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Abstract

A significant portion of the key biological functions of αKlotho (αKL) and its cognate ligand 

Fibroblast growth factor-23 (FGF23) have been revealed through the study of rare diseases of 

mineral metabolism. These findings have far reaching implications for common disorders such as 

chronic kidney disease-mineral bone disorder (CKD-MBD). αKL’s predominant effect on mineral 

homeostasis is through its actions in the kidney as a co-receptor for FGF23, however emerging 

data has shed light on its capacity to act as a circulating factor through the cleavage of the 

transmembrane form of αKL (‘mKL’) to produce ‘cleaved KL’ or ‘cKL’. This review summarizes 

new findings from studies using extended delivery of cKL to mouse models with phenotypes 

reflecting those arising in CKD-MBD.
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Introduction

Phosphate metabolism is a complex process involving endocrine feedback among multiple 

tissues including bone, kidney, and intestine. Disturbances in this homeostatic network can 

cause severe manifestations including altered bone structure and function in 

hypophosphatemic diseases, as well as vascular calcification and secondary bone disease in 

situations of hyperphosphatemia. Studying disorders of phosphate handling arising from 
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single gene defects in pathways involving FGF23 and its co-receptor, αKL, have revealed 

important physiological and pathophysiological information for common diseases. 

Additionally, observations both from the clinic and translational research in the field of 

mineral metabolism have further elucidated roles of cKL, the cleaved circulating form of 

αKL, supporting that different forms of αKL may have wider ranging, and previously 

unappreciated targets.

FGF23 and Klotho in Phosphate Homeostasis

Phosphate homeostasis is a finely tuned process involving endocrine feedback loops arising 

between the skeleton, intestine, and kidneys. FGF23 is produced in bone in response to an 

increase in serum phosphate or 1,25(OH)2 vitamin D (1,25D)1, 2. FGF23, acting through 

αKL, decreases phosphate reabsorption3 via down-regulation of the renal proximal tubule 

type-II sodium phosphate co-transporters NPT2a and NPT2c3, 4. FGF23 also effects kidney 

1,25D production and consequently calcium-phosphate equilibrium. Indeed, vitamin D 1α-

hydroxylase (Cyp27b1) expression is suppressed by FGF23, while simultaneously 

stimulating the catabolic vitamin D 24-hydroxylase (Cyp24a1), thus inhibiting the synthesis 

of active 1,25D2, 3. Consequently, an increase in bioactive FGF23 (‘intact’ or ‘iFGF23’) 

results in the hallmark endocrine effects of parallel reductions in serum phosphate and 1,25D 

concentrations.

The biological connection between FGF23 and αKL was first observed through the 

phenotypic similarities of their respective knockout mice5, 6. Both the Fgf23-null and αKL-

null mouse models are characterized by a shortened lifespan, growth retardation, ectopic 

calcification, and osteoporosis5, 6. The importance of renal αKL was subsequently 

demonstrated in different models of tissue-specific and cell-specific deletions of αKL7,8. 

The kidney has been established as the principle organ mediating αKL effects as shown by a 

complete knockout of renal αKL that fully mimicked the phenotypes of global αKL-null 

mice7. Additionally, a mouse model with a 70% reduction in renal distal tubular αKL 

expression resulted in a vast increase in serum FGF23 and exposed a linear relationship 

between residual renal αKL, serum phosphate, and FGF23 concentrations8. This study also 

uncovered that a critical level of αKL is necessary to preserve FGF23 signaling. Until 

recently αKL’s role in the proximal tubule was undefined, but recent data support that αKL 

may have a more limited function in this segment9. In this regard, the generation of three 

different proximal tubule-specific αKL conditional knockout mice revealed that mice with 

deletion of αKL from the proximal nephron were only mildly hyperphosphatemic or 

normophopshatemic. However, when challenged with high phosphate drinking water the 

mice became hyperphosphatemic9. Therefore, the deletion of αKL from either distal or 

proximal tubules effects phosphate handling, with evidence supporting that distal tubule 

plays a substantial role in FGF23-mediated phosphate metabolism. The nature of the 

interplay between the tubule segments remains to be determined.

The αKL gene is comprised of five exons that encodes a type 1 single-pass transmembrane 

protein10, 11. αKL is detectable in a variety of tissues and cell types, with abundant 

expression in the kidney and parathyroid glands, as well as brain choroid plexus12. While 

this review will focus on αKL, the other Klotho family members include β- and γ-Klotho 
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which are also type 1 single-pass transmembrane proteins13. β-Klotho is predominantly 

expressed in the liver, but is also found in the kidney, gut, and spleen and mediates the 

activity of FGF19 and FGF2113, 14. γ-Klotho is expressed in the kidney and skin and has 

undefined functions13, 15. Several isoforms of the αKL protein exist: the ‘membrane’ bound 

(‘mKL’) form is a 130 kD glycoprotein comprised of a large extracellular domain that 

directly interacts with FGF23, in addition to a short intracellular region that is not capable of 

signaling in isolation10. The mKL form fosters FGF23 signaling via the recruitment of 

canonical FGF receptors (FGFRs)16. Findings support the interactions between FGFR1c and 

αKL for renal phosphate handling using conditional-null mice17, and other studies suggest 

FGF23-αKL signaling can also be mediated through FGFR3 and FGFR418, which may play 

a role in vitamin D regulation19. A circulating form of αKL referred to as ‘cut-‘ or ‘cleaved-

KL’ (‘cKL’) is produced by the cleavage of mKL near the transmembrane domain by 

membrane-bound secretases of the ADAM and BACE families, specifically ADAM10, 

ADAM17, and BACE120. This cleavage event results in production of the cKL form (110 

kDa)10 that enters the blood, CSF, and urine21, 22.

cKL in Rare and Common Diseases

Two rare Mendelian diseases of dysfunctional phosphate metabolism involving αKL under- 

and over-expression have brought to light important relationships in phosphate handling. 

Hyperphosphatemic familial tumoral calcinosis (hFTC) is an autosomal recessive disorder in 

which patients present with hyperphosphatemia and ectopic calcifications. Forms of hFTC 

are caused by mutations in FGF2323–25 or GALNT326–28. In a single case of hFTC, a 13-

year-old girl was found to have a homozygous missense mutation in the αKLOTHO gene. 

Specifically, an H193R mutation within the extracellular KL-1 FGF23 binding domain 

located in a catalytic cleft was responsible for attenuated production of αKL when expressed 

in vitro29. The patient exhibited biochemistries of hyperphosphatemia, hypercalcemia, along 

with elevated PTH and FGF23. Consistent with kidney resistance to FGF23, she had 

strikingly elevated iFGF23 and cFGF23, unlike FGF23- and GALNT3-mediated TC which 

results in reduced iFGF2329. This patient’s hyperphosphatemia and increased 1,25D likely 

resulted in the prevailing elevated iFGF23 through positive feedback. Hyperparathyroidism 

was also observed in this patient. Unlike the αKL-null mouse model and other forms of 

hFTC, the H193R mutation patient exhibits high PTH in the face of high 1,25D that would 

normally suppress PTH production. Whether this finding is due to species-specific 

phosphate handling or the molecular nature of the missense mutation and its effect on 

proteins that interact with αKL remains unclear.

The second case related to alterations in αKL was an infant that presented due to poor 

growth and increasing skull size in addition to moderately bowed legs. After ruling out 

mutations in FGF23, DMP1, PHEX, and FGFR1 it was found the girl harbored a balanced 

chromosomal translocation (t9:13) in proximity to the αKLOTHO gene30. Analysis of 

serum biochemistries revealed severe hypophosphatemia, elevated FGF23 with 

inappropriately normal 1,25D, and radiographs confirmed rachitic changes of the growth 

plate at her knees and wrists. It was determined through examination of the patient’s serum 

that the translocation caused elevated cKL30, supporting the surprising hypothesis that 
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increased cKL can potently drive FGF23 expression and cause hypophosphatemia, a 

biological situation that is normally suppressive of FGF23 production.

To determine the molecular mechanisms underlying the role of cKL in bone FGF23 

expression, adeno-associated virus 2/8 carrying cKL (AAV-cKL) was delivered to wild type 

(WT) mice for 4–8 weeks31. AAV-cKL treatment resulted in pharmacologic levels of blood 

cKL and markedly increased iFGF23. The mice also had hypophosphatemia, hypocalcemia, 

and hyperparathyroidism, matching the biochemical profile of the translocation patient31. 

Interestingly, the sustained cKL delivery resulted in a 150-fold increase in bone Fgf23 

mRNA, which would explain, despite hypophosphatemia, the increased serum iFGF23 

concentrations. In addition, Egr1 and c-fos, both targets of the MAPK signaling pathway, 

were up regulated in bone. Skeletal changes in mice treated with AAV-cKL were significant, 

including reduced bone mineral density and bone mineral content of the distal and medial 

femora. Severe osteomalacia, a characteristic of marked hypophosphatemia, was observed in 

AAV-cKL bones as evident by increased non-mineralized tissue along with widened growth 

plates31. Parallel in vitro studies demonstrated that cKL-FGFR1c signaling was initiated in 

the presence of FGF2331. Of note, other studies have found relationships between FGFR 

activity and increased FGF23 expression, as some patients with osteoglophonic dysplasia 

(OGD) carrying activating FGFR1c mutations increase serum iFGF2332, 33, and FGF2 over 

expression increases bone FGF23 production34. These studies collectively support the 

concept that cKL-mediated FGF23 regulation may play a physiological role in fine-tuning 

the control of the circulating levels of iFGF23 in a feedback loop between bone and kidney.

CKD has become increasingly prevalent; the current lifetime risk of this disease is 59%35. 

As the kidneys become unable to control blood phosphate, late-stage CKD-MBD is 

associated with increased serum FGF23, hyperphosphatemia and vascular calcification, and 

recently has been connected to renal αKL deficiency36–38. To address the question whether 

providing cKL to a model of CKD-MBD would be therapeutically beneficial, AAV-cKL was 

administered to mouse models with phenotypes that parallel those of patients. To test cKL’s 

pharmacological effects the db/db-eNOS−/− mouse model of diabetic nephropathy (DN) was 

used39. The db/db-eNOS−/− mouse model is characterized by a loss of activity of the leptin 

receptor and disruption of eNOS causing mice to develop exceedingly high blood glucose, 

and progressive renal damage including glomerular and interstitial fibrosis40, 41. Since DN is 

currently the leading cause of CKD-MBD42, 43, identifying novel pathways for 

pharmacological interventions are needed. cKL delivery to db/db-eNOS−/− mice resulted in 

a reduction in serum phosphate with increased FGF23 despite no improvements in renal 

function or pathology39. Although the molecular mechanisms remain to be determined, 

these results support that at pharmacologic levels cKL may reduce serum phosphate during 

compromised renal function.

The αKL-null mouse model manifests a number of CKD-MBD phenotypes including 

elevated serum phosphate and severe aortic calcification5, 44 due to the inability to arbitrate 

efficient FGF23-dependent signaling in target tissues. The αKL-null mice also provide a 

biological platform for examining cKL effects that are independent of all other αKL 

isoforms. Therefore AAV-cKL was provided to αKL-null mice for four weeks39. 

Interestingly, the prevailing hyperphosphatemia in αKL-null mice was significantly reduced 
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in parallel with further FGF23 increases above the elevated baseline FGF23 levels39. In WT 

mice cKL delivery increased serum PTH and suppressed serum 1,25D, consistent with a 

reduction in the renal 1α-OHase (Cyp27b1) and an increase in the 24-OHase (Cyp24a1) 

mRNAs. Administration of cKL to αKL-null mice normalized their previously high 1,25D. 

In addition, acute cKL administration was capable of reducing Npt2a in αKL-null mice39. 

Consistent with these results, it was previously shown that a decrease in Npt2a expression on 

the proximal tubule apical membrane may result from its direct interactions with cKL, 

resulting in a suppression of phosphate reuptake45.

A significant consequence of CKD-MBD is vascular calcification (VC), dramatically 

increasing the odds of sudden death in patients46–48. Consistent with their 

hyperphosphatemia, αKL-null mice exhibit severe aortic VC. Previous studies testing a 

variety of treatment paradigms demonstrated cKL effects on lessening VCs but failed to 

significantly correct the elevated serum phosphate in αKL-null mice49, 50. By eight weeks of 

age αKL-null mice display calcification extending from the aortic arch to the bifurcation of 

the aorta (Figure 1A). As assessed by μCT, four-week administration of cKL led to a 74–

78% reduction in total aortic mineral content and 72–77% reduction in mineral volume 

compared to control groups of vehicle- and AAV-LacZ injected mice (Figure 1B). These 

results support the previously reported in vitro effects of recombinant cKL on vasculature44, 

however distinguishing the direct versus indirect actions of sustained cKL delivery should be 

the basis of future work. Additionally, stable, long term delivery of cKL by viral vector led 

to a reduction in serum phosphate that was not observed by in a uninephrectomized 

transgenic model of mKL overexpression44. Whether sustained cKL expression overcomes 

potential compensatory mechanisms will be an important line of study. Collectively, these 

observations support that targeting cKL-mediated pathways may prevent disease phenotypes 

that include hyperphosphatemia and its downstream manifestations.

cKL actions on bone

The mechanisms by which increases in serum and bone FGF23 occurred in the αKLOTHO 

translocation patient and during sustained AAV-cKL delivery to normal and αKL-null mice 

are unknown. To this end, in vitro studies were conducted in the osteoblastic cell line 

UMR-106 to examine whether cKL and FGF23 were capable and/or necessary to activate 

FGFR-dependent pathways in bone to stimulate FGF23 production. During combination 

treatment of recombinant cKL and FGF23, Egr1 and Fgf23 mRNA expression increased, 

whereas neither cKL nor FGF23 alone were capable of inducing a change in FGF23 mRNA 

expression39. Similarly, an increase in p-ERK1/2 was only stimulated by combination 

treatment of cKL and FGF23, and inhibition of either MEK or FGFR signaling ablated the 

effects of cKL and FGF23 treatment. To explore the molecular mechanisms underlying the 

increase of FGF23, a UMR-106 cell line lacking FGFR1 was generated by CRISPR/Cas9 

targeting39. FGFR1 deletion in this system ablated the cell responses to cKL and FGF23 as 

well as FGFR1c agonist antibody treatment39. In sum, these studies support that bone cells, 

in the presence of FGF23, are a target of FGFR-dependent cKL signaling, likely explaining 

the elevated FGF23 during the hypophosphatemia associated with elevated serum cKL.
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Summary and future questions

Certainly, important questions remain with regard to the physiological and pharmacological 

functions of cKL, and defining the full scope of cKL targets is chief among them. We have 

shown extended cKL delivery capable of reducing serum phosphate in normal mice and in 

two different models that manifest common disease phenotypes of CKD-MBD. However, 

cKL did not alleviate other key characteristics of CKD-MBD such as hyperparathyroidism 

and progressively declining renal function. Future studies are needed to test the ability of 

cKL to reduce vascular calcification in additional models of CKD-MBD. Further, whether 

sustained delivery of cKL directly targets pathways that control phosphate handling, as well 

as the molecular nature of the interactions with FGFRs to modify mineral metabolism, 

remain unclear. Taken together, this recent work supports the need for expansion of studies 

to determine the cKL-mediated events that can be targeted for therapeutic intervention.
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Highlights

• Many of the key biological functions of αKlotho (αKL) and its cognate 

ligand Fibroblast growth factor-23 (FGF23) have been found through the 

study of rare diseases of mineral metabolism.

• Emerging data has shed new light on the capacity of the ‘cleaved KL’ or 

‘cKL’ form of transmembrane αKL to act as a circulating factor.

• This review highlights new findings from studies using extended delivery of 

cKL to mouse models with phenotypes reflecting those arising in CKD-MBD.
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Figure 1. AAV-cKL effects on aortic calcification
(A) Representative uCT images of aortic calcification (orange colorization) from αKL-null 

(KL) mice at baseline (four weeks of age), AAV-cKL treated, as well as vehicle and AAV-

LacZ controls (treated from four weeks of age for four additional weeks). cKL 

administration was associated with a visually marked reduction in aortic mineralization 

versus KL-vehicle and KL-LacZ treated mice. (B) Mineral content and mineral volume of 

whole aortae were quantified and determined to be significantly elevated in controls 

(**p<0.01 and *p<0.05 vs baseline), whereas in cKL-treated mice mineral content and 

volume were significantly reduced (#p<0.005). [From: Hum JM, O’Bryan LM, Tatiparthi 
AK, Cass TA, Clinkenbeard EL, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith 
RC, White KE. Chronic hyperphosphatemia and vascular calcification are reduced by stable 
delivery of soluble klotho. JASN (2016).]
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