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ABSTRACT Whole-genome amplification (WGA) is a useful tool for amplification of
very small quantities of DNA for many uses, including metagenomic shotgun se-
quencing for infection diagnosis. Depending on the application, background DNA
from WGA kits can be problematic. Three WGA kits were tested for their utility in a
metagenomics approach to identify the pathogens in sonicate fluid comprised of
biofilms and other materials dislodged from the surfaces of explanted prosthetic
joints using sonication. The Illustra V2 Genomiphi, Illustra single cell Genomiphi, and
Qiagen REPLI-g single cell kits were used to test identical sonicate fluid samples.
Variations in the number of background reads, the genera identified in the back-
ground, and the number of reads from known pathogens known to be present in
the samples were observed between kits. These results were then compared to
those obtained with a library preparation without prior WGA using an NEBNext Ultra
II paired-end kit, which requires a very small amount of input DNA. This approach
also resulted in the presence of contaminant bacterial DNA and yielded fewer reads
from the known pathogens. These findings highlight the impact that WGA kit selec-
tion can have on metagenomic analysis of low-biomass samples and the importance
of the careful selection and consideration of the implications of using these tools.
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Metagenomic shotgun sequencing is a rapidly developing powerful tool to exam-
ine microbial communities. It is also gaining interest in the field of clinical

microbiology as a way to identify pathogens in normally sterile specimens (1–7). Not
only does this approach allow for pathogen identification, but the gene content
information can also be used for other analyses, such as antibiotic resistance prediction
(8, 9), typing for tracking of outbreaks or epidemiological studies (10), or assessment for
other relevant genes, such as those encoding virulence factors (11, 12).

One significant barrier to metagenomic shotgun sequencing approaches is the
amount of genetic material necessary to perform these experiments. This is not an
obstacle in settings such as fecal microbiome studies, where abundant organisms are
present, but in other scenarios (e.g., in scenarios with low-biomass environmental
samples and uncultured bacteria or in single cell analysis), the number of cells and the
amount of genetic material can be limited (13–17). It is in these situations that
whole-genome amplification (WGA) has the potential to play an important role in
pathogen detection.
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Whole-genome amplification refers to a collection of methods to amplify the entire
DNA content of an organism, ideally in an unbiased manner. One common form of this
approach is multiple displacement amplification (MDA), in which a high-fidelity phi29
polymerase amplifies DNA in an isothermic reaction with the aid of random hexamer
primers (18). When the polymerase encounters a previously synthesized strand, it
displaces the strand to continue polymerization while creating a branching single-
stranded template that new primers can bind to and initiate polymerization. The results
are large branching DNA molecules that can then be fragmented and used for
next-generation sequencing.

The approach is not without its limitations, as there is observed bias in the
amplification of templates (19–22). Biases against high-GC-content DNA (20–22), low-
abundance templates (23), and smaller DNA fragments (21) have all been reported.
Additionally, if little or no template DNA is involved, amplification products are still
produced. This raises the question as to whether these amplification products are the
result of contaminating DNA in WGA reagents or an artifact of the extension of random
hexamers. The presence of contaminating DNA in some WGA reagents has been
suggested by other investigators (24). This contamination can confound metagenomic
shotgun sequencing analysis of samples from sterile sites, where the presence of any
microorganism could be considered significant.

We sought to use WGA as a method to amplify DNA for metagenomic analysis of
materials dislodged from the surfaces of explanted prosthetic joint components using
sonication (i.e., sonicate fluid). These prostheses were removed due to mechanical
failure or prosthetic joint infection (PJI). PJIs occur in up to 2% of joint arthroplasties,
with devastating consequences for individuals, as they often require multiple surgeries
and prolonged intravenous antibiotic treatment to achieve a cure (25). Treatment varies
depending on the pathogen identified; however, in approximately 20% of cases, no
pathogen is detected using conventional techniques (25). Metagenomic shotgun se-
quencing is a promising tool to aid in these cases. The overwhelming ratio of human
to pathogen DNA in PJI samples makes it necessary to enrich for microbial DNA, for
example, using MolYsis kit reagents (Molzym, Bremen, Germany) (26). The depletion of
host DNA, however, results in insufficient DNA quantities for next-generation sequenc-
ing in most cases. WGA is one tool available to amplify DNA to sufficient amounts for
next-generation sequencing.

During previous studies, we encountered the problem of contaminating DNA compli-
cating the analysis of sequencing results (26), which is emerging as a common problem
encountered when attempting to do metagenomic analysis of clinical samples (3, 27–29).
Here, we evaluated three commercially available WGA kits to characterize the relative
amount and composition of contaminating DNA associated with the use of each of them
to inform selection of the appropriate WGA kit for further metagenomics studies of PJI.

RESULTS

To allow an even comparison, prior to WGA all samples were prepared in an
identical manner, with the same DNA extraction undergoing WGA with the different
kits prior to next-generation sequencing library preparation and metagenomic shotgun
sequencing. Two methods were used to determine the bacterial DNA content. The
Livermore metagenomics analysis tool kit (LMAT) was used for taxonomic assignment
of individual reads, in which a k-mer-based approach was utilized to determine the
lowest common ancestor for a sequence based on a database containing a wide range
of genomes, including the genomes of human, bacterial, viral, and fungal species (30).
The MetaPhlan2 tool was also used for identification of pathogens in samples (31). This
tool searches for marker genes that are unique to different genera, species, subspecies,
etc., and if sufficient markers are present, it identifies the organism as being present and
predicts the relative genome frequency if multiple species are detected.

Both analysis tools identified patterns of species unique to the individual WGA kits.
The Illustra single cell Genomiphi kit consistently had the fewest total number of
bacterial background reads (Table 1). This was evident in samples from infected joints
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as well as uninfected aseptic failures and negative controls. However, the number of
reads from pathogens identified by culture was also notably less (Table 1). The Qiagen
REPLI-g single cell kit and Illustra V2 Genomiphi kit resulted in an average of 42 and 141
times more reads, respectively, when the number of pathogens was compared to the
number identified by the Illustra single cell kit. This was in large part due to the
increased number of reads identified as human in origin in the Illustra single cell kit. For
example, in the Corynebacterium glutamicum positive-control sample to which no
human cells were added, if human reads were not prefiltered prior to LMAT analysis,
there were 3,479,254 reads identified as human in the Illustra single cell sample, while
the Qiagen and Illustra V2 kits resulted in only 117,798 and 68,198 reads, respectively
(data not shown). This resulted in fewer reads identified as C. glutamicum (Table 1).

The taxonomic assignments of the reads are listed in Table 2. The reads, including
those assigned at lower taxonomy levels, such as species and strains, were grouped at
the genus level to simplify analysis. Coverage statistics to evaluate the variability in
coverage along the length of a reference genome were also calculated (see Table S1 in
the supplemental material). The most common organism identified in the samples
analyzed with the Illustra single cell kit was Toxoplasma gondii, although this likely
represents a misclassification of human reads as toxoplasmal due to database errors.
When the full LMAT database was used for classification of these samples, the reads
were identified as human (data not shown). Similar findings with this database have
been previously reported (32).

The Illustra V2 kit had the most reads attributed to contaminant bacterial DNA
(Table 1). Reads were frequently identified by LMAT as being from Pseudomonas,
Propionibacterium, Acinetobacter, Staphylococcus, Elizabethkingia, Streptococcus, and
Achromobacter species (Table 2). A similar pattern was observed when the MetaPhlan2
tool was used to identify the presence of bacteria, where Pseudomonas and Propi-
onibacterium species were frequently identified, particularly in samples without a
predominant known pathogen (Table S2).

The samples analyzed with the Qiagen REPLI-g single cell kit had background read
counts between those of the other kits (Table 1). This kit also consistently resulted in
moderate amounts of reads from known pathogens relative to the Illustra kits (Table 1).
Streptococcus, Propionibacterium, and Acinetobacter species were the most common
contaminants observed (Table 2).

To further evaluate the consistency of background DNA in kits, the beta diversity
between samples was calculated and plotted. The HUMAnN2 pipeline was used to
analyze the gene content of samples after human reads had been computationally
subtracted. The QIIME pipeline was then utilized to evaluate the diversity present
between samples. Samples were found to cluster together (indicating a similar com-
position) on the basis of the WGA kit used to amplify the DNA (Fig. 1A) rather than the
origin of the samples (Fig. 1B). The exceptions to this pattern were samples containing
the positive control C. glutamicum, in which the presence of the positive-control
bacterium dominated the sample, minimizing the presence of background bacterial
reads.

The NEBNext Ultra II kit was also utilized to sequence the samples without WGA to
determine whether this approach would limit background bacterial DNA reads, as
low-input kits are increasingly being used. In most instances, this approach resulted
in fewer known pathogen reads (for all samples except sample 996) but more reads
from contaminant species, particularly Propionibacterium and Achromobacter spe-
cies (Table 3).

In every sample in which a bacterium was identified using conventional microbiol-
ogy techniques, the organism was detected by metagenomic analysis using each of the
three different WGA kits (Tables 1 and 2). However, when sample 986, a sample from
a PJI with a low burden of Staphylococcus aureus, was amplified with the Illustra single
cell kit, it did not produce sufficient reads to be identified using the MetaPhlan2 tool.
The consistent presence of Clostridium reads from all WGA preparations of sample 996,
as well as the absence of these reads as the background in other samples, suggests the
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possible presence of a Clostridium species, in addition to the Bacteroides fragilis isolate
identified by culture and sequencing, though there were insufficient reads for identi-
fication by use of the MetaPhlan2 tool. The patient from whom this specimen derived
received vancomycin and ertapenem for treatment, which would have also treated the
Clostridium species, if present. No potential pathogens were detected in the culture-
negative PJI or aseptic failure cases with a signal above that for the common back-
ground contaminants strong enough to identify them as being present in the samples.

DISCUSSION

Metagenomic whole-genome sequencing is a powerful tool whose utility in diag-
nosing infections is only beginning to be utilized. For clinical samples with very little
DNA available, WGA is a useful tool to amplify genomic material that is present in
amounts too small for next-generation sequencing. Our findings highlight the variabil-
ity in some of the available WGA kits as well as the dramatic impact that this can have
on results.

A strength of this study was the type of specimens used to compare the WGA kits.
We used sonicate fluid from arthroplasty components resected due to infectious
complications or other noninfectious reasons. These samples were well characterized
from a microbiological standpoint, with culture results being readily available. They
contained different bacteria with a range of infectious burdens, reflective of the
variability encountered in clinical samples, as well as uninfected samples, as determined
by clinical and microbiological data. This allows for appreciation of the impact of
background DNA when identifying a pathogen that is known to be present, as well as
what to expect when no bacteria are presumably present.

Perhaps the most striking finding was the wide variation in that amount of con-
taminant DNA between kits. The Illustra V2 kit generated the largest amount of
background reads in regard to both the total number of reads and the number of
bacterial species present. The Illustra single cell kit detected the fewest background
bacterial species; however, the higher levels of human reads generated limited its
utility, as it consistently resulted in fewer reads corresponding to the known pathogens
being detected. The larger number of human reads in the C. glutamicum-containing
control sample suggested increased contaminant human DNA in the Illustra single cell
reagents, but this was not directly confirmed. The Qiagen REPLI-g single cell kit

FIG 1 Beta diversity of samples by sample source versus WGA kit. The beta diversity of the gene content of the samples was determined using QIIME and
plotted on a principal coordinate analysis plot. Samples are colored according to the WGA kit used for amplification (A) or by template sample source (B). NT,
no template.
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provided what we considered the best balance, with fewer background reads than the
Illustra V2 kit, yet more reads from pathogens than the Illustra single cell kit. This is also
supported by comparing the ratio of known pathogen-to-nonpathogen microbial
reads. In four of five samples, the REPLI-g kit provided the highest ratio of pathogen-
to-nonpathogen microbial reads. It is also important to note that the species identified
from the background DNA are also those that routinely cause a wide range of
infections. So while clinical judgment may be able to differentiate identifications such
as Toxoplasma and Gloeocapsa species from true pathogens in certain clinical settings,
the presence of genera such as Pseudomonas, Acinetobacter, or Streptococcus would not
be so easily differentiated and could lead to overinterpretation or misidentification of
causative organisms.

There was a surprising difference in the number of reads originating from known
pathogens when comparing the results for samples sequenced by a non-WGA method
(NEBNext Ultra II) to those obtained with the various WGA kits. With the exception of
sample 996, the non-WGA libraries resulted in far fewer pathogen reads, especially
when accounting for the baseline total number of reads obtained for each sample.
Additional analysis of the samples by the non-WGA method revealed a large number
of small sequencing fragments (average size, 150 to 200 bp) that were human in origin,
likely reflecting the degradation of human DNA during pretreatment with the MolYsis
kit reagents and DNA isolation. The difference in relative pathogen counts could
therefore reflect either a bias of WGA against these small fragments (21), a bias during
library preparation of samples by the non-WGA method against large fragments, or a

TABLE 3 Read counts and taxonomic identification of reads of non-WGA samplesa

Sample source,
sample no.

No. of reads

LMAT identification(s) (no. of reads)Total
Pathogen
reads

Other
microbial
reads

Culture-positive
PJI

980 53,582,421 141,373 414 Streptococcus (141,373)
982 53,690,669 24,419 713 Staphylococcus (24,419), Propionibacterium (145), Achromobacter (107)
986 55,232,392 718 2,539 Propionibacterium (916), Staphylococcus (718), Achromobacter (257),

Streptococcus (232), Pseudomonas (142)
996 47,452,448 232,328 5,376 Bacteroides (232,328), Clostridium (3,421), Parabacteroides (1,108),

Propionibacterium (136)
1002 43,173,874 60,545 990 Corynebacterium (60,545), Propionibacterium (265), Achromobacter (127)

Culture-negative
PJI, 984

40,410,935 NA 6,575 Propionibacterium (3,097), Achromobacter (884), Micrococcus (507),
Malassezia (432), Delftia (258), Pseudomonas (207), Streptococcus (125),
Acinetobacter (115), Methylobacterium (101)

Aseptic failure
983 47,136,446 NA 8,527 Propionibacterium (2,641), Streptococcus (1,548), Achromobacter (666),

Rothia (238), Micrococcus (230), Pseudomonas (209), Gemella (209),
Corynebacterium (169), Acinetobacter (178), Prevotella (134), Neisseria
(119), Delftia (139), Haemophilus (136), Fusobacterium (133),
Actinomyces (123), Methylobacterium (118), Staphylococcus (111),
Malassezia (109)

987 31,724,272 NA 39,114 Propionibacterium (17,250), Achromobacter (5,555), Pseudomonas (4,282),
Corynebacterium (1,720), Delftia (1207), Streptococcus (866),
Staphylococcus (910), Micrococcus (778), Methylobacterium (693),
Acinetobacter (699), Malassezia (422), Bifidobacterium (355),
Stenotrophomonas (445), Rothia (240), Lactobacillus (247),
Agrobacterium (262), Dolosigranulum (176), Comamonas (198),
Prevotella (149), Alloiococcus (135), Sphingomonas (156), Burkholderia
(169), Neisseria (142), Kocuria (146), Aerococcus (129), Bacillus (145),
Actinomyces (140), Cupriavidus (105), Geobacillus (101)

aSequencing libraries were prepared with the NEBNext PE Ultra II kit without prior WGA. Total read counts and reads assigned by LMAT to the known pathogen’s
genus as well as other nonpathogen genera are listed. All genera with �100 reads are listed with the corresponding read counts under LMAT Identifications. Known
pathogens identified by culture are in boldface. NA, not applicable.
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combination of both. More aggressive selection of smaller fragments prior to library
preparation could potentially lessen this discrepancy.

While there has been debate about the origin of background DNA generated by
MDA WGA methods (i.e., amplification of contaminant DNA versus nonspecific exten-
sion of random primers), there is evidence for the presence of contaminant DNA in
WGA reagents prior to amplification (24). The consistent makeup of the background
DNA from the individual kits observed in this study also suggests the presence of
specific contaminant DNA in the kits. Because the same DNA preparation was used for
each WGA reaction, the contribution of contaminant DNA in steps such as microbial
DNA enrichment or DNA extraction is unlikely to account for the differences observed
between WGA kits.

The impact of the observed WGA background DNA largely depends on the appli-
cation for which WGA is used. If one is analyzing only human sequences, then the
variable microbial DNA composition has little effect, though any human DNA contam-
ination in WGA kits certainly would. If the goal is to analyze a single cell genome which
is aligned to a reference genome, then any background reads would have little impact,
as long as the background DNA is not significantly similar to that of the bacterium of
interest. However, when one combines a small amount of input DNA with a broad
metagenomics analysis approach (a common situation for which metagenomic shot-
gun sequencing is likely to be used in clinical microbiology), then the presence of
contaminant DNA can be greatly magnified, and while the relative amount of contam-
inating DNA generated can be lessened by increasing the amount of input template
DNA, the value of WGA is likely to be high in settings where minimal template DNA is
available, so increasing the amount of template DNA is not always possible.

Commercial reagents for the preparation of sequencing libraries continue to im-
prove, and less and less input DNA is required to generate libraries. These methods still
require amplification of DNA using PCR-based methods, which raises the potential for
contaminating DNA amplification and amplification bias. When comparing the NEBNext
Ultra II library preparation method using DNA amplified by a non-WGA method with
the NEBNext Ultra library preparation method using DNA amplified by WGA, we
continued to observe contaminating DNA reads with a pattern distinct to the NEBNext
Ultra II kit. This suggests that simply incorporating this new kit requiring small amounts
of DNA will not provide an easy solution to contaminant DNA for metagenomic analysis
of low-biomass samples. This is in agreement with the findings of previous studies, in
which high levels of contaminating DNA reads were seen when decreasing amounts of
template DNA were used for Nextera XT library kit preparation (27).

The range of the number of reads from known pathogens also highlights the
challenge of defining cutoffs for the presence or absence of microorganisms based on
just the number of reads from an organism. The amount of human DNA in samples can
dramatically shift the total number of microbial reads. For example, using the Illustra V2
kit for a sample such as sample 996, in which 96,154 reads were observed for the known
pathogen, if one were to apply a cutoff of 90,000 reads as being indicative of a
bacterium being present, then for samples such as Ringer’s solution or samples
undergoing WGA reactions with no template, in which presumably no bacteria (or
human DNA) were present, a cutoff of 90,000 would have resulted in numerous
contaminants being incorrectly identified as being present. Setting a minimum per-
centage of all microbial reads could be added; however, this could lead to missed calls
in polymicrobial settings. Additional analyses, such as the extent of genome coverage,
may be useful to help determine the likelihood that a microorganism is truly present in
a sample.

This study does have limitations. Single lots of WGA kits were used for the reported
experiments. While this provided consistency within the study, it is possible that there
is lot-to-lot variability in contaminant DNA and that this could change the makeup of
the background DNA, impacting which kit may be best suited for a method. Our
subsequent experience with multiple lots of the Qiagen REPLI-g kits indicates that the
findings are not highly different between lots. There are also limitations to the tools
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used for the taxonomic assignment of reads. Toxoplasma species was frequently
identified as a contaminant in the Illustra single cell kit-based analysis. This highlights
a limitation of many databases used for assigning a taxonomic assignment of reads.
These tools make use of whole-genome sequencing data sets which, in many cases, can
include contaminating human DNA mislabeled as microbial DNA (32). Additionally, we
performed WGA in the reaction volumes recommended per the manufacturers’ instruc-
tions. It has been demonstrated that the use of smaller volumes, particularly the very
small volumes typically used in sorted single cell applications, result in less contaminant
DNA (33). Given that we were investigating WGA as a tool for use with clinical samples,
we considered the volumes used to be reflective of potential methods that will used in
the future for these types of samples.

There are many potential sources for contaminant DNA beyond the WGA kit used.
There can be background, nonclinically significant DNA in the specimen to begin with,
or contaminant DNA can be introduced during specimen collection, prior to arrival in
the laboratory. Introduction of DNA through handling in the laboratory is a possibility
at every step; mitigation measures, such as the use of personal protective equipment,
dedicated and airflow-controlled work areas, and laminar flow hoods and the treatment
of surfaces with reagents, such as diluted bleach, to remove environmental DNA, may
be helpful (27). It may be that specially constructed laboratories will be needed to
ideally perform this type of analysis. Laboratory disposables (e.g., pipettes, tips) are
potential sources of contaminant DNA that can be difficult to control. Reagents often
not included in commercial kits (e.g., ethanol, Tris-EDTA buffer) must also be considered
potential sources of contaminant DNA. Often, these are not ensured to be free of
microbial DNA, so measures must be taken to try to remove any DNA present; it is
helpful to minimize the number of reagent lots used and, of course, to carefully track
which ones are used for each sample, potentially allowing contaminants to be recog-
nized by findings across specimens.

Accounting for possible contaminant DNA from WGA kits or other sources when
making clinical interpretations of metagenomic data will be challenging. Identifying
common contaminant species in negative controls and excluding them from interpre-
tation should be attempted, but these steps do not always solve the issue, as poten-
tially clinically relevant species may be contaminants. Subtracting reads on the basis of
what is detected in negative controls also falls short, given that the relative contribution
of contaminant DNA in negative controls may be higher than that in clinical samples
where additional DNA is present, so the final number of contaminant reads from
negative controls may be higher than that present in patient samples, compromising
simple subtraction. Contaminant read numbers also vary between negative controls,
making this approach even more problematic.

There are potential methods to account for contaminant DNA during the metag-
enomics data analysis. We have observed that reads from contaminant DNA often result
from the large-scale amplification of small DNA fragments. This may be accounted for
by aligning reads to a reference genome to evaluate genome coverage, although this
approach has limitations as the number of reads decreases. Identifying cutoffs for what
constitutes sufficient coverage needs to be defined but, as discussed above, is chal-
lenging. Single nucleotide polymorphism analysis could possibly be employed to
differentiate contaminants from new identifications if a particular species is commonly
encountered in negative controls. This approach may also prove beneficial if there is
concern for cross-contamination between samples being tested. While these and other
methods offer promise for discriminating clinically meaningful results from the back-
ground findings, much work remains to make this type of testing clinically useful in
routine practice; in the end, it is likely that interpretation of results, particularly in gray
areas, will require a correlation with other clinical findings.

Overall, our findings highlight not only the impact that WGA as a whole can have on
the metagenomic analysis of infections but also that the selection of a specific kit can
have a dramatic impact, including not only on the background contaminant DNA
observed but also on the relative number of reads observed from known pathogens.
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When designing metagenomic experiments incorporating WGA, these factors should
be considered as part of the methods selection process.

MATERIALS AND METHODS
Samples. Samples were collected under Mayo Clinic Institutional Review Board protocol 10-005574.

Sonicate samples were prepared from resected prosthetic hip and knee components using previously
described vortexing/sonication methods (34). Complete microbiological data were available for all
samples to allow identification of any bacteria present. Eight samples, including samples from culture-
positive PJIs, culture-negative PJIs, and aseptic failures, were selected. C. glutamicum ATCC 13032 was
used as a positive control. Negative controls included sterile Ringer’s solution, which was used for
implant sonication and subjected to the same DNA purification procedure as sonicate fluid, as well as
WGA reactions without a template.

Sample preparation. All steps were conducted in a laminar flow hood to minimize the risk of DNA
contamination. Work areas were thoroughly cleaned with diluted bleach prior to use, and gloves and
laboratory coats were used during all steps. Prior to DNA extraction, 1 ml of sonicate fluid underwent
microbial DNA enrichment using a MolYsis Basic5 kit (Molzym, Bremen, Germany), which lyses human
cells and degrades released DNA, to improve detection of bacterial DNA (26). DNA extraction was
performed using a MoBio bacteremia DNA isolation kit. Whole-genome amplification was then carried
out using a Qiagen REPLI-g single cell kit (Qiagen, Hilden, Germany), an Illustra V2 Genomiphi kit (GE
Healthcare Bio-Sciences, Pittsburgh, PA), or an Illustra single cell Genomiphi kit per the manufacturers’
protocols using 1 �l of input DNA. Amplified DNA was then purified using Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA) per the manufacturer’s protocol. Ringer’s solution or 105 CFU of C.
glutamicum suspended in Ringer’s solution was also purified using the above-described methods. WGA
reactions without template DNA added were included as additional controls. For the Illustra V2 and
Illustra single cell kits, the amplification steps of the WGA reactions for the no-template and Ringer’s
solution negative controls were extended to 4 h to obtain sufficient amounts of DNA products.

Sequencing. Paired-end libraries from WGA reactions were prepared by the Mayo Clinic Medical
Genome Facility using a NEBNext Ultra DNA library preparation kit (New England BioLabs, Ipswich, MA).
Samples were sequenced with an Illumina HiSeq 2500 sequencer in rapid run mode with 2 � 250-bp
reads. Samples were multiplexed with six samples per lane. Samples that did not undergo WGA
underwent library preparation with the NEBNext Ultra II DNA library preparation kit and were sequenced
under conditions similar to those described above, except with multiplexing of four samples per lane due
to sample number availability.

Data analysis. Illumina adapters were removed using the Trimmomatic trimming tool (35). Human
and phiX sequences were then prefiltered using BioBloom tools (36) by aligning reads to a library of
human and phiX sequences and computationally subtracting any reads matching these libraries. The
Livermore metagenomics analysis tool kit (LMAT) was then used for taxonomic assignment of reads (30),
utilizing the kML�Human.v4-14.20.g10.db database (32) and setting a minimum identification score of
1.0, which is considered a high-quality identification. Reads identified as human by LMAT (taxonomy
identifier number 9,606) were removed. The Trimmomatic tool was then used to trim low-quality reads
(parameters of leading � 3, trailing � 3, MAXINFO � 220:0.1, and minimum length � 70). Trimmed reads
were then analyzed using MetaPhlan2 as an additional tool to identify organisms on the basis of the
presence of unique marker genes (31).

Beta-diversity analysis and PCoA plot generation. Fastq files depleted of human and phiX
sequences by BioBloom tools and LMAT were concatenated, and HUMAnN2 (version 0.5.0; Department
of Biostatistics, Harvard T. H. Chan School of Public Health [http://huttenhower.sph.harvard.edu/
humann2]) was used to determine the gene abundances of the organisms present. QIIME was then used
to calculate beta diversity and generate principal coordinate analysis (PCoA) plots (37).

Accession number(s). Files containing next-generation sequencing data with human reads removed
have been be deposited in the NCBI Sequence Read Archive under accession numbers SAMN06604700
through SAMN06604732 and SAMN06678448 through SAMN06678455. They are available under Bio-
Project accession number PRJNA378504.
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