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ABSTRACT Strong evidence suggests that the gut microbiota is altered in inflam-
matory bowel disease (IBD), indicating its potential role in noninvasive diagnostics.
However, no clinical applications are currently used for routine patient care. The main
obstacle to implementing a gut microbiota test for IBD is the lack of standardization,
which leads to high interlaboratory variation. We studied the between-hospital and
between-platform batch effects and their effects on predictive accuracy for IBD. Fe-
cal samples from 91 pediatric IBD patients and 58 healthy children were collected.
IS-pro, a standardized technique designed for routine microbiota profiling in clinical
settings, was used for microbiota composition characterization. Additionally, a large
synthetic data set was used to simulate various perturbations and study their effects
on the accuracy of different classifiers. Perturbations were validated in two replicate
data sets, one processed in another laboratory and the other with a different analy-
sis platform. The type of perturbation determined its effect on predictive accuracy.
Real-life perturbations induced by between-platform variation were significantly
greater than those caused by between-laboratory variation. Random forest was
found to be robust to both simulated and observed perturbations, even when these
perturbations had a dramatic effect on other classifiers. It achieved high accuracy
both when cross-validated within the same data set and when using data sets ana-
lyzed in different laboratories. Robust clinical predictions based on the gut microbi-
ota can be performed even when samples are processed in different hospitals. This
study contributes to the effort to develop a universal IBD test that would enable
simple diagnostics and disease activity monitoring.

KEYWORDS IS-pro, diagnostics, inflammatory bowel disease, microbiota, supervised
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Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and
Crohn’s disease (CD), is characterized by chronic inflammation of the gastrointestinal

(GI) tract. IBD is a multifactorial disease attributed to a combination of genetic predis-
position and environmental risk factors (1–3). The apparent increase in some of these
risk factors is thought to have led to the emergence of IBD as a global disease with
increasing incidence and prevalence (4). Pediatric patients account for 20 to 25% of the
overall number of newly diagnosed cases, underlining the importance of IBD diagnosis
by pediatricians (5). This diagnosis is complex, requiring a combination of clinical,
biochemical, radiological, endoscopic, and histological tests (6), which often leads to a
delayed diagnosis that may result in a reduced response to medical therapy and a
higher incidence of surgical intervention (7). However, there is another emerging
indicator of IBD that can be obtained quickly and easily, i.e., the intestinal microbiota.
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Strong evidence links microbial colonization of the gut to the development of IBD,
suggesting that intestinal inflammation results from interaction of the gut microbiota
with the mucosal immune compartments (8–10). Substantial alterations in the compo-
sition and decreased complexity of the gut microbial ecosystem are common features
in IBD patients (11). The utility of microbial signatures for prediction of clinical out-
comes was recently demonstrated in pediatric IBD patients (12, 13) and specifically in
CD patients (14). As a noninvasive, cost-effective technique, microbiota-based diagnos-
tics hold great potential for the prevention of exacerbations and for early-stage disease
detection. However, despite the recent developments in molecular methods that allow
circumvention of the inability to cultivate most gut microbiota species, microbiota-
based diagnostics are not applied in clinical practice yet.

One of the main obstacles to the dissemination of this application is the lack of
reproducibility of microbiota signatures between hospitals and laboratories (15, 16).
Advanced molecular techniques commonly used for microbiota analysis, such as
next-generation sequencing, have been shown to be highly sensitive to every step in
the analysis, from sample collection through storage conditions to molecular proce-
dures such as DNA isolation, primer selection, PCR settings, and choice of sequencing
platform (15–18). Since these techniques are currently still difficult to implement in
clinical practice in a cost- and time-efficient way, for microbiota analysis to become part
of routine diagnostics, a standardized, reproducible, and easily applied technique is
needed.

An alternative to sequencing is the IS-pro technique, which allows the detection of
bacterial DNA and its taxonomic classification down to the species level on the basis of
16S-23S ribosomal interspace (IS) fragment length (19). Carrying out the IS-pro proce-
dure requires infrastructure and skills that are commonly found in every diagnostic lab.
Moreover, the procedure is suited for routine diagnostic use and results are available
within hours. In recent years, IS-pro has been extensively optimized and validated and
has become an effective method for standardized gut microbiota profiling (20, 21).
While IS-pro profiles have already been shown to be effective as clinical predictors (22),
for universal application in routine diagnostics, clinical predictions need to be robust to
variations introduced by differences in the laboratories, hospitals, technicians, and
equipment employed.

In this study, we investigated the between-hospital reproducibility of IS-pro data
and the effect of different perturbations on the outcome of clinical prediction models.
We formulated the most probable perturbations, simulated them in the microbial
profiles of a pediatric IBD cohort, and assessed their effects on predictive accuracy.
Furthermore, we compared the effect across different classifiers to identify the classi-
fication algorithm that is least sensitive to potential perturbations and thus optimal for
practical application. To assess the extent of perturbations in real life, we analyzed
replicate data sets in two independent laboratories and estimated the predictive
accuracy when a model was trained on one replicate and tested on the other, as would
occur in clinical practice. On the basis of our simulations and validation in practice, we
were able to identify which perturbations should be avoided and which classifiers are
the most robust. The establishment of a reproducible tool for microbiota-based clinical
predictions is a crucial step toward a universal diagnostic application.

RESULTS
Data set assessment. This study was based on a cohort of 149 subjects, of which

91 were children diagnosed with IBD (consisting of 53 CD and 38 UC patients) and 58
were healthy children (designated A1). Two replicate data sets were generated on the
basis of subsets of this data set, i.e., A2, consisting of 116 samples, of which 70 were IBD
samples (from 28 CD and 42 UC patients) and the rest were controls, and M2, consisting
of 30 samples, of which 20 were IBD samples (from 11 CD and 9 UC patients) and the
rest were controls. A2, which was analyzed in the same laboratory as the original data
set but with a different analysis platform, served as a platform replicate, whereas M2,
which was analyzed in a different laboratory but with the same platform as A2, served
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as a hospital replicate (Fig. 1). Between-hospital replicate sample pairs clustered
together (Fig. 2A) and were highly correlated (n � 28, median R2 � 0.89 [interquartile
range � 0.3]). The variation introduced by the analysis platform was larger than that
introduced by the hospital, as shown in Fig. 2B.

To improve the prediction models’ quality and to gain better predictive perfor-
mance, the original data set was extended with synthetic samples. This allowed us to
avoid overfitting, which is one of the main concerns when fitting a high-dimensional
model with only a small number of samples. We generated a complementary synthetic
data set (designated SIM; for details, see Materials and Methods) consisting of 10,000

A2
platform replicate  
Amsterdam, ABI 3500

(N=116)
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(N=30)

A1
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simulated dataset

(N=10,000)

Naive Bayes
simulation

DNA isolates

FIG 1 Study design. Four data sets were analyzed in this study. All data sets were generated on the basis
of one original data set (A1) by either simulating new synthetic observations (SIM) or reanalyzing the
DNA isolates with IS-pro in two independent laboratories (A2 and M2). For each nonsynthetic data set,
the lab in which it was processed and the machine model with which it was analyzed are indicated.
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FIG 2 Replicate sample comparison. (A) Heat map of between-hospital replicates. Pairwise clustering is observed for all
samples except one. Columns correspond to samples, and rows correspond to peaks (i.e., bacterial species). Clustering is based
on the cosine correlation matrix of peak intensities by the unweighted pair group method using average linkages. nt,
nucleotides. (B) Principal-coordinate analysis of samples of the original data set (A1) and its two replicates (A2 and M2).
Samples are primarily grouped by analysis platform. Samples represented by green and pink dots were analyzed with the same
machine model (ABI 3500 genetic analyzer), while samples represented by blue dots were analyzed with a different machine
model (ABI PRISM 3130 genetic analyzer). The hospital is not a large source of variation. Samples represented by blue dots were
analyzed in the same lab in Amsterdam, The Netherlands, while samples represented by pink dots were analyzed in a different
lab in Maastricht, The Netherlands. The principal-coordinate analysis was based on between-sample cosine distances.
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samples in total and balanced between the two classes, IBD and healthy. The original
and synthetic data sets are displayed in Fig. 3A, demonstrating segregation between
the two classes, while synthetic samples are grouped together with the original
samples of the same class.

To validate the synthetic data set, we compared the distribution of each peak in the
original data set to that in the synthetic data set. All resulting P values were 1 following
a false discovery rate correction, which means that the resulting synthetic peaks’
distributions were not statistically significantly different from those of the original data.
We also calculated the concordance per class between the average original profile and
the average synthetic profile using Kendall’s coefficient of concordance. For both
classes, high concordance values were obtained (0.9977 and 0.9951 for the healthy and
IBD classes, respectively), which means that the synthetic profiles and the original
profiles generally agree. On the basis of this assessment, the synthetic data set was
regarded as valid for further experiments.

The predictive accuracy of the original data set was assessed by using seven
different classifiers that obtained similar performance, with the area under the curve
(AUC) ranging from 0.85 for L2-regularized logistic regression to 0.92 for nearest
shrunken centroids (NSC) (Fig. 3B). Specifically, both IBD subtypes could be discrimi-
nated from healthy controls with high accuracy. UC classification achieved a maximal
AUC of 0.96 (for NSC, random forest [RF], and L2-regularized logistic regression), and CD
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FIG 3 IBD versus healthy gut microbiota samples. (A) PLS-DA components of the original samples (A1, filled circles) and
the synthetic samples (empty circles). (B) Predictive accuracy displayed as receiver operating characteristic curves based
on a 10-fold cross validation of the original data set (A1). The main curve illustrates the accuracy of IBD classification
against healthy controls, whereas the two smaller curves illustrate the accuracy of each IBD subtype (UC or CD) against
healthy controls. (C) A learning curve that was used to determine the optimal training set size. Each classifier was trained
on synthetic data and tested on the original data set. Training sets of each size were repeatedly subsampled 10 times.
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classification obtained a maximal AUC of 0.87 (for NSC and RF). UC and CD were taken
together as a single IBD group since both presented similar variations (see below for
details).

We used a learning curve of increasing training set sizes to assess the predictability
of the synthetic data and to determine the optimal training set size that should be
sampled. The accuracy of all classifiers increased as more samples were considered for
training (Fig. 3C). On the basis of the moderating accuracy improvement observed
toward the larger training sets, we determined that 400 training samples would be a
valid size for subsequent simulations. For this sample size, the accuracy was also
comparable to the accuracy achieved by cross-validation of the original data set.

Probing of variation boundaries. This section of the study consists of synthetic
data experiments aiming to explore the effects of different sources of variation on
predictive accuracy. We estimated the effects of five simulated perturbations on the
accuracy of seven classifiers and identified which classifiers were more robust and
therefore may outperform others when applied in diagnostics.

(i) Single perturbations. Each sample is represented as a microbial profile (Fig. 4).
We formulated the perturbations that are most likely to occur between profiles
processed in different runs (Table 1). Each of these was simulated with increasing extent
as a variation of the SIM data set (see Materials and Methods). The following procedure
was repeated 100 times. A balanced training set (400 samples) was subsampled from
the SIM data set, and the rest of the samples were perturbed and used as a test set.
With this setting, we assumed that a clinical prediction model would be trained on a
reference data set but would be used to predict data generated in various diagnostic
centers (therefore incorporating different sources of variation).

Figure 5 displays how predictions were affected by each individual perturbation. An
intensity cutoff (perturbation 1 [P1]) did not have any effect on the predictive accuracy
across all classifiers (Fig. 5A). Peak shifts (P2) and addition of intensity noise (P3) led to
a gradual decrease in accuracy, with more peaks being perturbed (Fig. 5B and C). Still,
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FIG 4 An IS-pro microbial profile example. Each sample in this study is represented as a microbial profile
composed of peaks that correspond to different IS fragments. The IS fragment length (nucleotides [nt])
is depicted on the x axis, and bacterial species abundance is displayed on the y axis. Colors correspond
to bacterial phylum group as amplified by IS-pro. Fir, Firmicutes; Act, Actinobacteria; Fus, Fusobacteria; Ver,
Verrucomicrobia.

TABLE 1 Detailed descriptions of the perturbations simulated in the SIM data set

Perturbation Description

P1, intensity cutoff Simulates effect of truncation of high peaks (e.g., by a technical cutoff)a

P2, peak shifts Simulates random shifts in peak positions of �1-nucleotide lengthsb

P3, intensity noise Simulates addition of noise to all peak intensities
P4, peak deletion Simulates the greater likelihood that low-intensity peaks will fall under

the lower limit of detectionc

P5, dominant peak
deletion

Simulates deletion of high-intensity peaksd

aWith the rest of the peaks left intact.
bThis may happen when continuous peak position values are binned into discrete variables during
preprocessing.

cEach peak was assigned a probability of being deleted, which was found in reverse ratio to its intensity.
dWhile this perturbation is not likely to occur in reality, it gives an insight into the importance of high-
intensity peaks for classification.
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the most pronounced effect was caused by peak deletion. When deleted peaks were
mainly low-intensity peaks (P4), we observed a substantial decrease in predictive
accuracy in all of the classifiers except RF (Fig. 5D). We further noted that deletion of
four to seven peaks led to substantial variation between simulations, suggesting that it
is important which particular peaks are deleted. With more peaks being deleted, the
accuracy converged and the variation between different simulations was reduced.

RF stood out with a response to the simulated perturbations distinct from that of the
rest of the classifiers; it remained stable in response to the deletion of low-intensity
peaks, while deletion of even a limited number of peaks led to a considerable decrease
in accuracy for other classifiers (Fig. 5D). Even though it was affected when dominant
peaks were deleted (P5), its accuracy decline was slower than that of the rest of the
classifiers (Fig. 5E). On the other hand, the drop in its accuracy in response to intensity
noise simulation was more pronounced than that of the rest of the classifiers (Fig. 5C).

(ii) Mixed perturbations. We further explored the effect mixed perturbations have
on predictive accuracy by using 100 variations of the SIM data set, each combining a
random extent of every perturbation (excluding P5, as this is not a perturbation likely
to occur in real data). Ten balanced training sets of 400 samples each were subsampled
from every data set, while the rest of the samples were used as a test set. For each data
set, we calculated the average cosine distance between the perturbed version of each
sample and its unperturbed origin. Increased prediction error was observed as per-
turbed samples became less similar to their corresponding original samples, reflected
by higher mean cosine dissimilarity (see Fig. S1 in the supplemental material). We
identified several outlier data sets characterized by relatively high error rates for samples
that were, on average, still quite similar to their origins (reflected by low mean cosine
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dissimilarity). Further investigation revealed that these outliers corresponded to data
sets in which peak deletion (P4) affected more peaks, which led to a larger effect on
prediction error. This is demonstrated in Fig. S1, where the marker size corresponds to
the average number of deleted peaks and the outlier data sets are circled. The rest of
the perturbations did not exhibit a similar relationship. RF, which proved robust to peak
deletion, did not have any outlier data sets.

Between-hospital and between-platform variations. Following our simulations,
we investigated the batch effects on predictive accuracy by using replicate data sets
reprocessed and analyzed in two independent hospitals with two different analysis
platforms.

(i) Perturbation assessment. Variation was estimated on the basis of the pertur-
bations defined in Table 1 (P2, P3, and P4) by using pairwise comparisons of replicates
and compared to the calculated simulated values (gray bars in Fig. 5B, C, and D). The
between-platform batch effect (light gray bars in Fig. 5) appeared to be in the range
where predictive accuracy is diminished by all three perturbations. The total number of
peaks detected in a reference profile but missing from its corresponding replicate is
shown in Fig. 6A, separated according to the type of perturbation. On average, more
than half of the peaks in each pairwise comparison were missing (65%), out of which
35% were shifted peaks and 30% were deleted peaks.

The effect of between-hospital variation, however, depended on the type of per-
turbation. The number of shifted peaks (P2) and the difference in measured intensity
(P3) were in the range where they had only a minor effect on predictive accuracy on the
basis of our simulation, but the number of deleted peaks (P4) was in the range where
predictive accuracy decreased for all classifiers, except RF (dark gray bars in Fig. 5).
However, the proportion of missing peaks per pairwise comparison was significantly
smaller than that observed for between-platform replicates (Fig. 6A, P � 0.001, Mann-
Whitney U test). Missing peaks were sorted to either deleted or shifted (in case the peak
was found in one of the adjacent positions in the replicate profile). The proportions of
both deleted and shifted peaks were significantly smaller for between-hospital repli-
cates than for between-platform replicates (Fig. 6A, P � 0.01 and P � 0.001, respec-
tively; Mann-Whitney U test). The difference in measured intensity was also significantly
smaller for between-hospital replicates than for between-platform replicates (P �
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0.001, Mann-Whitney U test). Finally, we also assessed these perturbations separately
for UC and CD to validate that no disease-specific batch effects were observed (see
Fig. S2).

Since our simulations showed that the intensity value of a deleted peak (i.e., low or
high) determines the effect on accuracy, we examined the intensity distribution of
deleted peaks (Fig. 6B). This revealed that, as expected, the majority of deleted peaks
had low intensity. Only two deleted peaks had intensity values that belonged to the top
peak intensity decile in the entire between-hospital comparison.

(ii) Predictability assessment. Subsequently, we assessed the accuracy of cross-
platform and cross-hospital models by cross-validation. Each classifier was trained by
using samples from one data set and tested on samples from a replicate data set. As a
reference, we cross-validated the classifiers within the same data set (by using the same
folds). All models were trained by using the A2 data set (n � 116), and the test set was
limited to the 28 samples that were shared by all three data sets.

Figure 7A shows that while the cross-platform accuracy (blue) was relatively low, the
cross-hospital accuracy (pink) was comparable to the within-data-set models’ accuracy
(green). A paired-prediction comparison of the three settings indicated that cross-
platform predictions were significantly different from the within-data-set predictions
for three out of seven classifiers (RF, NSC, L2-regularized logistic regression [q value of
�0.03, McNemar’s test]). However, cross-hospital predictions showed no significant
differences from the within-data-set predictions for all classifiers. The number of
predictions that did not agree, independently of their disease status, between within-
data-set models and cross-hospital models is shown per classifier in Fig. 7B. RF had one
misclassification in the within-data-set setting, while it could classify all samples cor-
rectly in the cross-hospital setting (1/28 mismatches). Partial least-squares discriminant
analysis (PLS-DA), on the other hand, had a total of 7 mismatches (7/28) between the
two settings.

DISCUSSION

In this study we investigated batch effects of microbial profiles and how different
sources of variation affect the accuracy of clinical prediction models. We studied
between-hospital and between-platform variations by using replicate data sets and
showed that while between-hospital variation occurred, it was less evident than
between-platform variation. In addition, cross-hospital predictions, on the basis of
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models that were trained and tested by using data sets from different hospitals,
showed performance similar to that of models cross-validated within the same data set.
Finally, among all of the classifiers tested, RF proved to be the most robust classifier to
both simulated and observed perturbations.

Gut microbiota profiles allowed prediction of the presence of IBD in pediatric
patients. These predictions remained valid when a subset of samples was reprocessed
and reanalyzed in a different hospital. While Papa et al. (12) achieved similar accuracy
for pediatric IBD predictions, their results indicated that an important factor in diag-
nostic accuracy was the sequencing depth, which allows low-abundance but highly
informative groups to be sampled. This might lead to increased costs, as fewer samples
can be analyzed in every run. A diagnostic test based on the IS-pro technique is
independent of the batch size and would therefore be more cost effective. The same
authors also showed that blind validation with an independent patient sample con-
firmed the classification accuracy, which is crucial for a reliable model, but in contrast
to our study, all of their samples were processed at the same lab.

Other multicenter studies or reanalyses that pooled several cohorts together to
construct a prediction model for IBD did not attempt to test it in a cross-hospital setting
(23, 24). While Gevers et al. (13) did construct a cross-hospital prediction model for CD
based on a large multicenter cohort, all of the samples included were still stored,
processed, and analyzed in the same center. The ability to reproduce the within-data-
set accuracy with a between-hospital cross-validation is important, since batch effects
are quite common in microbiota studies (15, 16). These effects have been shown to
significantly impact predictive accuracy in microbiota-based predictive models of obe-
sity (25) and CD (14).

It is recognized that significant intercenter differences in microbiota composition
can be attributed to different PCR primers for 16S rRNA amplification or various
sequencing platforms (16). This was recently demonstrated by Pascal et al. (14), who
identified a unique microbial signature consisting of eight microbial markers for CD that
was successfully validated in various different cohorts. However, when applied to a data
set processed by a different methodological approach, their method achieved poor
accuracy. In particular, two markers highly important for the discovered signature were
either completely missing or found at very low abundance in this data set.

Such outcome variations are avoided with IS-pro, which uses standardized phylum-
specific primers. Even though IS-pro is a highly standardized technique that uses
common laboratory instruments, batch effects can still impact its results. For example,
a large variation between replicates from different analysis platforms was observed. It
is therefore important to systematically identify which factors may lead to batch effects
large enough to impact predictive accuracy.

On the basis of our simulated perturbations, we determined that peak deletions had
the greatest impact on predictive accuracy. The high variation in accuracy observed
when four to seven peaks were deleted suggests that, in this range, the exact selection
of deleted peaks is important to the classifier. Apparently, with a larger amount being
deleted, the classifier loses enough information for its performance to deteriorate
regardless of which peaks are missing. The rest of the simulated perturbations had a
limited effect on accuracy, probably because they are more inherent to the data and so
occur more often in the unperturbed form of the synthetic data set. Consequently,
small variations in intensity and peak shifts are already considered by the classifier in
the training phase.

RF appeared to be a robust classifier to handle peak deletions. RF is commonly used
for microbiota classifications because of its accuracy and speed (12) and was shown to
obtain the best performance of the classifiers studied across several benchmark data
sets of human microbial communities (26). This can be explained by its mechanism. At
each iteration of the construction of an RF, the estimator is based on a subset of input
features, while part of the sample is left out by the bootstrap mechanism. The random
subsampling could possibly reduce the effect of outliers. In our study, the robustness
of RF was translated in practice to the highest achieved accuracy when tested in the
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cross-hospital setting and the smallest number of discrepancies between the cross-
hospital predictions and the within-data-set cross validation.

The cross-sectional design of our study, which included fecal samples collected at
the time of diagnosis and before any treatment had started, allows a good estimation
of diagnostic accuracy while excluding confounding factors such as different treatment
regimens. Furthermore, simulation of a large, balanced synthetic data set enabled a
realistic estimate of the models’ generalization error while circumventing sample size
limitations, which are common to microbiota studies because of high dimensionality
and high interindividual variation (25, 27). Additionally, on the basis of a comparison
across seven classifiers, we were able to draw generalized conclusions that were not
algorithm dependent and at the same time to identify algorithm-unique behavior, as
was demonstrated in the case of RF.

Our study also had several limitations. First, we used healthy children as controls,
whereas clinicians need to discriminate IBD patients from those with other GI com-
plaints or diseases. As for the cases, we decided, on the basis of our classification and
perturbations results, to combine UC and CD patients into one IBD group, even though
they were recently described as two distinct subtypes of IBD at the microbiota level
(14). In addition, all of the IBD patients in our cohort were in the active state of the
disease, so our model cannot be extrapolated to a remission state of IBD. On the other
hand, since an initial IBD diagnosis is performed when patients suffer from disease
symptoms, our model is suitable for the most common situation. Our replicate data sets
were limited to only two different platforms and two hospitals, and the between-
hospital replicate data set was an unbalanced subset of the original cohort and rather
small. Finally, since DNA extraction has been shown to be an important factor in
microbiota composition variation (28, 29), our replicate data sets did not include
reisolation of the DNA, rather than reprocessing of the same DNA isolates. The DNA
isolates were therefore stored until the two replicates were analyzed, which may also
introduce some degree of variation.

Our findings suggest that microbiota profiling by IS-pro is suitable for use as a
diagnostic tool in clinical practice. Since the gut microbiota is a powerful IBD biomarker
and IS-pro profiles proved to be accurate and robust predictors of the disease, our
study shows that this technique may be used for the development of a universal
diagnostic test for IBD based on a community characterization of the gut microbiota.
This test should be analysis platform specific, and a robust algorithm like RF should be
incorporated. Our analysis indicates that while the batch effect introduced by different
hospitals is mostly expressed by means of peak deletions, RF was able to handle this
kind of perturbation and maintained high accuracy. The next step in developing a
universal IBD diagnostic test should be a large multicenter clinical study using inde-
pendent IS-pro analyses at local laboratories to validate and further generalize our
findings.

MATERIALS AND METHODS
Subjects and samples. Children �18 years old and presenting with newly diagnosed, untreated UC

or CD according to the current diagnostic Porto criteria for pediatric IBD were included in this study,
which was performed between April 2010 and November 2014 in the tertiary hospitals of the VU
University Medical Center (VUmc) and the Academic Medical Center (AMC) in Amsterdam, The Nether-
lands. Exclusion criteria were use of antibiotics, steroids, or immunosuppressive therapy within the last
3 months prior to inclusion; a previous diagnosis of IBD; a history of surgery of the GI tract (except
appendectomy); and proven infectious colitis during the 3 months prior to inclusion. As a control group,
a cohort of healthy Dutch children �18 years old previously described by de Meij and colleagues (20) was
included. Fresh fecal samples were collected in sterile plastic containers and immediately stored in a
freezer at �20°C. Patients undergoing diagnostic colonoscopy were instructed to collect a fecal sample
prior to bowel preparation. This study was approved by the Medical Ethics Committee of VUmc and was
performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its
later amendments.

Data sets and study design. The original data set of this study was a cohort of 149 individuals of
which 58 were healthy children and 91 were pediatric patients with IBD. This sample set was processed
and analyzed in Amsterdam, The Netherlands, with an ABI PRISM 3130 genetic analyzer and was
designated A1. This data set was used to generate three additional data sets, as illustrated in Fig. 1, i.e.,
a large synthetic data set (n � 10,000; see data simulation using a Gaussian mixture model), referred to

Robust Microbiota-Based IBD Diagnostics Journal of Clinical Microbiology

June 2017 Volume 55 Issue 6 jcm.asm.org 1729

http://jcm.asm.org


here as SIM, and two replicate data sets using subsets of the original samples. The microbial profiles of
both replicates result from reprocessing of the original DNA isolates, followed by a repeated PCR
procedure and fragment analysis with an ABI 3500 genetic analyzer, in the original lab and in an
independent lab at the department of medical microbiology of the Maastricht University Medical Center
(MUmc), Maastricht, The Netherlands. These replicates were designated A2 and M2, respectively.

Microbiota profiling by IS-pro. DNA was extracted from fecal samples with the easyMag extraction
kit in accordance with the manufacturer’s instructions (bioMérieux, Marcy l’Etoile, France). All DNA
isolates were stored at 4°C. Samples were then analyzed with the IS-pro assay (IS-Diagnostics, Amster-
dam, The Netherlands) in accordance with the protocol provided by the manufacturer, as described
previously (18, 20). In short, IS-pro differentiates bacterial species by the length of the 16S-23S rRNA gene
IS region with taxonomic classification by phylum-specific fluorescently labeled PCR primers. There are
three phylum-specific primer sets for the phyla, (i) Bacteroidetes; (ii) Firmicutes, Actinobacteria, Fusobac-
teria, and Verrucomicrobia (FAFV); and (iii) Proteobacteria. DNA fragment analysis was originally per-
formed on an ABI PRISM 3130 genetic analyzer (Applied Biosystems). For the replicate data set, 10 �l of
each DNA isolate was sent in a cool pack to MUmc. All DNA isolates were then reanalyzed on an ABI 3500
genetic analyzer (Applied Biosystems) both at MUmc in Maastricht and at VUmc in Amsterdam (data sets
M2 and A2, respectively).

Data preprocessing. Preprocessing was carried out with the IS-Pro proprietary software suite
(IS-Diagnostics Ltd.) and resulted in microbial profiles that are presented as peak profiles (Fig. 4). Each
peak is characterized by a color that corresponds to the primer complementary to the amplified
fragment and therefore corresponds to the phylum (or phylum group) from which it derives. The
length of the IS fragment, measured in nucleotides, discriminates bacteria at the species level, and
the peak intensity represents the amount of the PCR product, measured in relative fluorescence
units (RFU). We considered each peak an operational taxonomic unit (OTU) and its intensity its
abundance. Intensity values were log2 transformed. Subsequently, OTUs and their corresponding
abundances were used as features for supervised classification.

Data simulation with a Gaussian mixture model. We used a generative naive Bayes model to
simulate synthetic samples, since a larger data set prevents overfitting and allows a better estimation of
the perturbations’ effects by repeated subsampling of multiple different training sets. For each class
(healthy or IBD), a Gaussian mixture model was fitted per feature by using the expectation-maximization
algorithm with the sklearn.mixture package of the scikit-learn 0.16.0 Python library (30). Models were
fitted with a diagonal covariance matrix and compared over 1 to 10 components. The model selected
had the lowest Bayesian information criterion value. Feature values were then sampled by the model and
combined to generate a new observation. All values of �6 log2 RFU were set to 0. This simulation was
used to complete the original data set to a total of 10,000 samples, balanced between healthy and IBD
samples. The simulated data set was validated by (i) comparing the feature distributions of the original
data set and the simulated data by using the Kolmogorov-Smirnov test, (ii) calculating the concordance
correlation coefficient per class between the average profile of the original data set and that of the
simulated data, and (iii) using a learning curve. We used supervised classification with training sets of
increasing sizes (20 to 400 samples, repeatedly subsampled 10 times for each size) from the simulated
data and the original data as the test set.

Perturbation simulations. A peak x in a profile is defined as x � {xp, xi|xp � �, xi � �}, where xp is
the peak’s position, which corresponds to the length in nucleotides of the IS fragment, and xi is the peak’s
intensity, which corresponds to the amplified quantity of that fragment. We formulated the perturbations
most likely to occur when IS-pro is run in different labs as follows. The first factor is intensity cutoff. For
each peak {x|xi � k}, where xi is the peak’s intensity measured in log2 RFU and k � {12, 12.5, 13, 14, 15},
we assigned xi ¢ k. The second factor is peak shifts. A subset of n peaks, Sn, where n � kN, k � {0.05,
0.1 . . . 0.4}, and N � |{x|xi � 0}| is the total number of nonzero peaks in a profile, was randomly selected.
For each peak {x|x � Sn}, a shifted position was assigned by xp

new¢xp � 1. This simulates the fact that
during the preprocessing of the profiles, continuous position values are binned into discrete peak
positions, which may consequently result in variations of �1 nucleotide in the peak position of the same
OTU. The third factor is intensity noise. For each peak x, a new intensity value was assigned by

xi
new¢max(xi � �i, 0), where �i randomly sampled from UNIF� � k

range�x�
50

, k
range�x�

50 �, in which k � {1,

5, 10, 15, 20, 22, 25} and range(x) � maxj(xj) � minj(xj), is the difference between the maximum and the
minimum intensity values of the peak in the SIM data set, as implemented in the R function jitter. The
fourth factor is peak deletion. The probability that peak x will be deleted was defined as p(xi ¢ 0) �
min�xi,k�

xi
, where xi is the peak’s intensity measured in RFU and k � {25, 50, 75, 100, 200, 30, 400}. This

simulates the fact that low-intensity peaks have a higher probability of randomly falling below the lower
limit of detection because of, e.g., variation in PCR efficiency. The fifth factor is dominant peak deletion.
This perturbation was designed to investigate the effect deletion of high-intensity peaks would have on
predictive accuracy, even though they are not prone to falling below the PCR assay’s lower limit of
detection. To simulate this, all peaks that belonged to the kth intensity percentile, k � {0.995, 0.99, 0.985,
0.98}, were set to 0.

In all of the perturbations described, k was used as a parameter to control the extent of each perturbation
in order to explore its varying effect on predictive accuracy in a series of discrete increasing steps.

Supervised classification. We used supervised classification models to predict the health status of
individuals on the basis of their gut microbiota profiles. For high-dimensional data, it is essential to
control the variance of the model parameter estimates. This was achieved both by increasing the training
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set size with synthetic data and by applying regularization that constrains the size of the coefficients. The
classifiers used were RF, NSC (31), elastic net (ENET) (32), L1- and L2-regularized logistic regression,
PLS-DA, and L1-regularized L2 loss support vector machine (SVM).

RF, NSC, ENET, SVM, and PLS-DA have all been successfully applied in human microbiota classification
tasks (22, 26), as well as in genomics, a field with similar dimensionality challenges (31–35). We used the
following publicly available packages in the statistical software R: randomForest with default settings for
the RF classifier; LiblineaR with type “L1-regularized L2-loss support vector classification” and the cost
constant tuned by the heuristics provided by the heuristicC function for SVM; glmnet with � values of
0, 1, and 0.5 for L2- and L1-regularized logistic regression and ENET, respectively; caret for PLS-DA; and
pamr for the NSC classifier.

Initial preprocessing of the data included the removal of all zero-value features and feature stan-
dardization. We estimated the error in the perturbed simulated data sets in the following way. We
subsampled 400 unperturbed samples from the SIM data set, balanced between groups, to be used as
a training set for the classifier. We then used the perturbed form of the 9,600 samples left as a test set.
This was repeated 100 times for randomly subsampled training sets. For each perturbation, we repeated
this process for a range of increasing values of the critical parameter k (see perturbation simulations
above for details).

Between-hospital and between-platform analyses. The extent of perturbations in real data
between different laboratories and different analysis platforms was estimated by using replicate data
sets. In the between-platform comparison, we considered the A1 data set a reference data set and the
A2 data set its replicate. In the between-hospital comparison, we considered the A2 data set the
reference and the M2 data set the replicate. For each sample, we identified all of the peaks that appeared
in the reference profile and were missing from the corresponding replicate profile. We then categorized
those peaks as “deleted” or “shifted” on the basis of whether or not the replicate profile had a peak in
one of the positions adjacent to the missing peak.

Predictive accuracy was established by 10-fold cross-validation. For each fold, the training set was
taken from one data set (A2) while the test set was taken from a replicate data set (A1 and M2 for
cross-platform and cross-hospital analyses, respectively). In all settings, the test set was limited to
samples that were shared by all of the data sets (n � 28). Statistical evaluation of predictions between
different settings was done with McNemar’s test.

Data availability. All of the data sets supporting the conclusions of this article are available in the
figshare repository at https://figshare.com/s/0522d4c0bff108f6cd73.
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