is subtracted from the context vector for the 

randomly drawn negative object, ¬o. These subtractions are weighted by the similarity 

between the vectors concerned, as estimated by the the non-negative normalized Hamming 

Distance (NNHD). So negative samples that are somewhat similar to the relevant bound 

products will exert a greater effect. This procedure is repeated to encode the predication in 

the opposite direction, “o PINV s”.

The full procedure essentially follows the same form as SGNS. With SGNS and terms that 

are observed together, their semantic and context vector representations are drawn together. 
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In the case of a randomly drawn negative sample, the distance between its context vector and 

the semantic vector of the observed concept is increased, by modifying both of these vectors. 

However, in the case of ESP these modifications occur after a transformation of the vectors 

concerned to indicate the nature of the encoded relationship, as illustrated in Figure 2.

With each predication ( s P o ) expanded to accommodate its inverse ( o P-INV s ), the 

optimization objective is as follows: 6

A number of other differences emerge on account of the use of binary vectors as a 

fundamental representational unit. As is evident from the preceding equations, we have 

replaced the sigmoid unit in the output layer with a regularized linear (RELU) unit, as the 

distance metric employed returns a result between −1 and 1, with a result of 0 indicating 

orthogonality, and results less than zero usually indicating close-to-orthogonality in the 

context of the binary spatter code. In addition, subtraction of one vector from another is 

implemented by adding the complement of this binary vector to the voting record concerned. 

Also, the bit matrix representation of the voting record (described in further detail in [41]) 

must be tallied before this comparison occurs, which is not prohibitively time consuming as 

it can be accomplished efficiently with parallel bitwise operations. In an effort to stay within 

the limits of floating point precision imposed by this representation, the initial and minimum 

learning rates are an order of magnitude higher than is customary with SGNS, at 0.25 and 

0.001 respectively. Finally, reduction of the influence of frequently occurring concepts is 

accomplished with a subsampling strategy, such that predications containing a concept that 

occurs with a frequency, f, of more than a threshold of t = 10−5 (i.e. a concept occurring in 

more than one in 100,000 predications), and predications that occur with a frequency above t 

= 10−7 (i.e. predications that make up more than  of the total number), will be ignored 

with a probability of . Our implementations of PSI and ESP are available as 

components of the open source Semantic Vectors software package [52, 53, 54].

As is the case with PSI, the vector space so constructed can be queried for concepts that 

relate to one another in particular ways, and for the nature of the relationship (or 

relationships) between pairs of concepts. Some illustrative searches are provided in Table 4 

and Table 5.

Some differences between the models are apparent in these search results. For example, PSI 

tends to retrieve information that is explicitly encoded, while ESP tends to generalize. This 

can have positive effects, such as the identification of alopecia (hair loss) as an adverse 

effect of haloperidol. However, in other instances this ability to generalize can lead to the 

retrieval of results that suggest tenuous connections that may be detrimental for predictive 

6Once tallying of the voting record has occurred, NNHD S(s), P(P) ⊗ C(o) = NNHD(S(s) ⊘ P(P), C(o)).
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modeling purposes. To a first approximation, PSI has better precision and ESP has better 

recall.

3. Methods

In these sections that follow we proceed to evaluate these models more formally, in order to 

characterize the differences between PSI and ESP as they pertain to retrieval of encoded 

information, representation of domain semantics, and inference.

3.1. Generation of Vector Spaces

We generated two pairs of 32,000-dimensional ESP and PSI spaces for our experiments 

from SemMedDB version 25.1, which contains 82,239,652 predications extracted from 

25,027,441 MEDLINE citations. The first pair of spaces encodes all predications involving a 

set of predicates we have used in our pharmacovigilance related work [47], the set PV . The 

second pair of spaces encodes a smaller set of predications, involving the set of predicates 

we have utilized for our drug-repurposing related work [48], the set DR. The permitted 

predicates in each case are shown in Table 6. Both ESP spaces were trained for five epochs, 

using 5 negative samples per encoded predication, and a subsampling threshold of 10−5 for 

concepts, and 10−7 for predications. For consistency with the PSI models, we also excluded 

any concept that occurred more than 106 times. In addition to imposing this maximum 

frequency threshold, each superposition operation during generation of the PSI spaces was 

weighted as follows 7 :

(13)

(14)

(15)

(16)

In order to asses performance at different dimensionalities, we truncated the vectors for each 

of the four spaces, which is a reasonable approach with binary vectors as information is 

evenly distributed across them. To facilitate inference across extended reasoning pathways, 

we also generated second-order semantic vectors, by superposing the semantic vectors of 

7ENT is a simplification of the standard expression for entropy weighting (see e.g. [55]), permitted because concept-role combinations 
occur once per predication only.
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concepts that relate to a cue concept (ci) in particular ways. Three sets of second order 

semantic vectors were generated (S2(concept)), such that:

(17)

(18)

(19)

3.2. Experiment 1: Retrieval of Encoded Information

In order to evaluate the extent to which each model can accurately retrieve encoded 

information, we drew at random 17,204 predications from SemMedDB, with the constraints 

that the subject of each of these predications should appear in at least ten (not necessarily 

unique) predications, and that vector representations for both the predicate and object exist. 

We then applied the release operator and the random vector for the predicate to the semantic 

vector for the subject (S(subj) ⊘ P(PREDICATE)), and evaluated the proportion of the ten 

nearest neighboring context vectors represented the objects of predications in SemMedDB 

involving this subject and predicate. The resulting metric is the precision at k=10, pk10.

3.3. Experiment 2: Correlation with Human Judgment

As an initial assessment of the representational power of the resulting vectors, we evaluated 

the correlation between the pairwise distance between the resulting semantic vector 

representations, and human judgments of the semantic relatedness and similarity between 

pairs of UMLS concepts. We used the UMNSRS data set, developed by Pakhomov and his 

colleagues [56], which consists of 725 clinical term pairs, together with human estimates of 

their semantic relatedness and similarity. 588 of these have been judged for their semantic 

relatedness, and 567 have been judged for their semantic similarity. Similarity is a tighter 

constraint than relatedness — for example, haloperidol and chlorpromazine are both related 

and similar, while haloperidol and schizophrenia are related but dissimilar. (These 

differences are sometimes referred to respectively as paradigmatic and syntagmatic 

relationships [57].) The evaluation metric used for this evaluation is Spearman’s rank 

correlation coefficient, which we used to estimate the correlation between the rankings of 

the average score assigned to each pair by human annotators, and those assigned by each of 

the models.
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3.4. Experiment 3: Discovery by Analogy

Discovery by Analogy (DbA) is an approach we have developed that leverages the 

analogical processing capabilities of VSAs to identify associations between biomedical 

entities. It involves a two-stage procedure. The first stage involves inferring the most 

strongly associated double-predicate pathways from a set of examples of the relationship 

type of interest. For example, we may infer the most strongly associated double predicate 

pathways connecting drugs in TREATS relationships with diseases, to those diseases. An 

example query might be S(haloperidol) ⊘ S(schizophrenia). This cue would be compared to 

vectors representing each of the permitted double-predicate pathways, such as 

P(INTERACTS_WITH) ⊘ P(ASSOCIATED_WITH-INV). We call these double-predicate 

pathways reasoning pathways, and they can be used as components of discovery patterns, as 

introduced in [58]. The most strongly-associated reasoning pathway for each cue pair is 

retrieved, and those pathways that occur most frequently across the set of cues are retained. 

Triple-predicate pathways are inferred using an identical procedure, but with a second-order 

semantic vector as the cue for one of the two concepts. Once identified, these pathways can 

be used to retrieve concepts related to another concept in the same way as the cue pair relate 

to one another, to solve proportional analogies of the form “what is to a as x is to y”.

To simplify matters for the current experiments, we used the sets of double and triple-

predicate reasoning pathways inferred from cue pairs during our prior 

pharmacovigilance[47] and drug repurposing [48] related experiments, as shown in Table 7. 

In the former case these reasoning pathways were inferred from 90,787 drug/ADE pairs 

from the SIDER2 database [59], which were extracted from medication package inserts 

using NLP. In the latter case, they were inferred from TREATS relationships in SemMedDB 

between pharmaceutical substances and cancers other than prostate cancer. In addition, we 

evaluated the extent to which a single-predicate pathway (TREATS or CAUSES) could be 

used to identify relationships of interest.

Relatedness across a reasoning pathway is estimated by binding the semantic vector for one 

concept to the elemental vector, or vectors, representing the reasoning pathway concerned. 

Then this bound product is compared to the vector representing the other concept of interest. 

For example the similarity between S(haloperidol) ⊘ P(INTERACTS_WITH) ⊗ 
P(ASSOCIATED_WITH-INV) and S(schizophrenia) gives an estimate of the extent to 

which these concepts are connected to one another across this pathway 8. Similarly, the 

hamming distance between S(haloperidol) ⊘ P(TREATS) and C(schizophrenia) provides an 

estimate of the extent to which this particular TREATS relationship contributes toward the 

semantic vector representation of haloperidol. Relatedness across multiple pathways is 

estimated by summing the relatedness across each individual pathway 9.

For the drug repurposing experiments, we evaluated these estimates of relatedness against 

empirical results documenting the effects of pharmaceutical agents against the PC3 line of 

8In probabilistic PSI [60], the estimated relatedness corresponds to the probability of traversing this path, in accordance with the rules 
of quantum probability
9This straightforward approach produces marginally better performance across models than our prior method of measuring the length 
of the projection of a subspace constructed from the vector representing each reasoning pathway.
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prostate cancer cells. Of these agents, 1398 could be mapped to concepts in SemMedDB, 

and only 68 met the threshold used to indicate activity (a cellular growth rate of <= 1.5SD 

below the mean). Further details of this dataset are available in [48]. The target concept in 

this case was “prostate carcinoma”. For the pharmacovigilance experiments, we evaluated 

these estimates of relatedness using a reference set developed by Ryan and his colleagues 

[61]. This set contains 399 test cases of potential drug/ADE relationships, with 165 positive 

and 234 negative controls. The adverse events concerned are acute kidney injury, acute liver 

injury, acute myocardial infarction and gastrointestinal bleeding. The vector representations 

of these concepts were constructed by superposing the semantic vectors for concepts 

corresponding to ICD-9 codes provided in the Observation Medical Outcomes Partnership 

(OMOP) definitions of these health outcomes (http://omop.org/HOI) with expansion to 

include hyponyms, where vector representations of these concepts were available. In both 

experiments, drugs were rank ordered with respect to their relatedness across the reasoning 

pathways concerned, and the metric of evaluation utilized was the Area Under the Receiver 

Operating Characteristic (AUROC) curve.

3.5. Experiment 4: Classification by Analogy

In our recent work, we have developed an approach we call Classification-by-Analogy 

(CbA), using PSI. This approach applies supervised machine learning methods to the bound 

products of vectors representing concept pairs of interest [62]. For example, a data point in 

the drug repurposing set is the vector product S(docetaxel) ⊘ S(prostate carcinoma), with 

the label “1”, as this is a positive example of a drug with activity against the PC3 prostate 

cancer cell line. In our recent work, we have shown that the performance of CbA with PSI 

vectors and a Support Vector Machine (SVM), Logistic Regression model and k-nearest 

neighbor classifiers during five-fold cross-validation experiments using the 

pharmacovigilance data set exceed those achievable using DbA, with AUROCs of 0.94 and 

0.93 for logistic regression and SVM respectively, and comparable F1 scores across the three 

methods. As good accuracy was achieved with CbA representations across a range of 

algorithms, this suggests that PSI vector representations provide an effective basis for 

supervised machine learning. For the current experiments, as our goal is to evaluate the 

underlying representations, we use a simple k-nearest neighbor approach, with k = 1 and a 

leave one out cross-validation scheme. So each example CbA bound product (such as 

S(docetaxel) ⊗ S(prostate carcinoma)) is assigned the label of the nearest neighboring 

labeled bound product. For the pharmacovigilance set, which is reasonably well-balanced 

with respect to positive and negative examples, we report the accuracy. In addition for both 

sets we estimate the AUROC by rank-ordering the examples with respect to the difference 

between their similarity to the nearest positive neighbor and their similarity to the nearest 

negative neighbor. We report this metric for both the pharmacovigilance set, and the drug 

repurposing set. However, for this latter set we do not report the accuracy, as this is 

spuriously inflated by the large number of negative examples.
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4. Results and Discussion

4.1. Retrieval of encoded information

The results of experiments evaluating the capacity for retrieval of explicitly encoded 

information are shown in Figure 3. The performance of PSI is initially poor, but improves as 

dimensionality increases, with pk10 of around .7 at 32000 dimensions. In contrast, ESP is 

remarkably consistent across dimensionalities evaluated, with pk10 of around .2 even with 

256 bit vectors, and .23 at the highest dimensionality evaluated. This suggests that ESP has 

reached a balance between explicit retrieval and similarity-based inference that is consistent 

with the examples presented in Table 4.

4.2. Correlation with human judgment

The tendency for the performance of ESP to stabilize at low dimensionality is also apparent 

in Figure 4, which displays the correlation between each model’s estimates of the 

association between pairs of UMLS concepts, and the average of estimates of relatedness 

and similarity provided by human raters. At the highest dimensionality evaluated, PSI 

exhibits slightly better correlation with respect to relatedness, and ESP exhibits slightly 

better correlation with respect to similarity. However these differences are marginal. We note 

that this level of performance on this evaluation set does not approach the best of those 

reported previously. For example, Pakhomov and his colleagues report correlations of .58 

and .62 for relatedness and similarity respectively, with neural embeddings trained on full 

text articles from PubMed central [6]. Though their evaluation was conducted on a smaller 

subset, it seems likely that on this task the performance of neural embeddings trained on full 

text would exceed that of embeddings trained on predications. SemRep is optimized for 

precision over recall, and the approximately 80 million triples upon which our models were 

trained contain far less information than is present in the approximately 3 billion word 

corpus from which they were extracted. Nonetheless, it is interesting to note that the 

similarity and relatedness results at high dimensions either approach or exceed the best 

reported when applying ontology-based metrics to subsets of these evaluation sets in prior 

experiments [63]. As the predications SemRep is permitted to extract are constrained by 

UMLS semantic relations, both ESP and PSI can be considered as hybrid methods of 

semantic representation, with both distributional and ontological properties.

4.3. Discovery by Analogy

Figure 5 shows the Discovery-by-Analogy (DbA) results for the drug/ADE relationships 

described in [61]. The single-predicate results for PSI (◆) are generally not predictive, with 

an AUROC of below .6 at most dimensionalities, indicating the limits of the performance on 

this task that can be obtained by ranking drugs that occur in direct CAUSES relationships 

with the ADEs in question higher than those that do not. In contrast, the single-predicate 

results for ESP ( ) begin to exceed this limit at a dimensionality of around 256 bits, and 

proceed to exceed all but one of the PSI results, stabilizing at an AUC of around .65. This 

illustrates the capacity of ESP to perform similarity-based inference across single predicate 

paths, such that drugs with similar properties to those that occur in explicit CAUSES 

relationships with an ADE will be ranked higher than those that are unrelated to these 

explicitly asserted exemplars. With PSI, two-predicate pathways (■) are predictive at higher 
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dimensionalities, and performance improves substantially with the inclusion of three-

predicate pathways (●), with a peak AUC of around .73 at 32,000 dimensions. In contrast, 

with ESP two-predicate paths ( ) begin to exhibit productivity at lower dimensionalities, 

with an AUC of around .76 with 1024-bit vectors. In addition, though adding three-predicate 

pathways ( ) does improve performance, the difference is less pronounced than when 

adding three-predicate pathways in PSI. This suggests that ESP is making better use of the 

capacity of the vector space, and also that similarity-based inference offers some of the 

benefits of explicit encoding of longer pathways.

Figure 6 shows the DbA results for the prostate cancer evaluations, which exhibit similar 

patterns to those shown in Figure 5, despite the different nature of this data set (only around 

5% of the examples are positive). The single-predicate pathway, using the predicate 

TREATS in this case, is unproductive for PSI (◆), but with ESP ( ) exceeds the 

productivity of all PSI pathways, except at the highest dimensions evaluated. Once again, 

PSI performance improves considerably with inclusion of three-predicate pathways (●), this 

time with a peak AUC of around .72. With ESP, the advantage of three-predicate pathways 

( ) over two-predicate pathways ( ) is again less pronounced. However ESP’s 

improvement in performance over PSI, apparent at a dimensionality of 1024 bits and above, 

is more pronounced with a peak AUC of .786 with triple-predicate pathways at 32,000 

dimensions.

4.4. Classification by Analogy

Classification-by-Analogy (CbA) results are shown in Figures 7 and 8. Both figures show 

the results of kNN classification with k=1. In Figure 7, both the AUROC and the accuracy 

are reported. In figure 8, only AUROC is reported, as the accuracy is inflated on account of 

the large number of negative examples (around 95% of the set). In both figures, we see that 

ESP performs best at lower dimensionalities. However, at highest dimensionalities PSI 

performs slightly better, with a more marked difference in the case of the ADE experiments 

in Figure 7, which also shows substantive improvements in performance with PSI at 

dimensions 512–4096 bit range. One interpretation of this finding is that the advantage with 

ESP in the DbA experiments, which may be attributable to similarity-based inference, is lost 

when applying a layer of supervised machine learning as this would provide PSI with the 

capacity for similarity-based inference also. This is clearly the case in the PCA experiments, 

where there is only one target concept (prostate carcinoma). This means that all vectors 

undergo an identical transformation, so the only information available for classification 

purposes is the similarity between drug vectors. In contrast, in the ADE experiments the 

vector representation used to classify a particular drug will differ across ADEs, and 

information concerning abstract predicate pathways is available for classification purposes 

also.

4.5. Improvement across iterations

Figure 9 shows the percent change in performance for each evaluation across the five epochs 

as training. Epoch 0, representing the first epoch, is not shown. For all subsequent epochs, 

the percent change in each performance metric relative to the previous epoch is shown. In all 

but one case (DbAADE), there is a generally consistent pattern of improvement across 
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iterations, with the greatest benefit with respect to retrieval of explicit relationships. Though 

the rate of improvement is clearly decreasing, the majority of peak performances (4/7) 

occurred in epoch 4, suggesting that further improvements may be obtained with larger 

numbers of training cycles.

4.6. Summary of results

The results suggest that ESP and PSI have different strengths. ESP has better performance at 

lower dimensionalities in all tasks, which is consistent with our initial hypothesis that the 

incorporation of negative sampling would lead to more efficient utilization of the vector 

space, with ESP exhibiting comparable correlation with human judgment across all 

dimensionalities tested. The capacity to perform well at low dimensionality may be 

advantageous in some applications, such as those requiring semantic hashing, as it leads to 

much faster nearest neighbor calculation. At higher dimensions (>= 4096 bits) PSI exhibits 

better ability to retrieve explicit relationships, and as such is arguably the better choice for 

applications involving navigation of the large pool of explicit assertions in SemMedDB. 

However, the DbA results reveal that ESP offers a number of advantages for inferring 

relationships that are not stated explicitly. These include obtaining a level of prediction with 

cues consisting of a single predicate and cue concept (e.g. TREATS prostate carcinoma) 

only, on account of the similarity between context vectors that represent concepts that occur 

in similar predications. However, across experiments and models the performance with 

single-predicate pathways is worse than that where dual-predicate reasoning pathways are 

provided, and including triple-predicate pathways further improves performance. Unlike 

PSI, the advantage of including triple-predicate pathways is slight with ESP. Consequently, 

there is less motivation to go through the additional steps of producing second-order 

semantic vectors for concepts of interest. For each configuration (single, double or double- 

and triple-predicate pathways) ESP performance is generally better than PSI performance, 

suggesting it may be the better choice for predictive modeling. The CbA experiments show 

that this advantage is lost when a layer of supervised machine learning is applied to the 

resulting vector representations of entity pairs of interest, other than at low dimensionalities. 

However, we do not believe that this negates the advantages of ESP for predictive modeling. 

We would not anticipate the kNN classifiers generalizing to other test sets, and from a 

practical perspective it is often desirable to draw inferences in situations where a manually 

annotated reference set is unavailable (for example, to draw inferences concerning ADEs 

other than the four included in this reference set), or before the generation of empirical data 

(for example, to guide selection of a panel of agents for high-throughput screening 

experiments). From the perspective of literature-based discovery, an implication of these 

differences is that ESP may be better equipped to support open-ended discovery scenarios, 

such as the search for potential therapies for an otherwise poorly treatable disease. In 

contrast, PSI may be more useful as a means to retrieve explicit assertions that support a 

novel therapeutic hypothesis, or explain an observed relationship. These discovery scenarios 

have been referred to as open and closed discovery, respectively [64].

4.7. Related work

Inspired by both recent work on neural language models and prior work demonstrating the 

feasibility of learning distributed representations of relational data [65, 66], a number of 
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authors have recently developed methods through which distributed representations can be 

derived from subject-predicate-object triples. Though this work tends not to reference the 

literature on VSAs, there is a common goal of deriving distributed representations from 

triples, which leads to a degree of overlap in the methodological approaches used to generate 

composite representations — a reversible transformation of the vector for an entity may be 

used to indicate the nature of a predicate.

For example, the TransE model developed by Bordes and his colleagues [67] attempts to 

minimize the distance between ( ) and , while maximizing this 

distance for corrupted triples in a manner analogous to the application of negative sampling 

in SGNS. Alternatively, a matrix may be assigned to each predicate, such that multiplication 

by this matrix affects a transformation on the vector representing a single entity [68, 69], or 

this matrix serves as a component of a bilinear tensor product with the subject and object 

vectors [70, 71]. The practical goal of these efforts is generally posed as a problem of 

knowledge graph completion. Models are trained on multi-relational data such as the 

collaboratively-created Freebase database of manually curated structured knowledge [72] 

and evaluated for their ability to recover held-out triples.

One relevant distinction between this task and the task of drawing inference from 

SemMedDB is that knowledge graphs contain a single instance of each relationship, while 

with extracted knowledge information concerning the frequency with which a relationship is 

repeated is also available for modeling. Another is that knowledge graphs tend to contain 

many more relationship types than the 30 predicates extracted by SemRep (for example, 

more than 7,000 in Freebase). As a consequence models emerging from this domain tend to 

learn parameters for representations of predicates. (By contrast, with PSI and ESP vector 

representations of predicates are held constant.) With the exception of TransE, predicate 

representations also have a dimensionality of d2 with d-dimensional concept vectors, which 

would make drawing inference across longer predicate pathways computationally 

cumbersome. Though this does not present a problem for knowledge graph completion per 

se, it constrains the utility of these models for analogical discovery. TransE, which uses 

vector representations of predicates, seems most readily adaptable to this purpose, though 

one would anticipate complications arising from the application of vector addition to 

implement both the generation of predicate-argument vectors and the updating of weights 

during the process of training.

In some cases, attempts have been made to incorporate unstructured data, for example by 

initializing concept vectors using word vectors trained on unstructured text [71]. Of 

particular relevance to the current work, Hyland and her colleagues recently reported a 

model that combines SemMedDB with unstructured Electronic Health Record (EHR) data 

by deriving triples from these data using an “appears in sentence with” relationship to 

indicate co-occurrence, after application of concept extraction and normalization procedures 

[69]. The results in both cases suggest that incorporating such unstructured information can 

result in modest improvements in performance on knowledge graph completion tasks.

Most recently, Nickel and his colleagues have proposed Holographic Encoding (HolE) as a 

method for knowledge graph embedding [73]. HolE is the first model to emerge from this 
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community to make explicit use of a VSA -Plate’s Holographic Reduced Representations 

(HRR) [74] - to generate composite vector representations of predicate-argument pairs with 

promising results on knowledge-graph completion tasks. On account of its use of a VSA, 

HolE shares ancestry with both PSI and ESP, and is perhaps most closely related to ESP on 

account of its use of gradient descent during training. Though we have used the Binary 

Spatter Code as the VSA for the current work, we have evaluated HRR-based 

implementations of PSI in previous work [49, 41, 60], and anticipate developing HRR-based 

implementations of ESP in the future. Like other models emerging from this community, 

HolE differs from both ESP and PSI as it learns parameters for predicate representations. 

Another important difference has to do with our assignment of two vectors for each concept, 

corresponding to the random and semantic vectors used for terms in Random Indexing. 

These are fundamental to learning in PSI, and a consequence of ESP’s lineage. Though they 

are not essential when learning concept representations with gradient descent, they offer 

advantages for analogical retrieval such as the ability to isolate reasoning pathways that 

indicate implicit relationships.

4.8. Limitations and future work

The findings presented in this paper suggest that ESP offers advantages for analogical 

retrieval, but that ESP and PSI are on equal footing as a representational basis for supervised 

machine learning. To evaluate their utility for this purpose in the current paper, we have 

considered a single machine-learning algorithm only, and have not explored the parameter 

space of this algorithm in an effort to optimize performance. It may be the case that more 

sophisticated machine-learning approaches are able to leverage the additional information 

encoded by ESP to improve performance further. In addition, it seems likely that fixing the 

context vectors (output weights) in ESP, or slowing their learning rate, would result in a 

model with greater accuracy for retrieval of explicit relationships, that retains performance at 

lower dimensionalities. These are both possibilities we plan to explore in future work.

During the course of the work described in this paper, it has come to our attention that ESP 

can facilitate inference across triple-predicate paths without the need for the generation of 

second-order semantic vectors. Though some of the results from the current paper may be 

explained by this capability, we have yet to explore the extent to which the inference and 

application of triple-predicate and other paths from ESP vectors directly may be useful in 

DbA-type models. Also, though the current implementation of ESP uses binary vectors as a 

fundamental representational unit, we have also developed PSI implementations using both 

real and complex-valued vectors [41, 14, 60]. With PSI, binary vector spaces are generally 

slower to generate, but more space-efficient and faster to search. We anticipate this will be 

the case with ESP also, but further work will be required to develop real and complex vector 

based variants.

Our models use UMLS concepts, rather than terms, as a fundamental representational unit. 

An advantage of this is that synonyms and morphological variants are resolved by SemRep 

before distributed representations are generated. To the extent that NLP is accurate, this 

means that all information pertinent to a particular concept should be encoded in its unique 

vector representation, and that no two concepts will share a vector (as may occur when 
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representing a polysemous term in term-based distributional models). However, on account 

of the granularity of the UMLS it is often the case that concepts that should arguably be 

collapsed are represented by a group of vectors. A common example is the assignment of 

separate UMLS concepts to the generic and trade names of the same drug. In the 

pharmacovigilance-related experiments described in this paper we developed an ad-hoc 

solution this problem that involved superposition of the vector representations of clinical 

conditions that are taxonomically related to a side effect of interest. Faruqi and his 

colleagues provide a more general solution [75], which we are currently exploring as a 

means to integrate information from taxonomies into distributional models of biomedical 

concepts [76], and seems readily applicable to vectors generated using ESP or PSI. In 

addition, as our distributed representations encode semantic information only, our models do 

not have access to orthographic information. For example, while it is obvious to the human 

reader that the terms “depressive disorder” and “major depressive disorder” are related to 

one another, the vector representations of the UMLS concepts corresponding to these terms 

will be similar only to the extent that they occur in similar contexts in SemMedDB. Methods 

exist to encode such orthographic information into distributed representations [77], 

including our own [78]. However, the utility this additional information for semantic and 

predictive modeling remains to be determined. Finally, the work of Hyland and her 

colleagues suggests that integrating unstructured information with SemMedDB may lead to 

better predictive models [69], a possibility we plan to evaluate in future work also.

5. Conclusion

This paper describes the development and evaluation of ESP, a novel approach to encoding 

semantic predications that combines compositional operators used in VSAs with a neural-

probabilistic approach to training. We compared ESP to PSI, our previous approach to 

encoding semantic predications, across several tasks. The results suggest that both models 

can provide effective unsupervised pre-training of feature vectors for downstream machine 

learning tasks. However, ESP offers advantages for analogical retrieval, and in tasks where 

constraining the dimensionality of the vector space is desirable. In these circumstances in 

particular, the additional computational work required by ESP seems well justified.
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Highlights

• We develop a neural-probabilistic approach to represent semantic 

predications.

• This is compared to a prior representational approach across a number of 

tasks.

• Application areas are pharmacovigilance and drug repurposing.

• The neural-probabilistic model performs better at lower dimensions.

• The neural-probabilistic model adds similarity-based inference.
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Figure 1. 
Illustration of the SGNS architecture to generate 5-dimensional embeddings for a 10-word 

vocabulary.
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Figure 2. 
Illustration of the ESP architecture to generate 5-dimensional embeddings for a 10-concept 

vocabulary. In SGNS, an objective is to raise the scalar product between the semantic and 

context vectors of words that are observed together. With ESP, we aim to raise the 

— between the semantic vector for the subject of a 

predication, and the bound product (⊗) of the predicate vector for the predicate concerned 

and the context vector of the object of this predication. In addition, we aim to raise the 

NNHD between the context vector of the object of the predication and the product of 

releasing (⊘) the predicate from the semantic vector of the subject.
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Figure 3. 
Retrieval of Explicit Relationships. pk10: precision at k=10.
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Figure 4. 
Correlation with Human Judgment
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Figure 5. 
Adverse Drug Reaction: Discovery by Analogy
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Figure 6. 
High-throughput Screen: Discovery by Analogy
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Figure 7. 
Adverse Drug Reaction: Classification by Analogy

Cohen and Widdows Page 34

J Biomed Inform. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Drug Repurposing: Classification by Analogy
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Figure 9. 
Percent change in performance from previous iteration. DbA=Discovery-by-Analogy. 

CbA=Classification-by-Analogy. ADE=Adverse Drug Event set. PCA=Prostate Cancer set. 

The metric illustrated is the AUROC for all of these aside from CbAADE, where changes in 

accuracy are shown instead. Similarity and Relatedness show changes in Spearman RhO, 

measuring correlation to the relevant UMNSRS set. pk10= precision at k=10, for retrieval of 

explicit relationships.
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Table 1

2+2 sliding window. F=focus term. Numbers denote position relative to F.

−2 −1 +1 +2

management of in schizophrenia
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Table 2

Example searches for concepts in a 32,000-dimensional binary PSI space derived from version 25.1 of the 

SemMedDB database, containing 82,239,652 extracted predications. The “Results” column shows the nearest 

neighboring concept vectors to the “Cue” vector. The score is the number of standard deviations above the 

mean of ( ) for all vectors in the search vector store. ASSOC=ASSOCIATED_WITH. INV 

indicates the inverse of a predicate - if “subject PRED object” then “object PRED-INV subject”.

Cue Target Results Comments

S(haloperidol) Semantic vectors 93.37:haloperidol
30.43:clozapine
26.91:risperidone
26.74:antipsychotic_agents
25.92:sulpiride

Other antipsychotic agents (and this drug class).

S(haloperidol)
⊘
P(TREATS)

Context vectors 8.61:delirium
8.35:schizophrenia
7.72:chronic_schizophrenia
7.63:mania acute
7.37:agitation

Therapeutic applications of haloperidol.

S(haloperidol)
⊘
P(CAUSES)

Context vectors 11.46:catalepsy
7.66:akinesia
6.37:adverse_effects
6.00:hyperactive_behavior
5.50:vomiting

Side effects of haloperidol.

S(haloperidol)
⊘
P(TREATS)
⊗
(ASSOC)

Semantic vectors 8.39:syt4
8.38:calb2
8.38:gulp1
8.38:mir138-2
8.38:mir137hg

Genes associated with conditions treated by haloperidol.
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Table 3

Retrieval and reapplication of relational structure with PSI. Data, derivation and presentation as in Table 2. Up 

to five results >= 4SD above the mean of ( ) are shown. ASSOC=ASSOCIATED_WITH.

Cue Target Results Comments

S(haloperidol)
⊘
C(schizophrenia)

Predicate vectors 8.16: TREATS Haloperidol is a treatment for schizophrenia.

S(haloperidol)
⊘
S(schizophrenia)

Products of 
predicate vector 
pairs

6.74: COMPARED WITH-INV ⊘ 
TREATS-INV
4.53: INTERACTS WITH ⊘ 
ASSOC-INV

Haloperidol has been compared with another 
drug that schizophrenia is treated by, and 
interacts with a biological entity that is 
associated with schizophrenia.

S(docetaxel)
⊘
P(COMPARED WITH-INV)
⊗
P(TREATS-INV)

Semantic vectors 14.79:non-small_cell 
lung_cancer_recurrent
13.58:small_cell 
lung_cancer_recurrent
12.35:non_small_cell 
lung_cancer_metastatic
11.27:oesophageal 
adenocarcinoma_stage_iii
9.7034:esophageal 
neoplasm_metastatic

Applying a two-predicate path inferred from 
haloperidol::schizophrenia to docetaxel 
returns potential therapeutic applications of 
this drug.

J Biomed Inform. Author manuscript; available in PMC 2018 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen and Widdows Page 40

Table 4

Example searches for concepts in a 32,000-dimensional binary ESP space derived from version 25.1 of the 

SemMedDB database, containing 82,239,652 extracted predications. The “Results” column shows the nearest 

neighboring concept vectors to the “Cue” vector. The score is the number of standard deviations above the 

mean of ( ) for all vectors in the search vector store. ASSOC=ASSOCIATED_WITH. 

SV=Semantic Vectors. CV=Context Vectors. * = predication not in SemMedDB. RA=renin-angiotensin. 

SNS=sympathetic nervous system.

Cue Target Results Comments

S(haloperidol) SV 6.34:haloperidol
5.50:clozapine
5.43:sulpiride
5.13:fluphenazine
5.10:flupenthixol

Other antipsychotic agents.

S(haloperidol)
⊘
P(TREATS)

CV 17.52:general_mental_state*
16.62: mania_acute
16.40: undertaker*
16.06:alcohol_withdrawal_acute*
16.01: post-episiotomy pain*

Some results similar to predications in the database 
- e.g. haloperidol TREATS pain.

S(haloperidol)
⊘
P(CAUSES)

CV 19.89: noncompetitive inhibition*
17.95: catalepsy
17.70: right-shifted WBC*
17.50: behavioral syndromes AW physiological 
disturbances*...
17.47: drug-related alopecia*

There are numerous reports of alopecia with 
haloperidol use, so this is an example of an accurate 
inference.

S(haloperidol)
⊘
P(TREATS)
⊗
(ASSOC)

SV 16.31 anapolon_50
15.22:slc6a11
14.55: gh1
14.23: ahn_1055
17.21: premenstrone

The gene slc6a11 and drug ahn1055 affect 
neurotransmitters associated with schizophrenia.
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Table 5

Retrieval and reapplication of relational structure in ESP. Data, derivation and presentation as in Table 4. Up to 

five results >= 4SD above the mean of ( ) are shown. * indicates a predication that does not 

occur in SemMedDB. ASSOC=ASSOCIATED_WITH. CW=COMPARED_WITH

Cue Target Results Comments

S(haloperidol)
⊘
C(schizophrenia)

Predicate vectors 18.26: TREATS
16.77:ASSOC*
9.77:AFFECTS
8.24:PREDISPOSES*
7.91:CAUSES*

Haloperidol is a treatment for 
schizophrenia.

S(haloperidol)
⊘
S(schizophrenia)

Products of predicate 
vector pairs

9.80:CW-INV ⊘ TREATS-INV
8.44:CW ⊘ TREATS-INV
7.39:INTERACTS_WITH ⊘ TREATS-INV
6.99:INTERACTS_WITH -INV ⊘ TREATS-INV
6.60:ISA ⊘ TREATS-INV

Haloperidol relates in several 
ways to (other) entities that 
treat schizophrenia.

S(docetaxel)
⊘
P(CW-INV) ⊗
P(TREATS-INV)

Semantic vectors 14.51:view waters
12.53: prostate non-hodgkin’s lymphoma
12.21:anaplastic giant cell thyroid carcinoma
12.06:stage iii mesothelioma
11.96:childhood supratentorial primitive neuroectodermal 
tumors

Most represent potential 
therapeutic applications for 
docetaxel.
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Table 6

Predicates used to generate the vector spaces for each experiment. Note that the set PV includes all elements 

of the set DR, ∈ DR.

Set Experiments Permitted Predicates

DR 3,4 {AFFECTS; ASSOCIATED_WITH; AUGMENTS; CAUSES; COEXISTS_WITH; DISRUPTS; INHIBITS; 
INTERACTS_WITH; ISA; PREDISPOSES; PRE-VENTS; SAME_AS; STIMULATES; TREATS }

PV 1,2,3,4 {∈ DR; COMPARED_WITH; COMPLICATES; CONVERTS_TO; DIAGNOSES; LOCATION_OF; 
MANIFESTATION_OF; METHOD_OF; PART_OF }

J Biomed Inform. Author manuscript; available in PMC 2018 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen and Widdows Page 43

Table 7

Reasoning pathways utilized in Experiment 3. These pathways were applied in three configurations. Single 

predicate paths (1) were used alone exclusively. Double-predicate paths (2) were used alone, as well as in 

combination with triple-predicate paths (3).

Pharmacovigilance Reasoning Pathways

Predicates Pathways

1 CAUSES-INV

2

INTERACTS_WITH:CAUSES-INV
ASSOCIATED_WITH:COEXISTS_WITH
COMPARED_WITH:CAUSES-INV
ASSOCIATED_WITH:INTERACTS_WITH
ISA:CAUSES

3

COMPARED_WITH:INTERACTS_WITH:ASSOCIATED_WITH-INV
INTERACTS_WITH:INTERACTS_WITH:ASSOCIATED_WITH-INV
INTERACTS_WITH:ASSOCIATED_WITH:COEXISTS_WITH-INV
COMPARED_WITH:COEXISTS_WITH:ASSOCIATED_WITH-INV

Repurposing Reasoning Pathways

Predicates Pathways

1 TREATS-INV

2

ASSOCIATED_WITH:ISA
INTERACTS_WITH:ASSOCIATED_WITH-INV
COEXISTS_WITH:ASSOCIATED_WITH-INV
INTERACTS_WITH:ASSOCIATED_WITH-INV
INHIBITS:ASSOCIATED_WITH-INV

3

INTERACTS_WITH:COEXISTS_WITH-INV:ASSOCIATED_WITH
INTERACTS_WITH:INTERACTS_WITH-INV:ASSOCIATED_WITH
AUGMENTS:DISRUPTS:ASSOCIATED_WITH
AUGMENTS:AFFECTS:ASSOCIATED_WITH
DISRUPTS:AFFECTS:ASSOCIATED_WITH
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