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Abstract
AIM
To investigate the effects of heme oxygenase-1 
(HO-1)-modified bone marrow mesenchymal stem 
cells (BMMSCs) on the microcirculation and energy 
metabolism of hepatic sinusoids following reduced-size 
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microcirculation, which is the basis for transplanted 
liver regeneration. Transplanted liver grafts with 
disturbed microcirculation of the hepatic sinus may 
affect liver energy metabolism. We investigated the 
protective effects of heme oxygenase-1-modified bone 
marrow mesenchymal stem cells (HO-1/BMMSCs) 
on rat reduced-size liver transplantation in terms of 
the microcirculation and hepatic energy metabolism. 
HO-1/BMMSCs promoted the equilibrium of ET-1/
NO, repaired damaged hepatic sinusoidal endothelial 
cells, and lowered the portal vein pressure in rats 
following reduced-size liver transplantation, which 
improved the microcirculation of hepatic sinusoids and 
ATPase activity, and recover the energy metabolism of 
damaged hepatocytes. 

Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, 
Song HL. Effects of heme oxygenase-1-modified bone marrow 
mesenchymal stem cells on microcirculation and energy me-
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INTRODUCTION
Liver transplantation is the only effective treatment 
for end-stage liver diseases; however, a shortage 
of donor graft remains the major impediment to 
the development of liver transplantation. Although 
reduced-size liver transplantation (RLT), split-liver 
transplantation, and living donor liver transplantation 
can make up the shortage of donor grafts to some 
extent[1,2], transplantation-induced hepatic injury can 
seriously affect liver function, even leading to small-
for-size syndrome (SFSS). SFSS is a clinical syndrome 
involving multiple factors, such as the volume and 
quality of the donor graft, recipient characteristics, 
and surgical techniques. The main pathophysiological 
characteristic is disturbance in the microcirculation 
of hepatic sinusoids[3,4]. Hepatic sinusoids play an 
important role in the liver microcirculation. The integrity 
of sinusoidal structures and the stability of sinusoidal 
microcirculation are essential not only for normal liver 
function, but also for good physiological function and 
regeneration of a transplanted liver. Preservation of 
the donor graft, ischemia-reperfusion, and rejection 
may result in damage to the transplanted liver during 
transplantation. Ischemia-reperfusion promotes 
swelling, necrosis, and apoptosis of the sinusoidal 
endothelial cells (SECs), leading to sinusoidal 
obstruction. Kupffer cell activation and SECs injury 
after liver transplantation can lead to disturbance in 
the microcirculation of hepatic sinusoids, adhesion of 
leukocytes and platelets, and a series of inflammatory 
reactions, which cause dysfunction of the sinusoidal 
microcirculation[5,6]. Furthermore, all these pathological 

liver transplantation (RLT) in a rat model.

METHODS
BMMSCs were isolated and cultured in vitro  using an 
adherent method, and then transduced with HO-1-
bearing recombinant adenovirus to construct HO-1/
BMMSCs. A rat acute rejection model following 50% 
RLT was established using a two-cuff technique. 
Recipients were divided into three groups based on the 
treatment received: normal saline (NS), BMMSCs and 
HO-1/BMMSCs. Liver function was examined at six time 
points. The levels of endothelin-1 (ET-1), endothelial 
nitric-oxide synthase (eNOS), inducible nitric-oxide 
synthase (iNOS), nitric oxide (NO), and hyaluronic 
acid (HA) were detected using an enzyme-linked 
immunosorbent assay. The portal vein pressure (PVP) 
was detected by Power Lab ML880. The expressions 
of ET-1, iNOS, eNOS, and von Willebrand factor (vWF) 
protein in the transplanted liver were detected using 
immunohistochemistry and Western blotting. ATPase 
in the transplanted liver was detected by chemical 
colorimetry, and the ultrastructural changes were 
observed under a transmission electron microscope. 

RESULTS
HO-1/BMMSCs could alleviate the pathological changes 
and rejection activity index of the transplanted liver, 
and improve the liver function of rats following 50% 
RLT, with statistically significant differences compared 
with those of the NS group and BMMSCs group (P  
< 0.05). In term of the microcirculation of hepatic 
sinusoids: The PVP on POD7 decreased significantly 
in the HO-1/BMMSCs and BMMSCs groups compared 
with that of the NS group (P  < 0.01); HO-1/BMMSCs 
could inhibit the expressions of ET-1 and iNOS, increase 
the expressions of eNOS and inhibit amounts of NO 
production, and maintain the equilibrium of ET-1/NO (P  
< 0.05); and HO-1/BMMSCs increased the expression of 
vWF in hepatic sinusoidal endothelial cells (SECs), and 
promoted the degradation of HA, compared with those 
of the NS group and BMMSCs group (P  < 0.05). In term 
of the energy metabolism of the transplanted liver, 
HO-1/BMMSCs repaired the damaged mitochondria, 
and improved the activity of mitochondrial aspartate 
aminotransferase (ASTm) and ATPase, compared with 
the other two groups (P  <0.05).     

CONCLUSION
HO-1/BMMSCs can improve the microcirculation of 
hepatic sinusoids significantly, and recover the energy 
metabolism of damaged hepatocytes in rats following 
RLT, thus protecting the transplanted liver. 

Key words: Reduced-size liver transplantation; Bone 
marrow mesenchymal stem cells; Microcirculation; 
Heme oxygenase-1; Energy metabolism
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processes would lead to organ ischemia, and due to 
a lack of oxygen, a large amount of lipid peroxide in 
mitochondria was produced and ATP was gradually 
reduced, which caused tissue damage[7]. A low base-
line level of hepatic ATP leads to liver necrosis and 
apoptosis, although ischemic preconditioning and 
ATP pretreatment can increase the intrahepatic ATP 
level significantly, providing protective effects on liver 
function[8,9]. Thus, disturbance in the microcirculation 
of hepatic sinusoids and disordered energy metabolism 
are important factors affecting the functions of 
transplanted livers, which still remain unsolved. 

Bone marrow mesenchymal stem cells (BMMSCs), 
a group of non-hematopoietic stem cells derived from 
stromal cells, have multi-directional differentiation 
potential and can be differentiated into endothelia. 
BMMSCs promote angiogenesis, tissue repair, and 
paracrine signaling[10-15], which can relieve ischemic 
reperfusion injury (IRI) of the liver, reduce hepatocyte 
injury and accelerate liver regeneration, and are involved 
in anti-inflammation and immunoregulation[16-21]. 
BMMSCs have been investigated in the field of liver, 
kidney, small intestine, and islet transplantation[22-27]; 
however, the proportion of BMMSCs surviving in the 
recipient’s body for more than a week is less than 1%, 
which has affected its use in experimental studies[22,24,28]. 
Thus, improving the survival time of BMMSCs is also a 
research hotspot.   

Heme oxygenase-1 (HO-1) is a multifunctional 
microsomal oxidase related to heme metabolism, with 
anti-inflammatory, anti-oxidative stress, anti-apoptosis, 
anti-ischemia reperfusion injury, and microcirculation 
regulation effects that protect cells[29-31]. HO-1 has 
been shown to alleviate rejection, prolong graft 
survival time, and induce immune tolerance in organ 
transplantation[32-34]. HO-1 can regulate BMMSCs by 
reducing the apoptosis of BMMSCs under hypoxia and 
oxidative stress in vitro[35], and prolonging the protective 
effects of BMMSCs on transplanted grafts[22,24]. 

A previous study showed that transplantation 
of HO-1/BMMSCs could inhibit the apoptosis of 
hepatocytes and reduce IRI[22]. How HO-1/BMMSCs 
exert their protective effects, and whether HO-1/
BMMSCs can affect the microcirculation of hepatic 
sinusoids, portal vein pressure (PVP,) and energy 
metabolism of hepatocytes following RLT have not 
been studied extensively. Therefore, the aim of this 
study was to determine whether HO-1/BMMSCs could 
protect the microcirculation of hepatic sinusoids and 
energy metabolism of the transplanted liver after RLT 
in order to provide a reliable experimental basis for 
solving the shortage of donors.

MATERIALS AND METHODS
Experimental animals
Specific-pathogen-free (SPF) adult inbred Brown-
Norway (BN) rats and Lewis rats were purchased 
from the Academy of Military Medical Sciences, 
Beijing, China. Male BN rats (4-5 wk old; 100-120 g) 

were inbred for the extraction and characterization 
of BMMSCs. Inbred male Lewis rats (6-8 wk old; 
200-220 g) were the liver transplantation donors, 
and the inbred male BN rats were the recipients. 
The experimental animals were kept at 23 ℃, with 
50% humidity, and a 12 h light and dark cycle for 2 
wk, with free access to water and food, and regular 
replacement of cage and clean bedding before the 
experiments. All experimental procedures were 
performed in accordance with the “Guide for the Care 
and Use of Laboratory Animals” (National Institutes of 
Health, 8th ed. 2011). All protocols were approved by 
the Animal Care and Research Committee of Tianjin 
First Central Hospital. All the rats were anesthetized 
with chloral hydrate to minimize their pain.

Instruments and reagents
The following instruments and reagents were used: 
Dulbecco’s modified Eagle medium (DMEM)/F12, 
penicillin-streptomycin solution, and trypsin/EDTA 
solution (Gibco, Carlsbad, CA, United States); fetal 
bovine serum (FBS; Biowest, Nuaillé, France); 
dexamethasone phosphate sodium (5 mg/mL), 
sodium glycerophosphate (216 mg/mL), insulin (40 
U/mL), 1-methyl-isobutyl-xanthine, vitamin C and 
indomethacin (Sigma Aldrich, St. Louis, MO, United 
States); Oil Red O powder (Dingguo Changsheng 
Biotechnology, Beijing, China); von Kossa cell 
staining kit (Genmed, Shanghai, China); recombinant 
adenovirus expressing rat HO-1 (Genechem Co., Ltd., 
Shanghai, China); phosphate buffer solution (PBS), 
highly sensitive radio immunoprecipitation assay (RIPA), 
bicinchoninic acid (BCA) protein assay kit (Solarbio, 
Beijing, China); Western blotting-associated reagents 
(Boster, Wuhan, China); normal goat serum (Minhai 
Biotechnology, Lanzhou, China); SuperPicture™ 
Polymer Detection Kit (Thermo, Waltham, MA, United 
States); diaminobenzidine (Dako, Glostrup, Denmark); 
flow cytometry-related antibodies (anti-rat CD34-
fluorescein isothiocyanate (FITC), CD29-phycoerythrin 
(PE), CD45-PE, CD90-FITC, RT1A-PE, and RT1B-
FITC; Biolegend, San Diego, CA, United States); 
rabbit antibodies for inducible nitric oxide synthetase 
(iNOS), endothelial nitric oxide synthetase (eNOS), 
von Willebrand factor (vWF), and mouse antibodies 
for endothelin (Abcam, Cambridge, United Kingdom); 
rabbit antibodies for glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) (SAB, College Park, MD, 
United States); goat anti-rabbit IgG labeled with 
horseradish peroxidase (HRP) and goat anti-mouse 
IgG labeled with HRP (Invitrogen, Carlsbad, CA, United 
States); ELISA kits (Biovalue, Shanghai, China); 
ATP assay kit (Jiancheng Biotechnology, Nanjing, 
China); inverted fluorescent microscope (Olympus, 
Japan); and FACSCalibur flow cytometric analysis (BD 
FACSAria III, Franklin Lakes, NJ, United States).

Isolation, culture, and characterization of BMMSCs
BMMSCs were isolated aseptically from the femur and 
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anterior wall of the common bile duct was cut off and 
a stent was implanted, the hepatic artery was ligated 
and cut off, the PV was punctured and infused with 
4 ℃ lactated Ringer’s solution, and the IHVC and 
suprahepatic vena cava (SHVC) were both cut off as 
the outflow tract. When the liver turned yellowish and 
the outflow of perfusion fluid became clear, the PV 
was dissected and the donor liver was removed. The 
SHVC was trimmed, the PV and IHVC were prepared 
as vascular cuffs, and then the harvested graft was 
preserved at 4 ℃. The perihepatic ligaments were 
divided in the recipient rats, the PV and IHVC were 
blocked, and the PV was punctured and infused with 1 
mL normal saline (NS). The PV, SHVC, and IHVC were 
then dissected, and the liver was removed. The donor 
liver was placed orthotopically in the abdominal cavity 
of the recipient. The SHVC was anastomosed using 
an 8-0 nylon suture. Cuff anastomosis of the PV and 
IHVC was then performed. The graft was reperfused 
by opening the PV, SHVC, and IHVC in turn. The bile 
duct was connected by a stent suture. After checking 
that all the cuff tubes were not distorted and no leak 
occurred in the SHVC and IHVC, the abdomen was 
washed and closed. The detailed surgical procedure 
was described previously[36].  

Treatment of experimental animals
Experimental rats were divided into three groups: 
the control group (receiving 1 mL NS), the BMMSCs 
group (receiving 5 × 106 BMMSCs resuspended in 1 
mL), and the HO-1/BMMSCs group (receiving 5 × 106 
HO-1/BMMSCs resuspended in 1 mL). All injections in 
the three groups were administered via the superficial 
dorsal veins immediately after RSL. Five rats in each 
of the three groups were euthanized on postoperative 
day (POD) 0, 1, 5, 7, or 14, respectively, and their 
peripheral venous blood and transplanted liver tissues 
(cooled in liquid nitrogen and stored at -80 ℃) were 
collected for further analysis.

Biochemical analysis of liver function
The rat serum levels of alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total bilirubin 
(TBIL), and mitochondrial AST (ASTm) were measured 
using an automatic biochemical analyzer (Hitachi, 
Japan) according to the manufacturer’s instructions.

ELISA test
The rat serum levels of ET-1, eNOS, iNOS, nitric 
oxide (NO), and hyaluronic acid (HA) were detected 
using the ELISA kits according to the manufacturer’s 
instructions.

Detection of PVP after RLT
The pathological injuries were most obvious on POD 
7; therefore, POD 7 was chosen as the time point 
to measure the PVP. The rats were anesthetized by 
intraperitoneal injection of phenobarbital, and fixed in 
the supine position, the abdominal cavity was opened, 

tibia of BN rats after sacrifice by cervical dislocation. 
After cutting off both ends of the epiphyseal plate, the 
marrow cavity was rinsed by DMEM/F12 containing 
10% FBS. Red blood cells (RBCs) were lysed using 
0.1 mol/L NH4Cl, and the remaining cells were 
washed, resuspended as a single cell suspension, 
and cultured in T75 culture flask at 37 ℃ with 5 mL/L 
CO2 in an incubator. Well-grown third-passage cells 
were resuspended and then labeled fluorescently with 
antibodies (anti-CD29-PE, anti-CD34-FITC, anti-CD45-
PE, anti-CD90-FITC, anti-RT1A-PE and anti-RT1B-
FITC) for 30 min for flow cytometric analysis.

Identification and induced differentiation of BMMSCs in 
vitro
Adipogenic differentiation: Well-grown third-
passage BMMSCs were inoculated into 6-well plates 
at 2 × 105 cells/well. After complete adherence, 
BMMSCs were cultured in adipogenic differentiation 
medium (DMEM/F12 containing 10% FBS, 1 μmol/L 
dexamethasone, 10 μg/mL insulin, 0.5 mmol/L 
1-methyl-3-isobutyl xanthine, and 0.1 mmol/L 
indomethacin). The medium was changed every 72 
h. After induction for 8-10 d, BMMSCs were fixed by 
4% paraformaldehyde, and stained with Oil Red O for 
30 min. The BMMSCs were then rinsed with PBS and 
positive cells showed orange lipid droplets. 

Osteogenic differentiation: Well-grown third-
passage BMMSCs were also inoculated into 6-well 
plates at 2 × 105 cells/well. After complete adherence, 
BMMSCs were cultured in osteogenic differentiation 
medium (DMEM/F12 containing 10% FBS, 0.1 μmol/L 
dexamethasone, 10 mmol/L sodium glycerophosphate, 
and 50 μg/mL vitamin C). The medium was changed 
every 72 h. After induction for 13-15 d, BMMSCs were 
stained using a von Kossa staining kit, and positive 
cells showed black calcium deposits.

Preparation and identification of HO-1/BMMSCs
HO-1-bearing recombinant adenovirus (Adv/HO-1) 
was diluted to 10 pfu/cell with complete culture 
medium, which was used to replace the original 
medium of well-grown third-passage BMMSCs. After 
6-8 h, the Adv/HO-1 culture medium was replaced 
with complete culture medium for continued cultivation 
of the BMMSCs. After 48 h, the proportion of cells 
containing green fluorescence was observed under a 
fluorescence microscope.

Establishment of a rat rejection model in 50% reduced-
size liver transplantation
A 50% RLT rejection model was established with 
Lewis donor rats and BN recipient rats, using the 
two-cuff technique by a single operator. The donor 
rats were anesthetized with 5% chloral hydrate, and 
incised by abdominal median incision. After dividing 
the perihepatic ligaments, the portal vein (PV) and 
infrahepatic vena cava (IHVC) were isolated. The 
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and the PV was exposed. An ileum mesenteric vein 
branch in the right side of anterior mesenteric vein 
near the PV was isolated, its distal end was ligated, 
a suitable nick to insert a catheter was made, and 
then the catheter was inserted along the anterior 
mesenteric vein upstream. After fixing the catheter 
and connecting it to the pressure transducer, the 
PVP was measured using a Power Lab ML880 (AD 
Instrument, Australia).

Detection of the protein levels of ET-1, eNOS, iNOS, and 
vWF by Western blotting
Liver tissues collected from different POD were treated 
with RIPA lysis buffer to extract total proteins, and 
the concentrations of the total proteins were detected 
using a BCA protein assay kit. The proteins were 
separated electrophoretically and then transferred 
to nitrocellulose membranes. After blocking with 5% 
skimmed milk for 2 h, ET-1 (1:250), eNOS (1:200), 
iNOS (1:250), vWF (1:250) and internal reference 
protein GAPDH (1:3000) antibodies were added and 
incubated at 4 ℃ overnight. The membranes were 
then rinsed with Tris Buffered Saline with Tween-20 
(TBST), incubated with secondary antibodies (1:5000) 
for 2 h at room temperature, rinsed with TBST again, 
the chemiluminescence HRP substrate was added, 
and the membranes were exposed in a gel imaging 
analysis system (Alpha Innotech FluorChem FC2, CA, 
United States). The images were analyzed using the 
AlphaView SA 3.4.0 software (San Jose, CA, United 
States) to determine the grey scale. The relative 
abundance of a target protein was calculated as target 
protein band brightness value - background brightness 
value/internal reference protein GAPDH band brightness 
value - background brightness value. The resulting ratio 
was the relative abundance of the target protein. The 
samples were replicated three times in different batches 
at each time point.

Histopathological and immunohistochemical analysis of 
the transplanted liver
The transplanted livers on POD 0, 1, 5, 7, and 14 
were sectioned, fixed, paraffin embedded, sliced, 
and stained with hematoxylin and eosin (HE). The 
histopathological changes in the liver tissues were 
observed in five randomly selected fields under a light 
microscope. Acute rejection was graded according to 
the Banff criteria[37]. 

The transplanted liver was sliced, dewaxed by 
xylene, dehydrated by gradient ethanol, subjected to 
antigen retrieval, and blocked by normal goat serum at 
37 ℃ for 1 h. After incubation with primary antibodies 
(1:500) at 37 ℃ for 1 h and at 4 ℃ overnight, the 
slides were incubated with secondary antibodies at 
37 ℃ for 40 min, developed with DAB and stained 
with hematoxylin, differentiated using 1% hydrochloric 
acid ethanol, dehydrated using gradient ethanol, and 
clarified and encapsulated using xylene. The tissue 

slices were observed to determine the presence of 
ET-1, eNOS, iNOS and vWF in the transplanted liver. 
The immunohistochemical results were analyzed using 
the Image-Pro Plus 6.0.0.260 software (IPP, Media 
Cybernetics, Rockville, MD, United States).

ATPase activity test
The activity of Na+-K+-ATPase in the liver tissues was 
detected using the chemical colorimetry method 
according to the instruction manual of the ATPase test kit.

Observation by transmission electron microscopy
The transplanted liver was double-fixed by glutaral-
dehyde and osmic acid, dehydrated by gradient 
acetone, immersed in embedding medium, ultrathin 
sectioned using an automatic microtome (LeicaRM2235, 
Leica, Germany), and stained with 1% uranyl acetate. 
The tissue slices were observed and filmed under a 
transmission electron microscope (Hitachi, Japan) to 
observe the status of mitochondria in the hepatocytes.

Statistical analysis
SPSS 17.0 (SPSS GmbH, Munich, Germany) 

was used for the statistical analysis. All data were 
presented as means ± SD. Different groups of data 
were compared by analysis of variance (ANOVA). 
Differences were considered to be statistically 
significant at P < 0.05. 

RESULTS
Morphology, phenotype, induced differentiation, and 
identification of BMMSCs in vitro
Morphology and phenotype identification of 
BMMSCs: MSCs are spindle-shaped in morphology 
like fibroblasts in which the cytoplasm can stretch 
peripherally and maintain the ability to differentiate 
into a variety of other cell lines when cultured ex 
vivo. BMMSCs grew adherently when observed under 
microscope, and the cells were long spindle-shaped 
and partially vortexed or chrysanthemum-like, with 
typical morphological characteristics of MSCs (Figure 
1A). Flow cytometry analysis showed that the positive 
rates of CD29, CD90 and RT1A in the third generation 
BN rat BMMSCs were 99.5%, 97.4%, and 96.9%, 
respectively; and the negative rates of CD34, CD45, 
and RT1B were all above 95% (Figure 1E-G).

In vitro differentiation and identification of BMMSCs
After induction by adipogenic differentiation medium 
for 8-10 d, BMMSCs showed multiple orange lipid 
droplets in their cytoplasm, which was consistent 
with the characteristics of adipocytes (Figure 1C). 
Similarly, BMMSCs showed black granular or lumpy 
calcium deposits in their cytoplasm after induction by 
osteogenic differentiation medium for 13-15 d, which 
was consistent with the characteristics of osteoblasts 
(Figure 1D). These results showed that the extracted 
BMMSCs had the potential to differentiate into 
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adipocytes and osteoblasts in vitro.

Morphology and identification of HO-1/BMMSCs
BMMSCs were infected with recombinant adenovirus 
expressing HO-1 gene for 48 h, and the cells were 
observed under a fluorescence microscope. The rate of 
positive cells expressing green fluorescent protein was 
more than 80% (Figure 1B).

Effects of HO-1/BMMSCs on pathological changes and 
acute rejection in the transplanted liver
Histopathological manifestations of the transplanted 
liver in the NS group included obvious congestion 
in the hepatic sinus, red blood cell deposition in the 
sinus, peri-central vein and portal area, hepatocyte 

swelling, eosinophilic degeneration, and punctate 
necrosis. The infiltration of a large volume of mixed 
lymphocytes in the central vein and the portal area 
was accompanied by necrosis of hepatocytes on 
POD5. Infiltration of inflammatory cells and necrosis of 
hepatocytes increased on POD7. The mixed lymphocyte 
infiltration became significant on POD14, with severe 
hepatic sinus congestion, hepatocyte destruction, 
disappearance of lobular structure, and significant liver 
fibrosis. The transplanted livers in the BMMSCs group 
showed no obvious hepatic sinus congestion, and the 
endothelial swelling and hepatocyte necrosis was less 
severe than those in the NS group. The histological 
changes showed disordered hepatic lobules on POD5, 
with slightly infiltrated inflammatory cells and mild 

Figure 1  Morphology, transformation, and flow cytometric analysis of bone marrow-derived mesenchymal stem cells. A: The third generation of bone 
marrow-derived mesenchymal stem cells (BMMSCs) (normal field, × 100): BMMSCs grew to complete adherence, and the cells were spindle-shaped, some were in 
a vortex or daisy-likearrangement; B: HO-1/BMMSCs (fluorescence field, × 100): more than 80% of the BMMSCs expressed green fluorescence after transduction 
with HO-1; C: Adipogenic induction of BMMSCs, with orange lipid droplets stained by Oil red O in cytoplasm (× 200, shown by an arrow); D: Osteogenic induction of 
BMMSCs, with black calcium deposits in cytoplasm stained by von Kossa’s reagent (× 200, shown by an arrow); E: The percentage of CD29+CD34- cells was 99.5%; F: 
The percentage of CD90+CD45- cells was 97.4%; G: The percentage of RT1A+RT1B- cells was 96.9%.
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necrosis of hepatocytes. Inflammatory cell infiltration 
and hepatocyte necrosis progressed on POD7. On 
POD14, lymphocyte infiltration became obvious, liver 
sinus congestion increased, accompanied by liver 
fibrosis and incomplete hepatic lobule structures. 
The HO-1/BMMSCs group showed less rejection, and 
fewer injuries of the liver allografts compared with the 
BMMSCs and NS groups at all time points, without 
obvious hepatic sinus congestion, large volume of 
inflammatory cell infiltration, or disordered lobular 
structures; only mild hepatic fibrosis was observed 
(Figure 2A).

The rejection injuries tended to increase in all the 
groups with time after operation. Rejection in the 
HO-1/BMMSCs group was the least severe at all time 
points, and was significantly less severe than that in 
the BMMSCs and NS groups (P < 0.05). Rejection in 
the BMMSCs group was significantly less severe than 
that in the NS group on POD1, 5, and 7 (P < 0.05). 
There was no significant difference between the 
BMMSCs group and the NS group on POD14 (Figure 
2B).

Improvement of liver function by HO-1/BMMSCs after 
RLT
The serum ALT and AST in the three groups increased 
initially and then decreased gradually after operation, 
while TBIL tended to increase with time. The serum 
levels of liver enzymes and TBIL in the HO-1/BMMSCs 
group were significantly lower than in the BMMSCs 
and NS groups on POD1, 5, 7, and 14 (P < 0.05). The 
serum liver enzymes and TBIL in the BMMSCs group 
were significantly lower than in the NS group (P < 0.05; 
Figure 3).

Reduction of PVP by HO-1/BMMSCs after RLT
The PVP correlates with the blood flow and resistance 
of the PV, and plays an important role in maintaining 
the blood flow in the liver. The PVP was measured on 
POD7 after RLT. The PVP in the HO-1/BMMSCs and 
BMMSCs groups was significantly lower than that in 
the NS group (P < 0.05; Figure 4).

Improvement of liver sinus microcirculation by HO-1/
BMMSCs after RLT
Effects of HO-1/BMMSCs on ET-1 expression 
in the transplanted liver: ET-1 positive cells were 
expressed in the hepatic sinusoids of transplanted livers 
surrounding the Glisson system. The proportions of ET-1 
positive cells in the BMMSCs and HO-1/BMMSCs groups 
were significantly lower than that in the NS group, and 
HO-1/BMMSCs group showed fewer positive cells than 
the BMMSCs group. There were relatively more ET-1-
positive cells in the NS group, which increased with time 
after operation (Figure 5A and B).

The levels of ET-1 in the transplanted liver de-
creased initially and then increased with time after 
operation. The level of ET-1 was the lowest in the 
HO-1/BMMSCs group, while the NS group showed 

Figure 2  Histological changes of the rat liver and grading of acute cellular 
rejection after reduced size liver transplantation. A: Hematoxylin and eosin 
staining of the transplanted liver (× 200): Rejection injuries were aggravated 
with increased post-operative time in all three groups. Histopathologically, the 
transplanted liver in the NS group showed obvious congestion in the hepatic 
sinus, hepatocyte swelling, mainly eosinophilic degeneration, and punctate 
necrosis. The infiltration of a large volume of mixed lymphocytes in the central 
vein and the portal area was accompanied by disordered hepatic lobules 
and necrosis of hepatocytes on postoperative day (POD) 5. Infiltration of 
inflammatory cells and necrosis of hepatocytes deteriorated on POD7. The mixed 
lymphocyte infiltration became significant on POD14, with severe hepatic sinus 
congestion, hepatocyte destruction, and disappearance of the lobular structure. 
Inflammatory cells infiltration, hepatocyte destruction, and lobular destruction of 
the transplanted liver in BMMSCs group were less severe than those in the NS 
group. HO-1/BMMSCs group showed less rejection, and fewer injuries of liver 
allografts compared with the BMMSCs and NS groups at each time point, without 
obvious hepatic sinus congestion, large volume of inflammatory cells infiltration, 
or disorder of the lobular structure; B: Grading of acute cellular rejection (ACR): 
The rejection injuries tended to deteriorate with increasing post-operative time in 
all groups. Rejection in the HO-1/BMMSCs group was significantly less severe 
than that in the BMMSCs and NS groups at all time points (P < 0.05). POD1: 
HO-1/BMMSCs group vs BMMSCs group vs NS group: 1.40 ± 0.55 vs 2.40 ± 
0.55 vs 3.20 ± 0.45 (P < 0.05). POD5: HO-1/BMMSCs group vs BMMSCs group 
vs NS group: 2.20 ± 0.45 vs 3.40 ± 0.55 vs 5.60 ± 0.55 (P < 0.01). POD7: HO-1/
BMMSCs group vs BMMSCs group vs NS group: 3.00 ± 0.71 vs 4.20 ± 0.45 vs 
6.40 ± 0.55 (P < 0.01). POD14: HO-1/BMMSCs group vs NS group: 6.60 ± 0.55 vs 
8.60 ± 0.55 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 6.60 ± 0.55 vs 
8.00 ± 0.71 (P < 0.01). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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Figure 3  The level of liver function indexes after liver transplantation. A: Alanine aminotransferase (ALT); B: Aspartate aminotransferase (AST); C: Total bilirubin 
(TBIL). The serum ALT and AST in the three groups increased initially and then decreased with increasing post-operative time. The serum liver enzymes in the 
HO-1/BMMSCs group were the lowest, and NS group were the highest on postoperative day (POD) 1, 5, 7, and 14 (P < 0.05). TBIL showed a trend to increase with 
time. TBIL of the HO-1/BMMSCs group were the lowest, and were highest in the NS group on POD5, 7 and 14 (P < 0.05). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/
BMMSCs group.

Figure 4  Portal vein pressure on the 7th d after liver transplantation. A: Portal vein pressure (PVP) of normal BN rats; B: PVP of normal saline (NS) group on 
postoperative day (POD) 7; C: PVP of bone marrow-derived mesenchymal stem cells (BMMSCs) group on POD7; D: PVP of HO-1/BMMSCs group on POD7. PVP of 
both the HO-1/BMMSCs group and the BMMSCs group was significantly lower than that of NS group on POD7 (P < 0.05). HO-1/BMMSCs group vs NS group: 10.67 
± 0.35 vs 21.26 ± 0.20 (P < 0.01); BMMSCs group vs NS group: 10.95 ± 0.22 vs 21.26 ± 0.20 (P < 0.01).
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the highest levels on POD1, 5, 7, and 14 (P <0.05). 
The results indicated that BMMSCs could inhibit the 
secretion of ET-1 by SECs, thereby reducing sinusoidal 
contraction, decreasing sinusoidal vascular resistance, 
and improving hepatic sinus perfusion. The sinusoidal 
vasoconstriction alleviating effects of HO-1/BMMSCs 
were superior to those of BMMSCs (Figure 5C).

The serum ET-1 levels after RLT decreased initially 
and then increased gradually after operation. The 
level of ET-1 in the HO-1/BMMSCs group was lower 
than that in the NS group on POD1 (P < 0.01). The 
level of ET-1 in the HO-1/BMMSCs group was the 
lowest among the three groups, while the NS group 
showed the highest levels on POD5 and POD7 (P < 
0.01). The level of ET-1 in the HO-1/BMMSCs group 
was significantly lower than that in the BMMSCs and 
NS groups on POD14 (P < 0.01). The results indicated 

that BMMSCs could inhibit the secretion of ET-1 in rats 
after liver transplantation, and the inhibitory effects 
of HO-1/BMMSCs were better than those of BMMSCs 
(Figure 6A).

Effects of HO-1/BMMSCs on eNOS expression in 
the transplanted liver: The immunohistochemical 
results showed that eNOS positive cells were present 
in the hepatic sinusoids around the Glisson system. 
The ratios of eNOS positive cells in the BMMSCs and 
HO-1/BMMSCs groups were significantly higher than 
in the NS group. HO-1/BMMSCs group showed more 
eNOS-positive cells than the BMMSCs group, and the 
number of eNOS-positive cells was low in the NS group 
(Figure 7A and B).

The level of eNOS in the transplanted liver tended 
to increase with time after operation. The level of 

Figure 5  Endothelin-1 expression in the liver after liver transplantation. A: Immunohistochemistry (IHC) of endothelin-1 (ET-1); B: IHC integrated optical density 
(IOD) of ET-1; C: ET-1 protein levels. ET-1 protein levels: postoperative day (POD) 1: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.04 ± 0.02 vs 0.07 ± 0.01 
vs 0.27 ± 0.02 (P < 0.05). POD5: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.29 ± 0.01 vs 0.35 ± 0.01 vs 0.45 ± 0.01 (P < 0.01). POD7: HO-1/BMMSCs 
group vs BMMSCs group vs NS group: 0.28 ± 0.03 vs 0.34 ± 0.01 vs 0.42 ± 0.02 (P < 0.05). POD14: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.27 ± 0.04 
vs 0.51 ± 0.01 vs 0.71 ± 0.01 (P < 0.01). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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eNOS was the highest in HO-1/BMMSCs group, and 
the lowest in the NS group on POD1, 7, and 14 (P < 
0.05). The level of eNOS in the HO-1/BMMSCs group 
was higher than that in the BMMSCs and NS groups 
on POD5 (P < 0.05). These results suggested that 
BMMSCs could promote the synthesis of eNOS in the 
transplanted liver, and more significantly in the HO-1/
BMMSCs group (Figure 7C).

The serum levels of eNOS increased from POD1 to 
POD14 after RLT, but were lower than that on POD0. 
The levels of eNOS in the HO-1/BMMSCs group were 
significantly higher than those in the BMMSCs and NS 
groups on POD1 and POD14 (P <0.01). The level of 
eNOS was highest in HO-1/BMMSCs group and lowest 
in the NS group on POD5 and POD7 (P <0.01). This 
suggested that BMMSCs could promote the synthesis 

of eNOS in rats after RLT, and the promotive effects 
of HO-1/BMMSCs were more significant than those of 
BMMSCs (Figure 6B).

Effects of HO-1/BMMSCs on iNOS expression in 
the transplanted liver: The immunohistochemical 
results showed that iNOS positive cells were present in 
hepatic sinusoids around the Glisson system, and that 
iNOS was expressed in the cytoplasm of hepatocytes. 
The ratio and staining intensity of iNOS positive cells 
in the BMMSCs and HO-1/BMMSCs groups were 
significantly lower than those in the NS group, and 
those in the HO-1/BMMSCs group were lower than in 
the BMMSCs group. The number and staining intensity 
of iNOS positive cells in the NS group were relatively 
high (Figure 8A and B).

Figure 6  Endothelin-1/nitrous oxide related factors expression in serum after liver transplantation. A: Expression of endothelin-1 (ET-1); B: Expression of 
endothelial nitric-oxide synthase (eNOS); C: Expression of inducible nitric-oxide synthase (iNOS); D: Expression of NO. The serum ET-1 after RLT decreased initially 
and then increased with the extension of post-operative time. Postoperative day (POD) 1: HO-1/BMMSCs group vs NS group: 24.53 ± 1.22 vs 29.29 ± 2.97 (P < 
0.01). POD5: HO-1/BMMSCs vs BMMSCs vs NS group: 28.84 ± 0.17 vs 32.18 ± 0.30 vs 36.27 ± 0.92 (P < 0.01). POD7: HO-1/BMMSCs group vs BMMSCs group 
vs NS group: 29.92 ± 0.28 vs 31.87 ± 0.50 vs 36.25 ± 0.54 (P < 0.01). POD14: HO-1/BMMSCs group vs NS group: 33.82 ± 1.44 vs 40.03 ± 0.17 (P < 0.01); HO-1/
BMMSCs group vs BMMSCs group: 33.82 ± 1.44 vs 38.35 ± 2.09 (P < 0.01). The serum levels of eNOS increased with the extension of post-operative time. POD1: 
HO-1/BMMSCs group vs NS group: 5.86 ± 0.30 vs 4.30 ± 0.07 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 5.86 ± 0.30 vs 4.74 ± 0.54 (P < 0.01). POD5: 
HO-1/BMMSCs vs BMMSCs vs NS group: 7.39 ± 0.29 vs 6.36 ± 0.07 vs 5.27 ± 0.16 (P < 0.01). POD7: HO-1/BMMSCs group vs BMMSCs group vs NS group: 
7.43 ± 0.19 vs 6.17 ± 0.12 vs 5.37 ± 0.12 (P < 0.01). POD14: HO-1/BMMSCs group vs NS group: 6.72 ± 0.30 vs 5.40 ± 0.15 (P < 0.01); HO-1/BMMSCs group vs 
BMMSCs group: 6.72 ± 0.30 vs 5.26 ± 0.20 (P < 0.01). The serum levels of iNOS increased with the extension of post-operative time, and was most significant in 
NS group. POD1: HO-1/BMMSCs group vs NS group: 8.57 ± 0.07 vs 10.24 ± 0.42 (P < 0.01); BMMSCs group vs NS group: 8.56 ± 0.20 vs 10.24 ± 0.42 (P < 0.01). 
POD5: HO-1/BMMSCs vs BMMSCs vs NS group: 9.06 ± 0.05 vs 9.97 ± 0.08 vs 15.66 ± 0.13 (P < 0.01). POD7: HO-1/BMMSCs group vs NS group: 9.87 ± 0.42 vs 
15.96 ± 0.74 (P < 0.01); BMMSCs group vs NS group: 10.85 ± 0.90 vs 15.96 ± 0.74 (P < 0.01). POD14: HO-1/BMMSCs group vs NS group: 10.04 ± 0.61 vs 16.85 ± 
0.31 (P < 0.05); BMMSCs group vs NS group: 10.73 ± 0.64 vs 16.85 ± 0.31 (P < 0.01). The serum levels of NO tended to increase initially and then decrease with the 
extension of post-operative time. POD1: HO-1/BMMSCs group vs NS group: 10.64 ± 0.36 vs 7.92 ± 0.59 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 10.64 
± 0.36 vs 8.56 ± 0.44 (P < 0.01). POD5: HO-1/BMMSCs vs BMMSCs vs NS group: 9.17 ± 0.08 vs 9.65 ± 0.09 vs 10.50 ± 0.07 (P < 0.01). POD7: HO-1/BMMSCs 
group vs NS group: 9.19 ± 0.12 vs 10.00 ± 0.10 (P < 0.01); BMMSCs group vs NS group: 9.41 ± 0.39 vs 10.00 ± 0.10 (P < 0.01). aP < 0.05 vs NS group, cP < 0.05 vs 
HO-1/BMMSCs group.
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The level of iNOS in the transplanted liver tended 
to increase with the extension of post-operative time. 
The level of iNOS in the HO-1/BMMSCs and BMMSCs 
groups was lower than that in the NS group at all time 
points. The level of iNOS in the HO-1/BMMSCs group 
was significantly higher than that in the NS group on 
POD1 (P < 0.05), and was significantly higher than 
that in BMMSCs and NS groups on POD5 (P < 0.05). 
The expression of iNOS was highest in the HO-1/
BMMSCs group and lowest in the NS group on POD7 
and POD14 (P < 0.05). This suggested that BMMSCs 
could inhibit the synthesis of iNOS in the transplanted 
liver, and that the inhibitory effects of HO-1/BMMSCs 
were more significant than those of BMMSCs (Figure 
8C). 

The serum expression of iNOS increased with the 

extension of post-operative time. The expression of 
iNOS in HO-1/BMMSCs group and BMMSCs group was 
significantly lower than that in NS group on POD1, 
7, and 14 (P < 0.01). The expression of iNOS was 
the lowest in HO-1/BMMSCs group and highest in 
NS group on POD5 (P < 0.01). This suggested that 
BMMSCs could inhibit the synthesis of iNOS in rats 
after RLT, and the inhibitory effects of HO-1/BMMSCs 
were more significant than that of BMMSCs (Figure 
6C).

Effects of HO-1/BMMSCs on NO production in 
rats after RLT: The serum expression of NO tended 
to increase initially and then decrease with time after 
operation; however, the decreasing tendency was 
not significant in all groups. The serum NO in the 

Figure 7  Endothelial nitric-oxide synthase expression in liver after liver transplantation. A: Immunohistochemistry (IHC) of endothelial nitric-oxide synthase 
(eNOS); B: IHC integrated optical density (IOD) of eNOS; C: Western blotting and eNOS protein levels. eNOS protein levels: postoperative day (POD) 1: HO-1/
BMMSCs group vs BMMSCs group vs NS group: 0.79 ± 0.14 vs 0.42 ± 0.02 vs 0.25 ± 0.02 (P < 0.05). POD5: HO-1/BMMSCs vs NS group: 0.84 ± 0.04 vs 0.50 ± 0.01 
(P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 0.84 ± 0.04 vs 0.50 ± 0.01 (P < 0.05). POD7: HO-1/BMMSCs group vs BMMSCs group vs NS group: 1.00 ± 0.12 
vs 0.84 ± 0.06 vs 0.50 ± 0.01 (P < 0.05). POD14: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.90 ± 0.09 vs 0.77 ± 0.07 vs 0.48 ± 0.02 (P < 0.01). aP < 0.05 
vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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HO-1/BMMSCs group was higher than that in the 
BMMSCs and NS groups on POD1 (P < 0.01). The 
serum NO on POD5 was lowest in the HO-1/BMMSCs 
group and highest in the NS group (P < 0.01). The 
serum NO in the HO-1/BMMSCs and BMMSCs groups 
was significantly lower than that in the NS group on 
POD7 (P < 0.01). This suggested that BMMSCs could 
inhibit the synthesis of NO in the transplanted liver, 
and the inhibitory effects of HO-1/BMMSCs were more 
significant than those of simple BMMSCs (Figure 6D).

Effects of HO-1/BMMSCs on vWF expression in 
hepatic sinusoids: vWF was expressed in sinusoidal 
endothelial cells and SECs of transplanted liver. 
Immunohistochemical staining for liver vWF showed 
that the ratios of vWF positive cells in the BMMSCs 

and HO-1/BMMSCs groups were significantly higher 
than that in the NS group, and the level in the HO-1/
BMMSCs group was higher than that in the BMMSCs 
group. The number of vWF positive cells in the NS 
group was relatively low and the cells were scattered. 
Whereas the vWF positive cells in the BMMSCs and 
HO-1/BMMSCs groups were arranged regularly and 
were consistent with hepatic sinusoids. These results 
showed that HO-1/BMMSCs could promote the 
proliferation of SECs and the remodeling of hepatic 
sinusoids more significantly than BMMSCs. The results 
suggested that HO-1 could enhance the ability of 
BMMSCs to promote the regeneration of hepatocytes 
(Figure 9A and B).

Intrahepatic expression of vWF tended to increase 
initially and then decrease after POD7; however, the 

Figure 8  Inducible nitric-oxide synthase expression in the liver after liver transplantation. A: Immunohistochemistry (IHC) of inducible nitric-oxide synthase 
(iNOS); B: IHC integrated optical density (IOD) of iNOS; C: iNOS protein levels. iNOS protein levels: postoperative day (POD) 1: HO-1/BMMSCs group vs NS group: 
0.21 ± 0.02 vs 0.35 ± 0.07 (P < 0.05). POD5: HO-1/BMMSCs vs NS group: 0.48 ± 0.03 vs 0.30 ± 0.05 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 0.48 ± 
0.03 vs 0.34 ± 0.02 (P < 0.01). POD7: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.38 ± 0.01 vs 0.52 ± 0.04 vs 0.83 ± 0.03 (P < 0.01). POD14: HO-1/
BMMSCs group vs BMMSCs group vs NS group: 0.45 ± 0.06 vs 0.73 ± 0.08 vs 0.86 ± 0.03 (P < 0.05). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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NS group showed no significant increasing trend. The 
expression of vWF in the HO-1/BMMSCs group was 
significantly higher than in the BMMSCs and NS groups 
on POD1 (P < 0.05). The level of vWF was highest in 
the HO-1/BMMSCs group and lowest in the NS group 
on POD5 and POD7 (P < 0.05). The level of vWF in the 
HO-1/BMMSCs group was higher than that in NS group 
on POD14 (P < 0.05). These results suggested that 
BMMSCs could promote the synthesis of vWF in the 
transplanted liver graft, and that the effect of HO-1/
BMMSCs was more significant than that of BMMSCs. 
However, the effects of BMMSCs decreased with time 
after operation (Figure 9C).

Effects of HO-1/BMMSCs on the degradation of 
HA by SECs: The serum HA in all groups tended to 

increase initially, then decrease, and later increase 
again with increasing post-operative time. Serum HA 
was lowest in the HO-1/BMMSCs group and highest in 
the NS group on POD5 and POD7 (P < 0.01). Serum 
HA in the HO-1/BMMSCs group was lower than that 
in the NS group on POD14 (P < 0.01). This suggested 
that BMMSCs could promote the degradation of HA 
in rats after RLT, and the effect of HO-1/BMMSCs was 
more significant than that of simple BMMSCs. However, 
the effects of BMMSCs decreased with increasing post-
operative time (Figure 10).

Hepatic mitochondrial function ameliorated by HO-1/
BMMSCs 
Effects on mitochondrial morphology under 
electron microscope: There were various degrees of 

Figure 9  von Willebrand factor expression in the liver after liver transplantation. A: Immunohistochemistry (IHC) of von willebrand factor (vWF); B: IHC integrated 
optical density (IOD) of vWF; C: Western blotting and vWF protein levels.vWF protein levels: Postoperative day (POD) 1: HO-1/BMMSCs group vs NS group: 0.36 ± 0.05 
vs 0.20 ± 0.00 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 0.36 ± 0.05 vs 0.25 ± 0.01 (P < 0.01). POD5: HO-1/BMMSCs vs BMMSCs group vs NS group: 0.43 
± 0.08 vs 0.30 ± 0.01 vs 0.19 ± 0.01 (P < 0.05). POD7: HO-1/BMMSCs group vs BMMSCs group vs NS group: 0.46 ± 0.04 vs 0.33 ± 0.03 vs 0.26 ± 0.03 (P < 0.05). 
POD14: HO-1/BMMSCs group vs NS group: 0.28 ± 0.03 vs 0.18 ± 0.01 (P < 0.01). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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damage to mitochondria in hepatocytes after RLT. The 
damage was more severe on POD7 in the NS group, 
with obvious mitochondrial swelling, vacuolization, 
and disturbed structures of mitochondrial cristae 
(some even disappeared). Mitochondria in the 
HO-1/BMMSCs and BMMSCs groups showed mild 
swelling, no vacuolization, and integrated structures 
of the mitochondrial ridge. These results suggested 
that HO-1/BMMSCs could ameliorate the damage to 
mitochondria (Figure 11).

Alterations in ATPase activity
ATPase can degrade ATP to produce ADP and inorganic 
phosphorus, thus the amount of inorganic phosphorus 
reflects the activity of ATPase. The activities of ATPase 
in the transplanted liver tended to increase initially and 
then decrease after POD 7. The activities of ATPase in 
the HO-1/BMMSCs group were higher than those of 
the BMMSCs and NS groups on POD1, 7, and 14 (P < 
0.05). The activities of ATPase in the HO-1/BMMSCs 
and BMMSCs groups were both higher than that in 
NS group on POD5 (P < 0.05). The results suggested 
that HO-1/BMMSCs could improve the activity of 
hepatic Na+-K+-ATPase and promote hepatic energy 
metabolism (Figure 12A).

Effects on ASTm
ASTm exists in the mitochondria of hepatocytes, and is 
released into the blood when hepatocytes are severely 
damaged. Thus, the serum ASTm level can indicate 
whether the liver function is normal or not, and is also 
a sign of mitochondrial damage. In the present study, 
ASTm showed a tendency to increase initially and then 
decrease with increasing post-operative time. The 
expression of ASTm was lowest in the HO-1/BMMSCs 
group and highest in the NS group on POD0, 1, 5, 7 
and 14 (P < 0.05; Figure 12B). 

DISCUSSION
Ischemia-reperfusion, reduction of liver volume, 
and rejection of the transplanted liver can lead to 
disturbance of hepatic microcirculation: the main 
changes are stasis in the hepatic sinusoids and 
collapse of Disse’s space[38]. Transient or sustained 
hypertension of the PV will cause mechanical damage 
to the transplanted liver, and induce the activation 
and release of a variety of cytokines, resulting in 
a vicious circle. Shear stress caused by excessive 
blood flow of the PV will break the balance between 
vasoconstrictor factors and vasodilator factors, 
leading to microcirculation disturbance in hepatic 
sinusoids[39,40]. Reduction of the PVP and improvement 
of hepatic venous perfusion are important to improve 
liver function after RLT[39]. BMMSCs have tissue repair, 
regulation of inflammation, and immune response 
functions, and have protective effects on transplanted 
livers[22,27,41,42]. To solve the problem that BMMSCs 
have low activity in damaged tissue[43], and have a 
short survival time[22,24,44,45], adenovirus-transduced 
BMMSCs expressing HO-1 were used to study their 
protective effects on transplanted livers, sinusoidal 
microcirculation, and energy metabolism after RLT.

Hepatic microcirculation comprises the circulation 
of the terminal PV and hepatic artery through 
sinusoids to central veins. The central structure is the 
sinusoid. The wall of a hepatic sinusoid comprises 

Figure 10  Hyaluronic acid expression in serum after liver transplantation. 
The serum hyaluronic acid (HA) level tended to increase initially, then decrease, 
and later increase again with the extension of post-operative time. Serum HA in 
the HO-1/BMMSCs group was lower than that of the BMMSCs and NS groups on 
postoperative day (POD) 5: HO-1/BMMSCs vs BMMSCs group vs NS group: 4.31 
± 0.07 vs 4.66 ± 0.24 vs 5.99 ± 0.15 (P < 0.01). POD7: HO-1/BMMSCs group vs 
BMMSCs group vs NS group: 4.78 ± 0.23 vs 5.73 ± 0.11 vs 6.72 ± 0.14 (P < 0.01). 
POD14: HO-1/BMMSCs group vs NS group: 11.43 ± 0.52 vs 12.52 ± 0.51 (P < 
0.01). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.

Figure 11  Mitochondrial ultrastructure changes on the 7th d after liver 
transplantation. A: Postoperative day (POD) 0; B: Normal saline (NS) group 
on POD7; C: Bone marrow-derived mesenchymal stem cells (BMMSCs) group 
on POD7; D: HO-1/BMMSCs group on POD7 (× 25000). The mitochondrial 
damage to hepatocytes was relatively severe in the NS group, with obvious 
swelling and vacuolized mitochondria and disturbed structures of mitochondrial 
cristae (some even disappeared). Mitochondria in the HO-1/BMMSCs and 
BMMSCs groups showed mild swelling, no vacuolization, and the integrated 
structures of the mitochondrial ridge were present. 
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SECs, Kupffer cells, hepatic stellate cells, and 
crypt cells. Among these cells, SECs account for 
70%, protecting the hepatic parenchymal cells and 
maintaining the structural and functional integrity of 
hepatic lobules. SECs also show secretory functions 
of vascular endothelia, secreting ET-1 and NO to 
regulate the vascular tone and hepatic stellate 
cells, which plays an important role in maintaining 
hepatic sinusoidal microcirculation and intrahepatic 
homeostasis[46,47]. Impaired SECs, and an imbalance 
in vasodilator substances, can lead to dysfunction of 
hepatic microcirculation, such as sinusoidal stasis, 
ET-1/NO imbalance, and increased reactive oxygen 
species (ROS)[48]. ET-1 is produced mainly by vascular 
endothelial cells, and is the strongest endogenous 
vasoconstrictor discovered to date. Hypoxia is an 
important stimulating factor of ET-1 upregulation[49]. 
When the liver is damaged, the expression of ET-1 
in SECs increases, the production of NO is reduced, 
and the balance between vasoconstriction and 
vasodilatation is broken. The vasoconstrictive effects of 
ET-1 are dominant, leading to hepatic sinusoid stasis, 
vasoconstriction, increased intrahepatic vascular 
resistance, upregulation of leukocyte-endothelia 
interaction, and portal hypertension[50,51]. IRI induces 
hepatic ischemia and hypoxia; the ET-1 secreted by 
all kinds of cells in the liver can lead to extensive 
sinusoidal vasoconstriction, decreased sinusoidal 
diameters, and dysfunction of hepatic sinusoidal 
microcirculation[52]. The results of this study showed 
that the expression of ET-1 increased initially and then 
decreased gradually as the degree of liver injury and 
rejection increased. The levels of ET-1 in the BMMSCs 
and HO-1/BMMSCs groups were significantly lower 
than in the NS group. The level of ET-1 increased 
gradually with the disappearance of BMMSCs, and the 

level of ET-1 was the lowest and the duration of the 
effect was the longest in the HO-1/BMMSCs group (P 
< 0.05). Taken together, these results suggested that 
HO-1/BMMSCs could downregulate the expression of 
ET-1, and alleviate the damage to hepatic sinusoids 
induced by ET-1, indicating indirectly that HO-1 could 
prolong the effects of BMMSCs.

NO has a protective effect against ET-1 by inhibiting 
the synthesis of ET, relaxing the smooth muscle to 
dilate blood vessels, improving microcirculation, 
and inhibiting platelet, leukocyte adhesion and 
antioxidation[53,54]. Endogenous NO is produced by 
NOS-catalyzed oxidation of ammonia in the guanidine 
terminus of L-arginine. There are three isoenzymes 
of NOS (eNOS, iNOS, and nNOS). eNOS is only ex-
pressed continuously in the vascular endothelia of 
the liver, where it relaxes blood vessels, inhibits 
inflammation, scavenges free radicals, and inhibits 
platelet activation, adhesion and aggregation, and 
plays a protective role on the transplanted liver by 
improving the sinusoidal microcirculation and inhibiting 
hepatocytes apoptosis[55]. iNOS is expressed in various 
kinds of intrahepatic cells, and can produce large 
amounts of NO under pathological conditions[56]. 
Selective iNOS inhibitors were found to improve 
liver blood flow and reduce liver IRI, but aggravate 
liver injury under ischemia-reperfusion and sepsis 
conditions; and eNOS-derived NO could alleviate 
IRI, while iNOS-derived NO promoted IRI[57,58]. We 
found that HO-1/BMMSCs and BMMSCs promoted the 
synthesis of eNOS, and inhibited the synthesis of iNOS, 
while HO-1/BMMSCs had more significant effects than 
BMMSCs. As mentioned above, BMMSCs were potent 
in anti-inflammation activity, and could differentiate 
into endothelial cells, and secrete vascular endothelial 
growth factor (VEGF)[11,12]. We hypothesized that 

Figure 12  Liver Na+-K+-ATPase activity and mitochondrial aspartate aminotransferase level after liver transplantation. A: Na+-K+-ATPase activity; B: Serum 
mitochondrial aspartate aminotransferase (ASTm). Na+-K+-ATPase activity (μmoLPi/mgprot per hour): The degradation of ATP per mg of protein per hour produces 
1 μmol of inorganic phosphorus was defined as one unit of ATPase activity. The activities of ATPase in the HO-1/BMMSCs group were higher than those of the 
BMMSCs and NS groups. Postoperative day (POD) 1: HO-1/BMMSCs group vs NS group: 0.79 ± 0.04 vs 0.42 ± 0.02 (P < 0.01); HO-1/BMMSCs group vs BMMSCs 
group: 0.79 ± 0.04 vs 0.57 ± 0.04 (P < 0.01). POD5: BMMSCs vs NS group: 0.59 ± 0.01 vs 0.40 ± 0.03 (P < 0.05); HO-1/BMMSCs vs NS group: 0.64 ± 0.04 vs 0.40 
± 0.03 (P < 0.01). POD7: HO-1/BMMSCs group vs NS group: 0.79 ± 0.03 vs 0.46 ± 0.02 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 0.79 ± 0.03 vs 0.58 ± 
0.03 (P < 0.01). POD14: HO-1/BMMSCs group vs NS group: 0.63 ± 0.05 vs 0.40 ± 0.03 (P < 0.01); HO-1/BMMSCs group vs BMMSCs group: 0.63 ± 0.05 vs 0.52 ± 0.03 
(P < 0.05). ASTm showed a tendency to increase initially and then decrease with the extension of post-operative time. The expression of ASTm was the lowest in the 
HO-1/BMMSCs group and highest in the NS group on POD0, 1, 5, 7 and 14 (P < 0.05). aP < 0.05 vs NS group, cP < 0.05 vs HO-1/BMMSCs group.
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BMMSCs could promote endothelial proliferation and 
angiogenesis to improve the ET-1/NO and vasodilation 
balance, thereby improving sinusoidal microcirculation.

ET-1 plays a key role in the regulation of liver 
microcirculation, and dysfunction of SECs leads to 
the upregulation of ET-1 to promote hepatic stellate 
cell contraction and portal hypertension[59]. Plasma 
ET-1 levels in the early stage after reperfusion of a 
transplantated liver correlated with the PVP[60]. We 
monitored the PVP on POD7 in this study, and the 
results suggested that both BMMSCs and HO-1/BMMSCs 
could reduce the PVP after liver transplantation, which 
was associated with an improved ET-1/NO balance, 
leading to downregulation of ET-1 expression and 
upregulation of eNOS expression. This dual regulation of 
vasodilatory effects could decrease the PVP and improve 
hepatic sinusoidal perfusion.

As a glycoprotein present in plasma and on 
the surface of endothelial cells, vWF is a marker of 
endothelial cell activation[61,62]. In this study, rejection 
and liver damage increased with the extension of 
post-operative time in the RLT model. In addition, 
SECs injury gradually increased and vWF expression 
decreased. BMMSCs showed a potent ability to 
differentiate into endothelial cells, and promote 
angiogenesis, tissue repair and secretion of VEGF[10-15]; 
therefore, injection of BMMSCs after RLT could reduce 
apoptosis of hepatocytes and SECs, and promote 
the proliferation of hepatocytes and SECs, mainly 
through the effects of VEGF secreted by BMMSCs[13]. 
VEGF regulates the recruitment of hepatic sinusoidal 
endothelial progenitor cells and promotes the 
proliferation of SECs, which play an important role 
in the postoperative sinusoidal regeneration[63,64]. 
Therefore, BMMSCs might relieve sinusoidal injury by 
recruiting hepatic sinusoidal endothelial progenitor cells 
and secreting VEGF to promote SECs proliferation. The 
expression of the vWF protein in HO-1/BMMSCs group 
was significantly higher than that in BMMSCs group (P 
< 0.05), which suggested that HO-1/BMMSCs could 
improve the proliferation of SECs and promote the 
angiogenesis of hepatic sinusoids, leading to improved 
blood circulation in hepatic sinusoids and delayed 
sinusoidal injury.

To evaluate the degree of SECs injury accurately, 
we examined the level of HA. As a macromolecular 
mucopolysaccharide synthesized by liver interstitial 
cells, HA is mainly metabolized by SECs. SECs bind 
HA through the HA receptor, ingest HA by pinocytosis, 
and catabolize it using hyaluronidase in lysosomes. 
About 85%-95% of HA in the blood is absorbed and 
metabolized by SECs, thus serum HA levels can reflect 
the severity of SECs injury accurately[65,66]. Our results 
showed that the SECs damage was more severe and 
the degradation of HA was reduced with increasing 
post-operative time. The concentration of HA in the 
HO-1/BMMSCs group was significantly lower than that 

in the BMMSCs group, suggesting less injury to SECs. 
Thus, we speculated that BMMSCs have a protective 
effect on SECs in the short-term after allogeneic RLT, 
leading to improved hepatic sinusoidal microcirculation, 
and HO-1 might prolong the effects of BMMSCs.

Disturbance of hepatic sinusoidal microcirculation 
can lead directly to intrahepatic ischemia and 
hypoxia, thereby affecting liver energy metabolism. 
Mitochondrial dysfunction results in excessive 
production of ROS, which can affect the activity of 
mitochondrial oxidation-respiratory chain complexes, 
thus disturbing mitochondrial oxidative phosphorylation 
and reducing intracellular ATP synthesis[67]. The 
concentration of ATP in the liver is critical for the 
maintenance of transplanted liver function. Necrosis 
and apoptosis of hepatocytes are associated with low 
baseline levels of intrahepatic ATP to some extent, 
ischemic preconditioning and liposomally-entrapped 
ATP pretreatment could significantly improve the 
hepatic ATP level after ischemia-reperfusion, thus 
increasing the operation success rate and graft 
survival rate[8,9,68]. The serum level of ASTm is a 
sign of mitochondrial damage, and Na+-K+-ATPase 
activity can assess the energy metabolism of the 
transplanted liver. In our study, the ultrastructure of 
the transplanted liver tissue was observed, and the 
mitochondria was damaged significantly in the NS 
group on POD7 after RLT, while they were recovered 
in BMMSCs group and HO-1/BMMSCs group at the 
same time point. ASTm and Na+-K+-ATPase were also 
measured, and the results showed that the ATPase 
activities in the BMMSCs and HO-1/BMMSCs groups 
were higher than those in the NS group, which may 
be related to the significant decrease of ATP during 
rejection and disordered energy metabolism[69]. The 
level of ASTm was lowest in HO-1/BMMSCs group, 
and was relatively high in the NS group. We found 
that the activity of Na+-K+-ATPase after treatment with 
BMMSCs was higher than that in the NS group, which 
was consistent with the results for ASTm in the HO-1/
BMMSCs group and BMMSCs group, which were lower 
than those in the NS group. These results indicated 
that mitochondrial injury was lowest in HO-1/BMMSCs 
group, which was beneficial to the metabolism of the 
transplanted liver. The results suggested that BMMSCs 
and HO-1/BMMSCs not only ameliorated the effects 
on ATPase activity and mitochondrial damage, but also 
had protective effects on the energy metabolism of the 
transplanted liver, and the effects of HO-1/BMMSCs 
were more significant.

In conclusions, in the context of liver donor graft 
shortage, RLT is a research hotspot in clinical liver 
transplantation. HO-1/BMMSCs could improve the 
hepatic sinusoidal microcirculation in rats after RLT, and 
promote liver energy metabolism to protect the trans-
planted liver. These results provide a basis to improve 
the quality of transplanted livers by gene therapy 
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combined with stem cells transplantation, and offer a 
reliable method to expand the source of donor liver.
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COMMENTS
Background
Graft injury after reduced-size liver transplantation (RLT) can affect the quality 
of donor liver seriously. Disturbance of the hepatic microcirculation and disorder 
of the hepatic energy metabolism are important factors affecting liver function 
after LT. Bone marrow mesenchymal stem cells (BMMSCs) can alleviate 
hepatic ischemia-reperfusion injury, accelerate liver regeneration, and have 
anti-inflammatory and immunoregulatory effects; however, their survival rate 
is low and survival time is short. Heme oxygenase-1 (HO-1) can regulate 
BMMSCs by enhancing the regulatory effects of BMMSCs under the state of 
hypoxia and oxidative stress, and can prolong the survival time of BMMSCs. 
The aim of this study was to explore the effects of HO-1/BMMSCs on hepatic 
microcirculation and energy metabolism of the transplanted liver in a rat model 
of rejection following RLT.

Research frontiers
BMMSCs have the potential for multipotent differentiation, regeneration 
promotion, and anti-inflammatory and immunoregulatory effects, and have been 
used widely in a variety of cell therapy research. However, the survival rate 
and survival time of BMMSCs in the diseased tissue are low. Therefore, how to 
improve the survival time of BMMSCs in vivo, and improve the microcirculation 
and energy metabolism of the transplanted liver at the same time, is a research 
hotspot.

Innovations and breakthroughs
HO-1/BMMSCs could improve the hepatic microcirculation after RLT 
significantly, and they decreased SECs injury and restored the energy 
metabolism of the damaged hepatocytes, showing a good protective effect on 
the transplanted liver.

Applications
In this study, BMMSCs modified by HO-1 could prolong the survival time and 
improve the activity of BMMSCs, and further demonstrated the protective effect 
of HO-1/BMMSCs on the transplantated liver after RLT. These results provided 
the basis for improving the quality of reduced-size transplanted livers by gene 
therapy combined with stem cells transplantation, and provide a reliable method 
to expand the source of donor livers.

Terminology
Sinusoids are central structures of the hepatic microcirculation, and the 
sinusoidal wall consists of SECs, Kupffer cells, hepatic stellate cells, and crypt 
cells, which play important roles in maintaining sinusoidal microcirculation and 
intrahepatic homeostasis. BMMSCs are non-hematopoietic stem cells derived 
from bone marrow, with multi-directional differentiation potential, and function 
in tissue repair, paracrine signaling, anti-inflammation, and immunoregulation. 
HO-1 is a microsomal oxidase in mammals, with protective effects, including 
anti-inflammation, anti-oxidative stress, anti-apoptosis, anti-ischemia 
reperfusion injury, and microcirculatory modulation.

Peer-review
This article demonstrates the protective effects of HO-1/BMMSCs on the 
transplanted liver in a rat model of rejection following RLT, which was studied 
from hepatic microcirculation and energy metabolism, hepatic microcirculation 
is very important and not well studied in liver transplantation. This study will be 
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of interest and the paper is clearly written.
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