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Exploration and Exploitation in 
Natural Viewing Behavior
Ricardo Ramos Gameiro1, Kai Kaspar1,2, Sabine U. König1, Sontje Nordholt1 & Peter König1,3

Many eye-tracking studies investigate visual behavior with a focus on image features and the semantic 
content of a scene. A wealth of results on these aspects is available, and our understanding of the 
decision process where to look has reached a mature stage. However, the temporal aspect, whether to 
stay and further scrutinize a region (exploitation) or to move on and explore image regions that were 
yet not in the focus of attention (exploration) is less well understood. Here, we investigate the trade-off 
between these two processes across stimuli with varying properties and sizes. In a free viewing task, we 
examined gaze parameters in humans, involving the central tendency, entropy, saccadic amplitudes, 
number of fixations and duration of fixations. The results revealed that the central tendency and 
entropy scaled with stimulus size. The mean saccadic amplitudes showed a linear increase that 
originated from an interaction between the distribution of saccades and the spatial bias. Further, larger 
images led to spatially more extensive sampling as indicated by a higher number of fixations at the 
expense of reduced fixation durations. These results demonstrate a profound shift from exploitation to 
exploration as an adaptation of main gaze parameters with increasing image size.

Vision is the key modality by which humans interact with the environment. However, our processing capacity is 
limited regarding attention1–5. In fact, visual attention is an integral part of our interaction with the environment. 
By focusing the line of sight by eye movements, humans actively select regions of interest for in-depth processing 
with high spatial resolution6–8. Therefore, investigating the visual system with an emphasis on overt visual atten-
tion has developed into a most active research topic in cognitive science9.

Although vision evolves in an alternation of saccades and fixations, overt visual attention is a continuous 
process. We constantly have to decide whether to move on to sample another image region or to linger in the cur-
rently fixated region for in-depth processing. In analogy to other science areas, here we label these two processes 
exploration and exploitation respectively10. Thus, each decision to fixate on a new location terminates scrutinizing 
of the currently fixated region and establishes a classic exploration–exploitation dilemma11, 12. In visual behavior, 
the number and spatial distribution of fixations characterize the exploration of a scene13. By contrast, the time 
spent at a fixated location (i.e., fixation duration) reflects the degree of in-depth processing of what is observed 
and hence characterizes the exploitation aspect14–16. However, given time constraints for image observation and 
interpretation, exploration of the whole visual scene and exploitation of local image regions impose conflicting 
requirements. Consequently, while scanning a scene, overt attention in visual behavior consists of a continuous 
interplay between exploration and exploitation.

Vision research has identified several factors that influence eye movement behavior. These factors can be clas-
sified as top-down and bottom-up influences2, 17–20 as well as spatial viewing biases21–25.

Top-down effects are aspects of the observing agent, the task, and the context. In particular, top-down factors 
comprise the observer’s current motivational state and time-independent personality traits26, 27. Furthermore, the 
observer’s current emotional state28, 29 as well as the emotional valence of external objects30–32 are strong top-down 
influences on exploration and exploitation. Top-down factors also cover specific personal interests33 that may be 
different depending on the current task performed by the observer34, 35. Overall, such top-down factors play a 
major role in viewing behavior and can explain a large part of the variance in eye movements.

By contrast, bottom-up factors comprise the properties of the stimulus that influences the selection of fixation 
locations. These properties may relate to primary contrasts (e.g., luminance, color, and saturation). For instance, 
edge information and high contrast of image regions play a role in attracting fixations23, 36–38. In fact, models 
based on the concept of a salience map that incorporates such basic image properties can predict human visual 
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behavior with high performance39. Furthermore, it has been shown that, even in repetitive stimulus presentations, 
when the semantic content of the image is already known to a large degree, the low-level impact factors remain 
influential23. Thus, the bottom-up influence of stimulus-dependent features significantly guides visual behavior.

Finally, spatial constraints, partly based on oculomotor properties, lead to spatial viewing biases that also 
affect eye movement behavior22. Motor biases in the saccadic system cause a preference to perform rather short 
saccades (usually less than 15 degrees of visual angle40) while observing scenes41–43. This preference for short 
saccades in combination with a central fixation cross, preceding a trial in typical eye-tracking experiments, is 
argued to be one reason why researchers commonly observe a tendency to focus on central image regions44–46. 
However, in other image categories, such as webpages, the spatial bias is shifted to upper left areas, due to struc-
tural formation of webpages47. Consequently, this central tendency significantly determines visual exploration 
and exploitation.

The separation of these three factors (i.e., top-down, bottom-up, and spatial viewing bias) helps to understand 
guidance of visual behavior. For the investigation of the relation between exploration and exploitation, these three 
factors may be varied systematically. However, parametric variations of tasks or stimulus categories are currently 
not feasible. In contrast, by systematically changing the size of visual scenes, we can examine exploitation and 
exploration tendencies more directly. Thus, this approach is well suitable for an examination of the exploration–
exploitation interplay.

All researchers in the field are confronted with the practical issue of variations of stimulus size. In modern 
days, media devices are characterized by a wide range of display sizes. Sizes vary from small (e.g., smartphones) 
to intermediate (e.g., tablets and laptops) to large (e.g. TVs). Hence, the question arises as to what degree we can 
generalize the results of individual eye-tracking studies based on specific visual display sizes.

A previous study indicated that the image size needs to be considered in eye-tracking research more than has 
been done previously48. Different eye-tracking laboratories commonly use varying settings concerning monitor 
sizes, image resolution, and viewing distance (for an exemplary selection, see Table 1). These variations in image 
size may influence viewing behavior. Indeed, von Wartburg et al.48 found that an increasing image size led to an 
increase of the mean and median saccade amplitude. Thus, we consider size to be a main property of an image 
because it determines the size of all depicted objects and their spatial relations. The richness of observable detail 
attenuates with decreasing size, which might also affect the subjective saliency of basic image features such as 
contrasts in color and luminance and thus also influence bottom-up properties. Furthermore, depending on the 
distance to the monitor, the image size directly scales the amount of visual information presented to the observer 
(see Table 1). Therefore, the influence of different image sizes on exploratory and exploitive viewing behavior has 
to be considered.

In the present eye-tracking study, we thus investigated the influence of varying image sizes on changes in 
gaze behavior. In contrast to von Wartburg et al.48, we used an extended design and a broader set of analyses to 
examine exploration and exploitation tendencies. We presented urban, natural, and webpage images in five dif-
ferent sizes ranging from 7” to 30” to match the dimensions of typical screen sizes. However, a potential problem 
with scaling of an image is the change in available visual information. Even when scaled, the power law behavior 
implies constant statistical properties of the image. Yet, scaling affects sizes of objects and their distances to each 
other within the image. More specifically, a reduced image size leads to a reduced image resolution and lower 
spatial details of such objects. To investigate whether changes in gaze behavior are actually a result of the spatial 
properties of the image with respect to its size or whether changes are instead affected by varying spatial details, 

Study

Stimulus size 
(width × height) in 
visual degrees

Area in 
visual 
degrees2

Fraction 
of elliptic 
visual field in 
percent (200° 
horizontal and 
130° vertical)

Screen 
distance 
in cm

Screen resolution 
(width × height) in 
pixels

Bindemann46 22.0 × 16.0 352 1.72 80 1024 × 768

Henderson et 
al.35 24.3 × 18.7 454.41 2.23 90 800 × 600

Einhäuser et 
al.34 29.0 × 22.0 638 3.12 80 1024 × 768

Unema et al.16 31.0 × 26.0 806 3.95 60 1024 × 768

Rauthman et 
al.27 33.2 × 25.2 836.64 4.10 58 1280 × 1024

Kienzle et al.49 35.7 × 27.1 967.47 4.74 60 1024 × 768

Tatler44 40.0 × 30.0 1200 5.88 60 1600 × 1200

Kaspar et al.47 45.7 × 36.6 1672.62 8.19 45 1280 × 1024

von Wartburg 
et al.48

10.0 × 7.7 77 0.38

70.5 1600 × 1200
18.0 × 13.8 248.4 1.21

26.0 × 19.8 514.8 2.52

34.0 × 26.0 884 4.33

Table 1.  Exemplary list of stimulus size and resolution of the display screen used in some recent eye-tracking 
studies. The stimulus size in visual degrees depends on the distance between participant and screen. Also, the 
approximate fraction of the (elliptic) visual field area covered by the stimulus is presented.
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we manipulated the images in two complementary ways: in the “scaled condition,” we scaled the images to the 
targeted screen size, thus scaling the complete visual scene down (Fig. 1a). In the “cropped condition,” we used the 
complete scene and cropped out the appropriate central section for the smaller image sizes. Hence, in this condi-
tion, the visual scene displayed only the central part of the original image in smaller image sizes. We as a result of 
this guaranteed that the image resolution and depth of details within the scene remained constant. Moreover, we 
used images of different categories, as image type has been found to influence viewing behavior23, 26, 50 strongly. 
In our study, we used images that showed urban scenes, landscape scenes, and screenshots of webpages. These 
image categories were chosen according to two reasons: first, conventional eye tracking studies investigating 
visual behavior on natural scenes usually include urban and landscape images (e.g.ref. 23, 24, 44, 48). Second, 
webpages form a stimulus class that occurs in many real-world scenarios where people use and interact with 
technical devices varying in display size51. Thus, with the present study design, we were able to examine how 
exploration and exploitation change in relation to different image sizes and image types.

To assess the exploration of the visual scenes, we examined the spatial bias captured by the central tendency 
and the entropy of the spatial distribution of fixations. In general, a spatial bias reflects a deviation from a homog-
enous distribution of fixations across a visual scene. Thereby, the central tendency describes a bias in visual explo-
ration with an increased number of fixations in the central image region at the expense of higher eccentricities. In 
contrast, the entropy captures the heterogeneity of the distribution of fixations independently of specific geomet-
rical arrangements and hence is a suitable signature of the general degree of exploration of an observer’s viewing 
behavior29. Thus, central tendency and entropy describe different aspects of the spatial distribution of fixations.

Furthermore, we investigated saccade amplitudes and the number of fixations as an additional measure of 
spatial exploration. For exploitation, we specifically analyzed the distribution of fixation durations, as this meas-
ure indicates the time allocated to in-depth processing of fixated regions. Besides an investigation of how fixa-
tion durations change across image sizes, we additionally analyzed whether a change in fixation duration would 
directly result from varying image sizes or, alternatively, from an interdependence between fixation duration 
and saccade amplitude. Regarding the latter option, divergent results have been reported: Radach and Heller52 
described fixation durations and saccade amplitudes as independent. In contrast, Unema et al.16 concluded that 
fixation durations and saccade amplitudes are controlled by the same mechanism. We thus included an analysis 
of the interaction between saccadic amplitude and the duration of the preceding fixation. Further, we investigated 
saccade durations53, 54 to determine whether a change in saccade durations across varying image sizes has an 
impact on the number and duration of fixations, as a consequence of a limited presentation duration of the stim-
ulus. Overall, this selection of eye movement parameters enabled a comprehensive investigation of the trade-off 
between exploration and exploitation.

Three hypotheses about how image size may affect visual behavior guided our research. First, we hypothesized 
that an increase of the stimulus size increases the visual exploration by spreading out fixation locations to a larger 
degree, which should be reflected by a corresponding change in central tendency and entropy. However, assuming 
constant oculomotor constraints, saccade amplitudes should stay constant, and the exploitation of image regions 
should not change across image sizes. This yields:

Figure 1.  (a) Example of an urban image differing in size (scaled: upper row; cropped: lower row). (b) 
Visualization of the increase of image size from 7” to 30” (diagonal and area).



www.nature.com/scientificreports/

4Scientific Reports | 7: 2311  | DOI:10.1038/s41598-017-02526-1

Hypothesis 1:   Visual exploration increases with an increase of the image size, which is reflected by a reduction 
in the central tendency and an increase of entropy.

Furthermore, oculomotor constraints might also adapt with varying image sizes. Specifically, an increase of 
saccadic amplitudes with increasing image size might support increased visual exploration. This yields:

Hypothesis 2:   Visual exploration increases with an increase of the image size, accompanied by an increase of 
saccade amplitudes.

As an effect of the adaption of oculomotor constraints to varying image size, and due to the fixed presenta-
tion time of the stimuli, we additionally hypothesized that exploitation would decrease with larger image sizes. 
Instead, on larger images within the same presentation duration more fixations of shorter duration should be 
performed. This change would exemplify a shift from exploitation to increased spatial exploration of the image. 
This yields:

Hypothesis 3:   An increase of the stimulus size leads to more fixations of shorter duration per unit time interval, 
i.e. favoring exploration at the expense of reduced exploitation.

Methods
All participants gave written informed consent to participate in this study. We performed the study in accordance 
with the guidelines of the German Psychological Society. The experimental methods were approved by the Ethical 
Committee of the University of Osnabrück (Germany).

Participants.  Twenty-four participants (16 female) with a mean age of 21.38 years (SD = 3.00) took part in 
this study. All of them had normal or corrected-to-normal vision and passed the Ishihara test for color blind-
ness55. Participants were told to freely observe the different images on the screen.

Apparatuses.  We used a 30” widescreen Apple Cinema HD Display (Apple, California, USA) for stimulus 
presentation. The screen had a native resolution of 2560 × 1600 pixels. Participants were seated in a darkened 
room at a distance of 80 cm from the monitor. The seating distance resulted in 55 pixels per visual degree. We did 
not fixate the subject’s head with a headrest in order to facilitate comfortable conditions. However, the experi-
menter verbally instructed the subjects not to make head movements during the experiment.

We recorded eye movements using a head-mounted Eye Link II eye-tracker (SR Research Ltd.). The eye track-
ing system enclosed three cameras: Two eye cameras (one for each eye) and one head camera. The head camera 
recorded fixed infrared sensors attached to the corners of the monitor, to constantly calculate the head position in 
relation to the screen. This guaranteed stable gaze recordings based on eye movements, independent of residual 
involuntary head movements. For validation, we found in a separate paradigm that head movements of up to 10° 
lead to an eye drift of less than 0.5°. This matches approximately the accuracy of the eye tracker with respect to 
the averaged drift based on the calibration. Thus, the eye tracker well compensates for the investigated range of 
head movements.

In order to calibrate the system, each participant had to fixate on 13 black circles that appeared consecutively 
at different screen locations. The size of the point was about 0.5°. The calibration was validated afterwards by cal-
culating the drift error for each point. The calibration was repeated until the system reached an average accuracy 
of <0.3° for at least one eye. The eye with lower validation error was automatically detected by the system and 
tracked. We conducted monocular recordings with a sample rate of 500 Hz. Fixation locations and times were cal-
culated online by the eye-tracker. Saccade detection was based on a velocity of at least 30°/s and an acceleration of 
at least 8000°/s2. Either one (or both) of these criteria had to be met, to trigger a saccade signal. This saccade signal 
had to be sustained for at least 4 ms for a saccade to be detected. The temporal and spatial onset of the saccade was 
defined when the eyes significantly moved from the fixation point, i.e. exceeding a motion threshold. By default, 
we set this motion threshold to 0.1°. After saccade onset, the minimal saccade velocity was 25°/s. Fixations were 
defined as periods without saccades.

Stimuli.  We used 360 static images assigned to three different categories. The first category covered land-
scape images depicting natural environments like open landscapes, forests, or flowers, with an absence of any 
human-made objects. The second category covered urban images showing, for example, house exteriors, streets, 
and vehicles. The stimuli of these two categories were used in several previous studies23, 26, 29, and images of these 
kinds are widely used in eye-tracking research56–58. The third category contained screen shots from existing web-
pages provided by the EyeQuant company (WhiteMatter Labs GmbH). To avoid habitual viewing patterns, we 
only used webpages that were not highly popular like major news feeds. Webpages were included in the study as 
they are also stimuli of high interest in the context of eye movement analyses33, 59, 60. They were also included due 
to their different geometrical structure, which leads, among other things, to the relocation of the central fixation 
bias found for natural images44–46 to the left upper corner among European participants47, 50. All images were 
scaled up to 2560 × 1600 pixels by bicubic interpolation. The 30” images were resized to smaller image sizes dur-
ing the experiment. The stimulus size reduced gradually according to the following equations:

= ∗Y 1
( 2 )

1600
(1)

d L

= ⁎X 1
( 2 )

2560
(2)

d L

where Xd andd are the two-dimensional coordinates of the desired stimulus resolution, and L denotes the level 
of size reduction that had to be calculated based on the full-size screen resolution (30” diagonal; 46.5° × 29.1°). 
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In addition to the 30” images, we computed four more levels of stimulus size, which resulted in scaled sizes 
of 1810 × 1131 pixels (~21” diagonal; 32.9° × 20.6°), 1280 × 800 pixels (~15” diagonal; 23.3° × 14.5°), 905 × 565 
pixels (~10” diagonal; 16.5° × 10.3°), and 640 × 400 pixels (~7” diagonal; 11.6° × 7.3°) (Fig. 1a). The background 
color for images that were smaller than full size was set to neutral gray (RGB: 128/128/128). In contrast to the 
scaled images, the cropped images were realized by extracting a corresponding central section of the original 30” 
images (Fig. 1a). Figure 1b visualizes the increase of image size.

Procedure.  The experiment was divided into four equally long sessions (90 images per session), each con-
sisting of five blocks (Fig. 2). Per block, we presented 18 equally sized images (six of each image category) in a 
random order, where half of them were cropped and half of them were scaled. Each image was randomly assigned 
to one of the five possible image sizes and to the scaled or cropped condition. For statistical analyses, half of the 
30” images observed by one participant were randomly assigned to the scaled condition, while half of them were 
assigned to the cropped condition. The blocks were also presented in random order within a session and across 
participants. Each image of the whole stimulus set occurred only once per participant. The images were centered 
on the screen and presented for 6 s each, following previous studies23, 26, 29. Between trials, participants had to 
fixate a central dot used for drift correction and to reset the eye position to the center of the screen.

Dependent variables.  We computed several eye-tracking parameters, including the number of fixations, 
the mean duration of single fixations, saccade amplitude, and the distribution of fixations regarding central ten-
dency and entropy.

Single fixations and saccade amplitude.  For the number of single fixations, we added up all fixations within a 
trial. However, the first fixation was excluded from the analysis as it was a direct consequence of the preceding fix-
ation dot used for drift correction. We also excluded invalid fixations that were placed outside the image borders 
of the respective image size (7”: 2.65%; 10”: 2.20%; 15”: 1.59%; 21”: 1.15%; 30”: 1.08%).

The duration of a fixation was calculated by subtracting its temporal onset from its temporal offset. Fixations 
with a duration of less than 50 ms (2.16% of all fixations) or more than two standard deviations above the grand 
mean over all participants (cut-off at 649.72 ms; 3.27% of all fixations) were excluded to avoid biased results that 
could derive from outliers23, 26. All remaining fixations that did not meet our exclusion criteria were labeled as 
valid fixations.

Saccade length was operationalized by the Euclidean distance between two consecutive fixations marked by 
their coordinates in the two-dimensional image space. We excluded invalid saccades when either the pre-saccadic 
or post-saccadic fixation was located outside of the image region (7”: 4.40%; 10”: 3.64%; 15”: 2.61%; 21”: 1.86%; 
30”: 1.69%).

Fixation density maps and entropy.  We characterize the spatial bias in the form of the central tendency sepa-
rately for both cardinal directions. That is, we computed the marginal distribution of fixations in the horizontal 
and vertical directions within the two-dimensional image space (Fig. 3c). By calculating the standard deviation 
of these distributions, we estimated the magnitude of eccentricity along the vertical and horizontal axes, respec-
tively. This procedure amounts to the root-mean-square distance of fixations from the center of gravity of all fix-
ations. When the standard deviation in horizontal and vertical direction is small, fixations are concentrated near 
the center, indicating a strong central tendency. When the standard deviations are large, the fixations are more 
evenly distributed in the visual field and the central tendency is weak.

Figure 2.  Structure of one of four experimental sessions with randomized order of blocks. Within each block, 
18 images (6 images per category) of the same size were presented for 6 s each.
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To investigate the fixation distribution independently of specific geometrical arrangements, we employed 
the concept of entropy. We convolved the spatial distribution of fixations (fixation density map, FDM) with a 
Gaussian kernel. The full width at half maximum (FWHM) of the Gaussian kernel defining the size of the patch 
was set to 1° of visual angle26, 29–31, 47. We selected the size of the Gaussian kernel to approximately match the size 
of the central part of the fovea. Therefore, and because absolute entropy values depend on the kernel’s size29, it was 
set constant for all image sizes. The entropy E of the resulting fixation density map x for participant p observing 
image i was calculated by means of the standard MATLAB function (MathWorks, Inc.) according to the following 
equation26, 29, 47.

Figure 3.  The distribution of fixations in terms of a fixation density map in the two-dimensional image space 
for (a) urban image in the scaled condition and (b) cropped condition. (c) Sketch showing the eccentricities of 
the fixation distribution in horizontal and vertical directions. The extent of the eccentricity was measured by 
the standard deviation. (d) Eccentricities of urban images in the scaled and cropped condition in horizontal 
and vertical directions for all image sizes. Plots for scaled (e) and cropped (f) images indicate the extent of the 
eccentricities measured by the standard deviation depending on image category and image size. Error bars 
indicate the standard error of the mean.
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∑= − ∗E i p FDM x i p log FDM x i p( , ) ( , , ) ( , , ) (3)2

A higher entropy value indicates a more spread out fixation distribution and hence a more exploratory view-
ing behavior. In the next step, we applied a straightforward bootstrapping technique to the entropy values, since 
estimators of entropy are generally influenced by sample sizes61 and, in the domain of eye-tracking data, by a 
smaller number of fixations62. We randomly sampled nine fixations out of all valid fixations made in a trial and 
calculated the corresponding entropy value. This process was repeated 500 times, and we finally calculated the 
mean entropy E of participant p on image i according to previous studies26, 30, 31, 47. The target sample size of nine 
fixations was selected according to previous studies that also analyzed entropy on natural images presented for 
6s26 in order to maintain sufficient statistical power62 and to keep the number of excluded trials with fewer fixa-
tions to a minimum (5.08%).

Please note, that the central tendency and entropy characterize two distinct measures that can yield independ-
ent results. For example, a subject may fixate two regions of the image outside of the central part with large spatial 
distance. However, within each image region, the subject makes several fixations that are close together. Thus, 
the central tendency will be weak, as the average distance of the fixated image regions from the center is large. 
However, the entropy will be small indicating a clustering of fixations in only a small fraction of image regions.

Results
The spatial bias as captured by the central tendency and entropy.  Our first hypothesis stated that 
visual exploration increases with increasing image size, which is reflected by a reduction of the central tendency 
and an increase of entropy. Therefore, we investigated the distribution of fixations for each image size. The result-
ing two-dimensional density maps of fixations (Fig. 3a and b) capture the corresponding data.

First, we analyzed the central tendency assessed by the eccentricities of the fixation distribution in hori-
zontal and vertical directions. The extent of the eccentricity was measured by the standard deviation (see 
Methods). Based on these values, we calculated two 2 (image condition: scaled verses cropped) × 3 (image cat-
egory: webpages versus urban images versus landscape images) × 5 (image size) repeated measures ANOVA 
(Greenhouse-Geisser applied) for the horizontal and vertical eccentricity, respectively. With respect to the hori-
zontal direction, we found a main effect of image size reflecting a reduction of the central tendency (i.e., increas-
ing standard deviations) with increasing image size. This is compatible with the first hypothesis. However, as 
shown in Table 2, we also found significant two-way and three-way interactions. Hence, we computed a set of 
contrasts comparing all pairs of image sizes (Bonferroni-adjusted alpha level: α = 0.0008) separately for each 
image category and the two image conditions. The results showed that the central tendency in horizontal direc-
tion continuously decreased with increasing image size for all image categories and both image conditions [all 
ts ≥ 6.671; ps < 0.0008] (Fig. 3e and f). Hence, the significant interactions derived from different effect sizes; for 
example, the decrease of the central tendency from 21” to 30” images in horizontal direction was less pronounced 
on cropped webpages compared to other contrasts. For a detailed presentation of all paired contrast, see Table S1 
in the online supplementary file.

With respect to the eccentricity in vertical direction, the ANOVA revealed a main effect of the image size, 
which was again qualified by image category and image condition, as indicated by significant two-way interac-
tions (see Table 3). However, paired t-tests (see Table S2 in the online supplementary file) again showed that the 
strength of the central tendency in vertical direction continuously decreased with increasing image size in all 
image categories and both image conditions [all ts ≥ 8.953; ps < 0.0008].

Overall, we found that the central tendency decreased with image size for all image categories and conditions, 
supporting Hypothesis 1.

To investigate whether this change in central tendency was linear, we applied a lack-of-fit F-test comparing 
the curve of the measured data, the standard deviation of the spatial distribution, with a linear regression fitted to 
these data. Thus, we investigated whether the linear model was an adequate estimate for the observed data. In the 
scaled conditions, the results showed no deviation from linearity in either the horizontal or the vertical direction 

Effect F p ηp
2

Main effects

Image condition 44.207 <0.001 0.658

Image category 52.366 <0.001 0.695

Image size 762.114 <0.001 0.971

Two-way interactions

Image condition × image 
category 46.106 <0.001 0.667

Image condition × image size 15.081 <0.001 0.396

Image category × image size 40.557 <0.001 0.638

Three-way interaction

Image condition × image 
category × image size 7.144 <0.001 0.237

Table 2.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for the central 
tendency in the horizontal direction.

http://S1
http://S2
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across all image categories [all Fs ≤ 1.193, ps ≥ 0.316, R2 ≥ 0.918]. This indicates that the linear model estimated 
the observed data adequately. In the cropped condition, the results revealed no deviation from linearity in either 
direction for landscape images [both Fs ≤ 0.501, ps ≥ 0.682, R2 ≥ 0.925]. In the urban category, results showed no 
deviation from linearity in the horizontal direction only [F = 1.740, p = 0.163, R2 = 0.955], whereas in the vertical 
direction, the observed data deviated significantly from linearity [F = 9.159, p < 0.001, R2 = 0.916]. In fact, as 
shown in Fig. 3f, the curve for urban pictures in the vertical direction showed a slight flattening between 21” and 
30” images, and thus it is not fully described by a linear decrease of the central tendency. However, in general, 
the slope followed a linear trend, as also indicated by the high R2 of 0.916. With respect to cropped webpages, 
the deviation between the observed data and the linear regression model was significant in both directions [both 
Fs ≥ 6.316, ps ≤ 0.001, R2 ≤ 0.942]. Again, Fig. 3f shows that the curves representing an increase of the spatial bias 
on webpages in both directions showed a slight flattening between 21” and 30” images, but still represent a rather 
linear trend [both R2 ≥ 0.919]. Overall, in both the scaled and cropped condition, the standard deviation of the 
spatial distribution of fixations increased in a mainly linear fashion fully compatible with the Hypothesis 1.

In the next step, we analyzed the entropy quantifying the extent of exploratory viewing behavior inde-
pendently of specific geometrical arrangements. We calculated the entropy for each participant in each trial in 
order to run the 2 × 3 × 5 (image condition × image category × image size) repeated measures ANOVA. We 
found a main effect of the image size, compatible with Hypothesis 1. This main effect was further qualified by 
image category and image condition (Fig. 4), as shown by two-way and three-way interactions (see Table 4). 
Paired t-tests (Bonferroni-adjusted alpha level: α = 0.0008) showed that the entropy continuously increased with 
increasing image size in all image categories and both image conditions [all ts ≥ 7.688; ps < 0.0008], except the 

Effect F p ηp
2

Main effects

Image condition 26.669 <0.001 0.537

Image category 201.006 <0.001 0.897

Image size 730.583 <0.001 0.969

Two-way interactions

Image condition × image 
category 4.493 <0.050 0.163

Image condition × image size 9.251 <0.005 0.287

Image category × image size 74.004 <0.001 0.763

Three-way interaction

Image condition × image 
category × image size 1.700 0.174 0.069

Table 3.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for the central 
tendency in the vertical direction.

Figure 4.  Geometrically independent distribution of fixations in image space operationalized by entropy for 
each image category and size. Error bars indicate the standard error of the mean.
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step from 21” to 30” urban images in the cropped condition. For a detailed presentation of all paired contrast, see 
Table S3 in the online supplementary file.

We again compared the observed data with a linear regression model by means of a lack-of-fit F-test. In the 
scaled condition, the results showed a significant deviation from linearity for all image categories [all Fs ≥ 43.923, 
ps ≤ 0.001, R2 ≤ 0.733]. Indeed, Fig. 4 suggests that the increase of entropy across image sizes followed a rather 
logarithmic trend. Therefore, we used a lack-of-fit F-test comparing the observed data with a log-linear regression 
model. For this, we computed the natural logarithm for each image size. We then applied a linear regression to the 
log-transformed data and tested whether the linear model was adequate to describe the log-transformed data. The 
results of the lack-of-fit F-test again revealed a significant deviation from linearity in the log-transformed data for 
all image categories [all Fs ≥ 16.377, ps ≤ 0.001, R2 ≤ 0.864]. Hence, the entropy did not increase logarithmically 
with increasing image size in the scaled condition. Yet, correlations for all image categories indicated that the 
log-linear regression model was a slightly better model for describing the observed data [all R2 ≥ 0.763] than the 
linear model [all R2 ≤ 0.733].

In the cropped condition, the results of the linear regression model revealed a significant deviation from lin-
earity for all image categories [all Fs ≥ 27.128, ps ≤ 0.001, R2 ≤ 0.689]. Again, Fig. 4 indicates that the slope was 
logarithmic rather than linear. Therefore, we tested the linear regression model with the log-transformed data. 
The results revealed a significant deviation from linearity in the log-transformed data [all Fs ≥ 9.631, ps ≤ 0.001, 
R2 ≤ 0.827]. Hence, the entropy did not increase logarithmically with increasing image size in the cropped con-
dition. However, correlations for all image categories indicated that the log-linear model was more adequate for 
describing the data [urban images & landscapes: both R2 ≥ 0.826; webpages: R2 = 0.712] than the linear model 
[urban images & landscapes: both R2 ≤ 0.680; webpages: R2 = 0.607]. Overall, the entropy generally increased with 
increasing image size in both the scaled and cropped conditions, but not in an exclusively logarithmic fashion.

To summarize, visual exploration in terms of the distribution of fixations showed a decrease with respect to 
the central tendency and an increase of entropy with increasing image size best but not completely described by 
a logarithmic function. These signatures were comparable between the scaled and the cropped conditions and 
occurred across all image categories, providing strong support for Hypothesis 1.

Saccade amplitude.  The next set of analyses addressed changes in the distribution of saccadic amplitudes. 
As we found that visual exploration in terms of central tendency and entropy scaled with image size, we evaluated 
whether saccade amplitude contributed to these changes in exploration. For the analysis of the mean saccade 
amplitude, we again computed a 2 × 3 × 5 (image condition × image category × image size) ANOVA. We found 
three main effects but also significant two-way and three-way interactions (see Table 5). Subsequent contrasts 
comparing all pairs of image sizes (Bonferroni-adjusted alpha level: α = 0.0008) separately for each image cate-
gory and the two image conditions showed that saccade amplitudes continuously increased with increasing image 
size independent of image category and image condition [all ts ≥ 6.629; ps < 0.0008, see Table S4 in the online 
supplementary file]. Hence, the significant interactions reflected different effect sizes associated with changes in 
image size (see Fig. 5a). Overall, we found that the saccade amplitudes continuously increased with image size for 
all image categories and conditions, supporting Hypothesis 2.

In order to classify the slope of the increasing saccade amplitude, we again used a lack-of-fit F-test that com-
pared the measured data with a linear regression model. The results revealed no deviation from linearity in any 
of the image categories in the scaled condition [all Fs ≤ 0.992, ps ≥ 0.399, R2 ≥ 0.846], indicating that the linear 
regression model was an adequate model for describing the slope of the observed data. In the cropped condition, 
the results revealed a significant deviation from linearity for webpages only [F = 3.941, p = 0.010, R2 = 0.780], 
but not for urban and landscape images [both Fs ≤ 1.821, ps ≥ 0.147; R2 ≥ 0.849]. Indeed, Fig. 5a shows that, 
in the cropped condition, the increase of the mean saccade amplitude for webpages did not coincide with the 
progression of the curves in the urban and landscape categories, but rather flattened with increasing image size. 
Therefore, we tested whether the curve for webpages followed a logarithmic trend. We computed the natural 
logarithm for each image size and computed a linear regression for the log-transformed data. The lack-of-fit 
F-test revealed no significant deviation from linearity in the transformed data [F = 0.877, p = 0.455, R2 = 0.796], 
thus indicating a logarithmic trend in the original data. Overall, our results indicate a linear increase of the mean 

Effect F p ηp
2

Main effects

Image condition 165.714 <0.001 0.878

Image category 9.009 <0.005 0.281

Image size 799.499 <0.001 0.972

Two-way interactions

Image condition × image 
category 22.905 <0.001 0.499

Image condition × image size 55.787 <0.001 0.708

Image category × image size 9.254 <0.001 0.287

Three-way interaction

Image condition × image 
category × image size 3.492 <0.050 0.132

Table 4.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for entropy.
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saccade amplitude with increasing stimulus size for all image categories in the scaled condition, as well as for 
urban and landscape images in the cropped condition.

The increase of the mean saccade amplitude for larger images could have different sources. On the one hand, 
with increasing image size, the distribution of saccade amplitudes could be shifted toward longer saccades (shift 
model, Fig. 5b). That is, the probability of a specific saccadic amplitude p(asac, simage) while viewing an image of a 
specific size (simage) is determined by an additive constant: p(asac, simage) = p(asac + κ(simage), 7”). Here κ is only a 
(linear) function of image size but independent of the saccadic amplitude. This naive model adds a constant κ to 
all saccadic amplitudes. On the other hand, observed distributions of saccade amplitudes when viewing images 
of different sizes could be derived from a single underlying distribution. We defined the corresponding variable 
truncation model (see Fig. 5b) by the following properties: the oculomotor system produces saccadic amplitude 
candidates characterized by a single distribution, independent of image size. However, saccade candidates to 
targets outside the image region are always discarded. Furthermore, saccade candidates targeting regions within 
the viewed image are discarded with a probability proportional to 1 minus the spatial bias of that region (Fig. 5b). 
This model, by construction, produces a distribution of saccadic targets compatible with the spatial bias observed 
on smaller images. Whether the generated distribution of saccadic amplitudes matches the observed distribution 
is an empirical question addressed below.

In a first step, we calculated the distribution of observed saccades for all image sizes. For this analysis, we 
binned the saccade amplitudes into steps of 0.5°, with the visual angle ranging from 0° up to 20°. We then normal-
ized all frequencies of the saccade amplitudes by dividing the absolute frequencies of each bin by the total num-
ber of saccade amplitudes, resulting in probability distributions. This procedure was done individually for each 
subject and separately for each image category in both conditions. We then averaged the probability distributions 
over subjects individually for each image size and image condition obtaining the mean distribution of saccade 
amplitudes (Fig. 5c). Further, we calculated the variance of each probability distribution, which was required for 
statistical analyses. For the comparison of two distributions (dist1 & dist2), we used chi-squared tests including 
the difference of means (Δμ) and the overall variance (Δσ2) of the tested distributions:
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Please note that larger χ2 values indicate a higher difference between the two compared distributions. This test 
weights the squared difference of means at a specific saccadic amplitude by the inverse of the variance, thus giving 
higher weight to those amplitudes with higher certainty.

In order to check whether the data were compatible with the shift model, we compared the observed distri-
bution of saccades on 7” images with the distribution observed on 30” images. As shown by Fig. 5c, a significant 
difference between the two distributions existed for all image categories in the scaled condition [all χ2 > 1544.064; 
ps < 0.001] and in the cropped condition [all χ2 > 1157.589; ps < 0.001]. Hence, the data did not support the shift 
model.

For a quantitative description of the variable truncation model, we pooled the saccades for the 30” images for 
each image category. This distribution served as an approximation of the basic probability distribution of saccadic 
amplitude candidates independent of image size. Then, we randomly sampled saccades from this pool and applied 

Effect F p ηp
2

Main effects

Image condition 198.224 <0.001 0.896

Image category 119.327 <0.001 0.838

Image size 1075.426 <0.001 0.979

Two-way interactions

Image condition × image 
category 20.031 <0.001 0.465

Image condition × image size 29.219 <0.001 0.560

Image category × image size 65.063 <0.001 0.739

Three-way interaction

Image condition × image 
category × image size 2.795 <0.050 0.108

Table 5.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for saccade 
amplitudes.
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Figure 5.  (a) Increase of the mean saccade amplitude across image sizes depending on image category and 
condition (scaled vs. cropped). Error bars indicate standard error of the mean. (b) Sketch of the two alternative 
models describing how the distribution of saccade amplitudes would change with varying image size. (c) Real 
distribution of saccade amplitudes on urban images for each image size in scaled and cropped conditions. 
Vertical dashed lines indicate the median saccade amplitude. (d) Real distribution of saccade amplitudes on 
7” urban images and 30” urban images and the simulated distribution for 7” urban images based on saccades 
sampled from 30” urban images.
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each sampled saccade to a randomly sampled fixation of a 7” image of the same image category from which we 
sampled the saccade. The sampling process was done using a bootstrapping method producing 10,000 candidate 
saccades. From these candidates, we rejected sampled saccades when their pointing target, based on the given 
fixation, exceeded the border of the 7” image (Fig. 6). Further, we integrated information of the spatial bias of 
the desired image size. Saccade candidates were more likely not to be rejected proportional to the values of the 
spatial bias in the target region: we used the fixation distribution in horizontal and vertical direction character-
ized by the spatial bias (Fig. 3d) as a probability model, showing how likely it was that a fixation would occur at 
the respective spatial locations across the image dimensions (probability ranged from 0 to 1). We then sampled a 
random number in the interval between 0 and 1. Fixations were only accepted if the random number was lower 
than the calculated likelihood of a fixation occurring at the target location based on the spatial bias. With the 
accepted saccades, we again computed a probability distribution. Similar to the observed data distributions, we 
calculated these simulation models individually for each subject with respect to his or her observed data. We then 
averaged over subjects (individually for each image size and image condition) and calculated the mean simulated 
distributions, as well as the variances of these mean distributions. These computational steps defined the variable 
truncation model.

In the scaled condition, comparing the variable truncation model with the real distribution of saccades 
observed on 7” images revealed a good match with no significant difference for urban images [χ2 = 43.406, 
p = 0.289] (Fig. 5d). For webpages and landscape images a reasonable fit was achieved as well, yet a significant dif-
ference remained [both χ2 ≥ 77.229, ps < 0.001]. As a control, the comparison between the simulated distribution 
of saccades for 7” images and the real distribution of saccades on 30” images was huge and significantly different 
for all image categories [all χ2 > 1674.026, ps < 0.001]. Thus, the simulated distribution of saccade amplitudes 
in the variable truncation model (7” sim. in Fig. 5d) significantly deviated from the real distribution of sac-
cade amplitudes observed on 7” webpages and landscape images as well as from the real distribution of saccades 
observed on 30” images from each image category. However, importantly, the chi-square values representing the 
model fit showed that our simulated distribution described the actually observed saccades on 7” images much 
more accurately for all image categories [all χ2 ≤ 227.469] than did the distribution of saccades found on 30” 
images [all χ2 ≥ 1674.026], as exemplarily shown for urban images in Fig. 5d. Overall, the simulated distribu-
tion served well to explain the saccade amplitudes observed on 7” urban images. With respect to webpages and 
landscape images, the simulation also provided a more reliable model for explaining the distribution of saccade 
amplitudes observed on 7” images than did the distribution of saccade amplitudes found on 30” images.

In the cropped condition, we found a significant difference for all image categories when comparing the real 
distribution with the simulated distribution for 7” images [all χ2 ≥ 78.945, ps < 0.001]. Comparing the simulated 
distribution with the real distribution observed on 30” images also led to a huge and significant difference for 
all image categories [all χ2 ≥ 1422.864, ps < 0.001]. However, once again, the simulation was still a much more 
reliable model for predicting the real saccade distribution observed on 7” images [all χ2(39) ≤ 104.801] compared 
to the real distribution observed on 30” images [all χ2(39) ≥ 1422.864], as indicated by smaller chi-square values 
(cf. Fig. 5d).

Overall, in both the scaled and cropped condition, we could explain the real distribution of saccade amplitudes 
observed on 7” images by extracting small saccade amplitudes from the distribution observed on 30” images. 
This suggests that the distribution of saccadic amplitudes can be explained by subsampling saccades observed 

Figure 6.  Graphical illustration of the sampling strategy applied to create the simulated distribution of saccade 
amplitudes of 7” images. Amplitude and angular direction of a randomly chosen saccade made on a 30” image 
was applied on a randomly selected fixation made on a 7” image. When the target of the corresponding saccade 
fell into the image coordinates of the 7” image, the saccade was “accepted” for the simulated distribution of 
saccade amplitudes (upper row). When the target position of the saccade was outside the image coordinates of 
the 7” image, the saccade was “rejected” (lower row).
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for larger stimuli. Apparently, the data suggest constant oculomotor constraints, instead of a true adaptation of 
oculomotor behavior to varying images sizes (Hypothesis 2).

Number of fixation and fixation duration.  Hypothesis 3 states that an increase in the stimulus size leads 
to a shift from exploitation with fewer fixations of longer duration to exploration with more fixations of shorter 
duration.

We investigated visual exploration by comparing the total number of fixations across image categories and 
sizes. We again computed a 2 × 3 × 5 (image condition × image category × image size) ANOVA revealing signifi-
cant main effects and interactions (see Table 6 and Fig. 7a). The set of contrasts comparing all pairs of image sizes 
(Bonferroni-adjusted alpha level: α = 0.0008) separately for each image category and the two image conditions 
showed that the number of fixations increased with increasing image size on scaled webpages [all ts ≥ 4.979; 
ps < 0.0008]. On cropped webpages, as well as landscape and urban images in both image conditions, results also 
revealed a continuous increase of the number of fixations with increasing image size [all ts ≥ 3.874; ps < 0.0008], 
but the contrast between 21” and 30” images did not reach the adjusted significance level [all ts ≤ 3.492; 
ps ≥ 0.002]. In addition, the increase from 10” to 15” scaled landscape images was not significant [t = −1.477; 
p = 0.153]. For details see Table S5 in the online supplementary file. In summary, we found a general increase of 
the number of fixations with increasing image size, supporting Hypothesis 3.

Next, we determined the form of the increase of fixations by searching for an adequate estimate of the slope. 
Analogous to the analysis of saccade amplitudes, we used a lack-of-fit F-test to compare the curves of the observed 
number of fixations with a linear regression fitted to these data. This was done individually for each image cate-
gory, and the results for the scaled and cropped conditions were analyzed separately.

In the scaled condition, the results showed no significant difference between the linear regression and the real 
data for urban and landscape images [both Fs ≤ 1.821, ps ≥ 0.147, R2 ≥ 0.244]. This suggests that the increase of 
the number of fixations for urban and landscape images could be explained in terms of a linear trend. However, 
as shown in Fig. 7a, the curve for landscape images showed a slight concavity. Although our linear regression for 
landscape images already provided a good model for describing the data, we computed the natural logarithm for 
each stimulus size and applied a linear regression to the log-transformed data. For landscape images, the results of 
the log-transformed model revealed no significant deviation from linearity [F = 0.378, p = 0.769, R2 = 0.271] and 
provided an even better model than the linear model, as indicated by a slightly higher correlation [linear model: 
R2 = 0.244; log-linear model: R2 = 0.271]. For webpages, the lack-of-fit F-test revealed a significant deviation from 
linearity with regard to the original linear model [F = 6.804, p ≤ 0.001, R2 = 0.575]. Consequently, the increase 
of the number of fixations observed for webpages could not be explained by a linear model. In fact, Fig. 7a shows 
that the curve for webpages also tends to follow a logarithmic rather than a linear trend. Therefore, we again 
applied a linear regression to the log-transformed data for webpages and found no significant difference between 
the models [F = 0.926, p = 0.431, R2 = 0.630]. Hence, the log-transformed linear regression model well described 
the increase of the number of fixations with increasing image size.

In the cropped condition, the lack-of-fit F-test revealed a significant deviation from linearity for webpages 
[F = 4.802, p = 0.003, R2 = 0.478] and urban images [F = 2.821, p = 0.042, R2 = 0.418], but not for landscape 
images [F = 1.561, p = 0.203, R2 = 0.245]. Thus, the increase of the number of fixations for webpages and urban 
images did not follow a linear trend. Therefore, we applied a linear regression to the log-transformed data for 
each category. The results revealed no significant deviation from linearity for webpages or urban images [both 
Fs ≤ 0.767, ps ≤ 0.515, R2 ≥ = 0.451]. Further, the deviation from linearity in the log-transformed data also turned 
out not to be significant for landscape images [F = 0.772, p = 0.512, R2 = 0.260]. Correlation scores indicated that 
the log-transformed regression described the increase of the number of fixations for landscape images better 
than the original linear regression [linear model: R2 = 0.245; log-linear model: R2 = 0.260]. Thus, the number of 
fixations increased logarithmically with increasing image size in all image categories in the cropped condition.

However, a higher number of fixations on larger images is not necessarily linked to higher visual explora-
tion within the image. For example, a magnification of details (scaled condition) in large images could lead to 
a re-fixation of already seen image regions. This leads to a higher number of fixations without an increase of 

Effect F p ηp
2

Main effects

Image condition 13.214 <0.005 0.365

Image category 136.844 <0.001 0.856

Image size 248.128 <0.001 0.915

Two-way interactions

Image condition × image 
category 17.285 <0.001 0.429

Image condition × image size 3.371 <0.050 0.128

Image category × image size 15.740 <0.001 0.406

Three-way interaction

Image condition × image 
category × image size 4.687 <0.001 0.169

Table 6.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for the number of 
fixations.
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Figure 7.  (a) Increase in the number of fixations across image sizes depending on image category for the scaled 
and cropped conditions. Error bars indicate the standard error of the mean. (b) Graphical illustration showing 
that a higher number of fixations on large images might have led to a re-fixation of already seen image regions 
(upper row) or to a spatially more extensive exploration of the image (lower row). (c) Mean number of fixated 
image regions depending on image size and image category for the scaled and cropped conditions. Error bars 
indicate the standard error of the mean.
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image exploration (see schematic example in Fig. 7b). Note, that this approach differs from the previous entropy 
analysis, in which we showed that visual exploration increased in terms of a higher expansion of fixations. The 
expansion in entropy was a result of a larger spatial dimension of large images and thus larger distances between 
fixated regions of interest. In the current approach, we measured the exploration within the image in terms of the 
number of fixations (Fig. 7b). To answer whether the increase of fixations on large images is linked to a spatially 
more extensive exploration of the image (i.e. more fixated regions of interest), we calculated the number of image 
regions that have been fixated on each image size and category for scaled and cropped condition. Following pre-
vious studies23, 63, 64 we applied a 5 × 5 grid to each image, resulting in 25 equally sized rectangular image regions. 
We then calculated the number of fixated regions of each image and finally averaged over all images of the same 
size and category. As the size of the 25 image regions scaled with varying image size, a higher number of fixated 
image regions thus shows a larger spatial exploration of the images.

We computed a 2 × 3 × 5 (image condition × image category × image size) ANOVA with the number of fix-
ated regions as the dependent variable. We suggested, that more image regions had to be fixated on larger images 
in order to show an increase of image exploration with increasing image size. The results of the ANOVA revealed 
the predicted main effect of image size. However, we also found that this main effect was qualified by image cat-
egory and image condition, indicated by significant two-way and three-way interactions (Table 7). As shown in 
Fig. 7c, we did not find a continuous increase of the number of fixated regions with increasing image size. Using 
paired t-tests (Bonferroni-adjusted alpha level: α = 0.0008), we found a significant increase of the number of 
fixated image regions in the scaled condition from 7” to 30” landscape images and webpages [both ts ≥ 4.896; 
ps < 0.0008]; some more contrasts reached statistical significance (see Table S6 in the online supplementary file). 
On scaled urban images, the number of fixated image regions did not significantly change with increasing image 
size [all ts ≤ 2.745; ps ≥ 0.012]. In the cropped condition, we found no significant difference of the fixated image 
regions across image sizes in all categories [all ts ≤ 3.651; ps ≥ 0.001], except an increase of fixated image regions 
from 7” to 21” cropped urban and landscape images [both ts ≥ 4.311; ps < 0.0008].

Overall, the number of fixated image regions increased with increasing image size on scaled webpages and 
landscape images, reflecting a more spatially extensive exploration within larger images. We did not find this 
increase on scaled urban images. In the cropped condition, the number of fixated image regions did not change 
across image sizes, with two exceptions. However, by looking at the definition of the cropped condition, we con-
stantly added information to the periphery when increasing the image size. In contrast, the sizes of the image 
regions we used in our analysis scaled linearly with the image size to maintain the same amount of image regions 
(n = 25). Consequently, on larger images in the cropped condition, the individual image regions contained more 
information of the scenery. Therefore, the constant number of fixated image regions across varying image sizes 
that we observed indicates more exploration in the cropped condition.

In conclusion, the initially observed increase in the number of fixations on larger images coincided with 
a more spatially extensive exploration in both image conditions and all image categories, except scaled urban 
images.

Hypothesis 3 also stated that the exploitation decreases with increasing image size, which is indicated by 
shorter fixation durations. Accordingly, we examined the mean duration of individual fixations depending 
on image category and image size. We computed a 2 × 3 × 5 (image condition × image category × image size) 
ANOVA with the mean fixation duration as the dependent variable. As predicted, we found a main effect of the 
image size additionally qualified by image category and image condition (see Table 8 and Fig. 8a). Paired t-tests 
(Bonferroni-adjusted alpha level: α = 0.0008) revealed a continuous decrease in fixation durations on scaled web-
pages and urban images [all ts ≥ 4.504; ps < 0.0008]. On scaled landscape images as well as on cropped images 
of all categories we also found a continuous decrease in fixation durations with increasing image size, but some 
contrasts did not reach the adjusted significance level (see Table S7 in online supplementary file). Overall, fixation 
durations decreased constantly with stimulus size in both image conditions and all image categories.

Next, we investigated the form of the decrease in fixation durations. We again started with a linear regression 
for the data. In the scaled condition, the lack-of-fit F-test revealed a significant deviation from linearity for web-
pages [F = 4.528, p = 0.005, R2 = 0.616], but not for urban and landscape images [both Fs ≤ 2.219, ps ≥ 0.090, 

Effect F p ηp
2

Main effects

Image condition 59.223 <0.001 0.720

Image category 10.832 <0.005 0.320

Image size 17.429 <0.001 0.431

Two-way interactions

Image condition × image 
category 22.169 <0.001 0.491

Image condition × image size 8.557 <0.001 0.271

Image category × image size 4.422 <0.005 0.161

Three-way interaction

Image condition × image 
category × image size 3.156 <0.010 0.121

Table 7.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for a number of 
fixated image regions.
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R2 ≥ 0.279]. This result showed that the linear model was already sufficient for describing the decrease in fixation 
durations for urban and landscape images. However, as shown in Fig. 8a, we observed a flattening of the curves 
with increasing image size for all image categories. Hence, we calculated the natural logarithm for each image size 
and applied a linear regression to the log-transformed data. Results of the lack-of-fit F-test were not significant for 
any of the image categories [all Fs ≤ 0.298, ps ≥ 0.827, R2 ≥ 0.290], indicating that the log-transformed model also 
adequately described the data. Moreover, it turned out to be a slightly more precise model for urban and land-
scape images than the original linear regression model, as indicated by higher correlations [urban linear model: 
R2 = 0.433; urban log-linear model: R2 = 0.463; landscape linear model: R2 = 0.279; landscape log-linear model: 
R2 = 0.290]. Hence, the mean fixation duration decreased rather logarithmically with increasing stimulus size for 
all image categories in the scaled condition.

In the cropped condition, the results of the lack-of-fit F-test revealed a significant deviation from linearity for 
webpages [F = 3.800, p = 0.012, R2 = 0.425] and urban images [F = 4.034, p = 0.009, R2 = 0.395], but not for land-
scape images [F = 1.066, p = 0.366, R2 = 0.281]. This indicates that the decrease in the mean duration of fixations 
on webpages and urban images did not follow a linear trend, as shown in Fig. 8a. Again, we computed the natural 
logarithm for each image size and applied a linear regression to the log-transformed data. We found no signif-
icant deviation from linearity for any of the image categories [all Fs ≤ 1.018, ps ≥ 0.387, R2 ≥ 0.295]. Moreover, 
the log-linear model turned out to describe the decrease in fixation durations for landscape images slightly better 
than the original linear model [linear model: R2 = 0.281; log-linear model: R2 = 0.295].

Overall, the mean duration of fixations decreased with increasing stimulus size in all image categories in both 
the scaled and the cropped condition, whereby the decrease was best described by a logarithmic trend.

In addition to the above observations, fixation durations might be influenced by other parameters. First, pre-
vious studies showed mixed results about the dependency between the duration of a fixation and its pre-saccadic 
amplitude16, 52. Second, as shown in our analysis above, larger images led to longer saccade amplitudes. Also, an 
increase of saccade amplitudes leads to longer durations of saccades53, 54. Hence, in this study, larger image sizes 
might have led to a larger fraction of time spent on saccades. In summation, this higher duration of saccades 
could reduce the remaining time available for fixations, as the temporal stimulus presentation was fixed across 
all image sizes. This reduction of time could be the reason why the increase in the number of fixations saturated 
on large images (cf. Fig. 7a). This in turn would then explain the logarithmic decrease that we found regarding 
fixation durations. To get a deeper understanding of the fixation duration results, we thus examined this issue in 
more detail.

First, we focused on the dependency between fixation durations and pre-saccadic amplitudes, by analyzing 
the distribution of fixation durations for all images. Based on the measured data, we calculated the frequencies of 
the mean fixation duration for each image category and size (Fig. 8b). The frequencies were divided into 40 bins 
covering the range from 100ms to 500ms. We normalized these frequencies with regard to the total number of fix-
ations. Then, we applied the same simulation model as previously used for the distribution of saccade amplitudes 
(see above). Specifically, we applied randomly selected saccades from 30” images to randomly selected fixations 
from 7” images. For each valid (i.e., non-rejected) saccade we extracted the duration of the pre-saccadic fixation 
and calculated the corresponding frequency distribution. Importantly, given that this simulation process ade-
quately predicted the distribution of small saccade amplitudes on the basis of the amplitudes for large images (see 
results above), the same will hold for fixation durations if they are tied to saccade amplitudes. Using chi-square 
tests and a model that was closely analogous to the variable truncation model for saccade amplitudes, we analyzed 
the real distribution of fixation durations found for 7” images and 30” images as well as the simulated distribution 
for 7” images based on data from the 30” images. This analysis was done separately for each image category, and 
the data was further separated for the scaled and cropped condition.

In the scaled condition, as exemplarily shown for urban images in Fig. 8c, comparing the simulated distribu-
tion of fixation durations with the real distribution for 7” images revealed a strong and significant effect for each 
image category [all χ2 > 124.518, ps < 0.001], indicating a significant difference between modeled and actually 
observed data. The comparison of the simulated distribution and the distribution of fixation durations found 
for 30” images did not show a significant difference in any of the image categories [all χ2 < 32.852, ps ≥ 0.745]. 

Effect F p ηp
2

Main effects

Image condition 57.653 <0.001 0.715

Image category 206.799 <0.001 0.900

Image size 243.015 <0.001 0.914

Two-way interactions

Image condition × image 
category 24.018 <0.001 0.511

Image condition × image size 7.292 <0.005 0.241

Image category × image size 3.904 <0.005 0.145

Three-way interactions

Image condition × image 
category × image size 3.876 <0.005 0.144

Table 8.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for fixation 
duration.
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Therefore, the simulated distribution of fixation durations for 7” images, extracted from 30” images, could not 
predict the real data found for 7” images; instead, it matched the distribution found for 30” images.

Figure 8.  (a) Decrease of the mean fixation duration across image sizes for all image categories depending 
on scaled and cropped conditions. Error bars indicate the standard error of the mean. (b) Real distribution 
of fixation durations for urban images depending on image size and condition (scaled vs. cropped). (c) Real 
distribution of fixation durations on 7” and 30” images as well as the simulated distribution for 7” urban images 
based on fixations sampled from 30” urban images.
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In the cropped condition, the simulated distribution for 7” images also strongly and significantly differed from 
the distribution actually found for 7” images of all categories [all χ2 ≥ 103.459, ps < 0.001]. By contrast, when 
comparing the simulated distribution for 7” images with the distribution observed for 30” images, no significant 
difference occurred for any of the image categories [all χ2 ≤ 28.539, ps ≥ 0.891]. Thus, as for scaled images, the 
simulated distribution of fixation durations for 7” images could not predict the real data found for 7” images; 
instead, it matched the distribution found for 30” images.

Overall, the simulation model based on saccade amplitudes did not explain the change in fixation durations 
across image sizes (cf. Figs 5d and 8c). The decrease in fixation durations with increasing image size was not a 
result of a dependency between saccade amplitude and fixation duration. Saccade amplitude and fixation dura-
tion were independent of each other.

In the next step, we focused on the influence of saccade durations on the logarithmic decrease of fixation 
durations. We initially computed the saccade amplitude and its respective duration for each saccade in our exper-
iment. To exclude outliers, we used the same procedure as for fixation durations. We excluded saccade dura-
tions that were two standard deviations above the grand mean (cut-off: 64.38ms; 3.02% of the data). Further, we 
excluded saccades that targeted or originated outside of the respective image size (3.37% of the data). Using a 
Pearson correlation test, we found a positive linear dependency between saccade amplitudes and saccade dura-
tions [R2 = 0.820, p < 0.001]. Longer amplitudes led to longer durations of saccades (Fig. 9a).

Next, we calculated the average saccade duration for each image category and image size and computed a 
2 × 3 × 5 (image condition × image category × image size) ANOVA. We suggested that larger images led to longer 
saccade durations due to longer saccade amplitudes. As predicted, the ANOVA revealed a main effect of the 
image size that was additionally qualified by image category and image condition (Fig. 9b and Table 9). Paired 
t-tests (Bonferroni-adjusted alpha level: α = 0.0008) showed that saccade durations continuously increased with 
increasing image size in all image categories and both image conditions [all ts ≥ 4.265; ps < 0.0008]. The signif-
icant interactions reflected different effect sizes. Results for all contrasts are depicted in Table S8 in the online 
supplementary file. Overall, we found that saccade durations increased with increasing image size in all image 
categories of both image conditions.

Finally, with a lack of fit F-test, we could show that the increase of saccade durations with image size followed 
a logarithmic trend in each image category of both, the scaled and cropped condition [all Fs ≤ 1.743, ps ≥ 0.162, 
R2 ≥ 0.575].

Overall, we saw that larger images indeed led to longer saccade durations as an effect of longer saccade ampli-
tudes. This effect followed a logarithmic trend in all image categories in the scaled and cropped. Therefore, the 
time available for doing fixations, given the fixed stimulus presentation duration, was reduced when observing 
large images. This effect influenced the duration of fixations. However, the difference in saccade durations across 
image sizes was in the order of magnitude of 20 ms, much lower compared to the average change in fixation 
durations (cf. Figs 8a and 9b). The overall time spent on saccades was on average 277.43 ms longer on 30” images 
compared to 7” images. This time describes a number of 1–2 fixations that had to be sacrificed on 30” images due 
to higher saccade durations. But even given this effect, the total number of fixations increased on larger images. 
Furthermore, such a small number was not sufficient to explain the observed decrease in fixation durations with 
larger images. Concluding, we assume that although saccade durations increased with image size, they have by 
themselves only a limited effect on the number and duration of fixations.

To summarize, the decrease of fixation duration with increasing image sizes did not depend on the saccade 
amplitudes and only were weakly affected by saccade durations and latencies. For the major part, the decrease of 
fixation durations was a consequence of an increasing number of fixations and thus increased visual exploration 
fully compatible with Hypothesis 3.

Discussion
In the present study, we used stimuli with varying spatial properties and sizes to explore the trade-off between 
exploration and exploitation. Specifically, introducing larger stimuli increased the demands on sampling differ-
ent regions by a larger number of widely distributed fixations (exploration). Given fixed time constraints, this 
establishes a limitation to the time available for focused attention to local regions (exploitation). Here we could 
characterize this trade-off with respect to commonly used eye-tracking parameters.

We found that the spatial bias in terms of central tendency and entropy was significantly influenced by image 
size: the central tendency scaled mainly linearly with the image size in both the scaled and cropped image condi-
tions. This scaling was comparable for all image categories. The entropy, giving the spatial distribution of fixations 
independent of specific geometrical arrangements, increased in the scaled and cropped conditions for all image 
categories, but not in an exclusively logarithmic fashion. These results fully support Hypothesis 1 proposing that 
visual exploration increases with an increase of the image size. The mean saccadic amplitude scaled linearly with 
the image size in all categories in both the scaled and cropped image conditions. Only in cropped webpages did 
the increase in saccade amplitude follow a logarithmic trend. These results nominally support the Hypothesis 
2 proposing that visual exploration is supported by an increase of saccadic amplitudes. However, the data can 
be well described by the variable truncation model, which operates on a constant basic distribution of saccadic 
amplitudes. Moreover, in all image categories, the number of fixations increased with stimulus size. Except for 
scaled urban pictures, this increase followed a logarithmic trend with increasing image size. We saw, that the 
increased number of fixations indeed led to a spatially more extensive exploration within larger images in all 
image categories of both conditions, except for scaled urban images. Visual exploitation, which was indicated by 
fixation duration, decreased with increasing image size in all conditions in a logarithmic trend. We found that 
saccadic amplitude and duration of single fixations were independent of each other and that saccade durations 
only weakly affected fixation durations. These results fully support Hypothesis 3 of reduced exploitation with 
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increasing image size. All in all, visual exploration robustly scaled with the image size, indicating a shift from 
exploitation to exploration on larger images.

As a control, we performed all experiments with two complementary image manipulations. Smaller images 
were either generated by scaling down the original, or by cropping a region of desired size. The omnibus statis-
tical analyses revealed that the effect of image size was qualified by image condition regarding all eye movement 
parameters. However, the main results were significant and similar in both the scaled and the cropped condition. 
This demonstrates that visual behavior was affected by image size (and image category) in a similar way, regard-
less of the varying depth and resolution of details within visual scenes. We therefore conclude that spatial proper-
ties of the image in terms of its size are a crucial factor to affect visual behavior.

The present results support our general hypothesis that, in terms of the spatial bias, visual exploration scales 
with varying image sizes. We found changes in central tendency as well entropy with increasing image size. 
Tatler44 argued that the central tendency in natural images might arise independently of image features within the 
scene. In his view, the tendency to look at the center of an image on the monitor stems from two sources: spatial 
viewing properties that situate the optimal viewing position at the center of the screen and constraints of the 

Figure 9.  (a) Positive correlation between the amplitude and duration of a saccade. (b) The increase of the 
mean saccade duration across image sizes depending on image category and condition (scaled vs. cropped). 
Error bars indicate standard error of the mean.
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oculomotor system. As both aspects of spatial bias were similar for both scaled and cropped images, it is unlikely 
that properties of the distribution of local features drives this effect. Therefore, our results support the view that 
the spatial bias originates from the oculomotor system. However, we showed that the image size affects the central 
tendency in such a way that it adapted adequately with the increasing size of the presented image. In calculating 
the entropy, we found that the geometrically independent distribution of fixations also increased with increasing 
image size. Overall, we showed that the size of the presented stimulus seems to be a crucial spatial property that 
affects visual exploration in terms of the distribution of fixations on images.

In order to further investigate how image size affects visual behavior, we evaluated the amplitudes of saccades. 
Supporting a previous study48, we found an overall linear increase in saccade amplitude with increasing image 
size. However, humans in general tend to exhibit small saccade amplitudes for natural images40, 44. This leads to 
a distribution of saccade amplitudes that follows a log-normal trend40–43. This tendency toward small saccades 
has been suggested to originate from motor biases in the saccadic system44 and should be independent of inher-
ent features of the visual scene. Indeed, we found that the distribution of saccade amplitudes showed a similar 
progression through each image size in every image category, with a high number of small saccades for small 
image sizes followed by a small number of larger saccades for large image sizes. By extracting information on the 
scaled spatial bias for different image sizes with our simulation model, we could identify that the distribution of 
saccades for large images was compatible to the distribution of saccades for small images. This suggests that the 
higher mean saccade amplitude for large images mentioned above resulted from an interaction between the basic 
distribution of saccade amplitudes and the eccentricities of the spatial bias that changed according to the image 
size. Thus, in terms of the saccadic distribution, motor constraints remain remarkably constant across different 
image sizes, while only the variable truncation depends on the image size.

For a better understanding of the time available for focused attention to specific regions of the image, we ana-
lyzed the number of fixations and fixation durations for each image size. In doing so, we found that the number of 
fixations increased in a logarithmic fashion with increasing image size. Based on the changes in entropy and the 
grid analysis (i.e., number of fixated image regions), we showed that the increase of fixations was linked to a spa-
tially more extensive exploration within the image in all conditions13.We found that fixation duration decreased 
in a negative logarithmic trend opposite to the number of fixations. As fixation durations are linked with the 
in-depth information processing of a fixated region of interest14–16, this shows that larger images lead to a reduced 
in-depth processing of sensory information from specific locations. This demonstrates a shift from exploitation 
to exploration of the scenery.

Previous studies have argued that information processing needs a certain minimum amount of time in order 
to allow for interpretation of the fixated region65. This establishes a lower threshold for fixation durations and 
prevents the complete compensation of increased exploration in larger images by reduced exploitation. With the 
simulated variable truncation model, we could exclude the explanation that the decrease in exploitation was a 
result of a correlation between saccade amplitude and the duration of their pre-saccadic fixation, as described in 
previous studies16, 41, 66. Further, we showed that a general increase of saccade durations based on larger saccade 
amplitudes in large image sizes did only weakly affect fixation durations. Thus, visual exploitation decreased in 
larger images due to an increase in visual exploration. As a consequence of a fixed temporal limitation of sensory 
information processing, the decrease of fixation durations followed a logarithmic dependence. This logarithmic 
trend led to a saturation of the number of fixations on large images.

We need to consider that our results could have been influenced by other parameters that were not taken into 
account in this study. Previous literature reported a logarithmic increase of saccade latencies in saccade ampli-
tudes of 0.5° or less67. As smaller images led to a higher number of small saccades, a larger summation of saccade 
latencies could have increased the fixation durations for these small images. Although we doubt that the higher 
number of small saccades (the difference between 7” and 30”: 8.59%) had a significantly high impact on fixation 
durations, this point might be addressed in a further study.

Additionally, gaze behavior as natural viewing behavior is usually linked with a combination of eye and head 
movements during visual scene perception68, 69. The eye tracker employed in the present study measured the gaze 
direction by evaluating eye as well as head positions. Therefore, all presented results relate to gaze movements. As 

Effect F p ηp
2

Main effects

Image condition 220.622 <0.001 0.906

Image category 221.057 <0.001 0.906

Image size 472.506 <0.001 0.954

Two-way interactions

Image condition × image 
category 25.137 <0.001 0.522

Image condition × image size 16.927 <0.001 0.424

Image category × image size 38.448 <0.001 0.626

Three-way interaction

Image condition × image 
category × image size 2.384 <0.050 0.094

Table 9.  Results of the 2 × 3 × 5 (image condition × image category × image size) ANOVA for saccade 
durations.
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we instructed participants to maintain a stable head position, eye movements dominated the visual behavior and 
head movements had only a residual influence. Thus, our results and the definition of gaze behavior relate to eye 
movements and we maintain that terminology.

Furthermore, we were to some extent limited when changing the size of stimuli. Here, we focused on image 
sizes ranging between 7” and 30”, which is only a limited fraction of the total visual field of a healthy human. 
Therefore, we need to be careful when extending our findings to visual behavior in real-world scenarios68, 70. 
However, most of the screens in everyday use provide display sizes that match the stimulus sizes covered by our 
study. Thus, our results can indeed be applied to normal viewing behavior for different media devices. Further, 
our results suggest clear trends (linear and logarithmic) in the progress of commonly investigated eye-tracking 
parameters. Hence, not only can we make conclusions with respect to the screen sizes we used, but we can also 
predict the results likely to occur when using screens of other sizes. This is important for scientists conducting 
eye-tracking experiments with varying monitor sizes.

Another issue concerning our study design might be that we presented each image size blockwise. Participants 
therefore could have predicted the size of the following stimulus within one block and thus developed a certain 
viewing strategy. However, previous studies showed that repeated stimulus presentation does not necessarily 
affect visual behavior23. In addition, the blockwise presentation might reflect real-life scenarios better than a 
randomization of image sizes. Humans usually tend to watch images or browse webpages on the same screen for 
some time (e.g., laptop) before switching to another device (e.g., smartphone). Also in typical eye tracking exper-
iments, participants observe a large number of same-sized images on the monitor. Thus, a blockwise presentation 
of image sizes in our experiment and therefore a possible adaptation of viewing strategies do follow typical visual 
behavior.

With respect to the choice of our image categories, we have to consider the difference between webpages and 
natural images (urban and landscape images) in more detail. We saw, inter alia, that the mean saccade ampli-
tudes and fixation durations were much smaller on average for webpages than for the natural image categories. 
These effects might have been a result of small (albeit present) text elements in webpages. Instead of free explora-
tion, subjects could have read these text elements, which led to smaller saccades and shorter fixation durations. 
Although we found that all parameters according to webpages showed a similar trend as for urban and landscape 
images when manipulating the image size, further studies might focus in more depth on how the presence of text 
elements in varying image size affects saccade amplitudes and fixation durations.

In general, our study provides a valuable baseline for investigating the trade-off between exploration and 
exploitation for different image sizes and, thus, for different spatial properties. Still, further research has to be 
done in order to investigate visual behavior with regard to different spatial properties of stimuli, such as move-
ment71, 72, the interplay between image size and complexity of the scenery, and dynamic changes in the image size 
during observation.

Conclusion
Researchers have investigated several bottom-up and top-down factors that affect visual behavior in natural view-
ing contexts, but evaluations of exploration and exploitation with regard to varying spatial properties are lacking. 
With the exception of one study48, image size has been neglected in most of the research so far. Here, we investi-
gated the impact of such varying image sizes on visual behavior. In doing so, we showed that image size is a crucial 
factor that affects overt visual attention in terms of exploration and exploitation. Visual researchers should be 
aware of this additional image feature when relating their own data to the results of studies being conducted in a 
laboratory with a different display setup. It is especially important that the effect of the stimulus size is taken into 
account very carefully when comparing commonly used eye-tracking parameters across studies. Also in media, 
knowledge about how image size affects gaze behavior might be of importance, for example when designing 
new webpages optimized for devices with varying display sizes. In a nutshell, we found that image size has to be 
considered as an important spatial property that shifts the balance between exploration and exploitation in overt 
attention.
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