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ABSTRACT Whole-genome sequencing (WGS) can provide excellent resolution in
global and local epidemiological investigations of Staphylococcus aureus outbreaks. A
variety of sequencing approaches and analytical tools have been used; it is not clear
which is ideal. We compared two WGS strategies and two analytical approaches to
the standard method of SmaI restriction digestion pulsed-field gel electrophoresis
(PFGE) for typing S. aureus. Forty-two S. aureus isolates from three outbreaks and 12
reference isolates were studied. Near-complete genomes, assembled de novo with
paired-end and long-mate-pair (8 kb) libraries were first assembled and analyzed uti-
lizing an in-house assembly and analytical informatics pipeline. In addition, paired-
end data were assembled and analyzed using a commercial software package. Sin-
gle nucleotide variant (SNP) analysis was performed using the in-house pipeline.
Two assembly strategies were used to generate core genome multilocus sequence
typing (cgMLST) data. First, the near-complete genome data generated with the in-
house pipeline were imported into the commercial software and used to perform
cgMLST analysis. Second, the commercial software was used to assemble paired-end
data, and resolved assemblies were used to perform cgMLST. Similar isolate cluster-
ing was observed using SNP calling and cgMLST, regardless of data assembly strat-
egy. All methods provided more discrimination between outbreaks than did PFGE.
Overall, all of the evaluated WGS strategies yielded statistically similar results for S.
aureus typing.
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Methicillin-resistant Staphylococcus aureus (MRSA) infections are associated with
high morbidity and mortality. MRSA transmission poses a challenge to hospital

infection prevention and control practitioners and public health professionals. The
Centers for Disease Control and Prevention’s Active Bacterial Surveillance Report esti-
mated that there were 72,444 cases of invasive MRSA infection in 2014, the majority of
which were health care associated (HCA) (1). Proactive screening strategies (molecular
and culture based) are emphasized in many institutions and are mandatory in some
states. Despite these measures, HCA-MRSA outbreaks continue to occur. Thorough
investigation of outbreaks is essential for confirming that an outbreak is occurring,
understanding transmission patterns and reservoirs, and intervening to interrupt out-
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breaks. For example, identification of colonized health care workers and other reser-
voirs can inform strategies such as furlough/decolonization and heightened environ-
mental services, respectively. Such interventions can terminate outbreaks and in doing
so mitigate costs associated with HCA-MRSA.

The literature surrounding MRSA typing and outbreak investigation is expansive.
Within such studies, two strategies of investigation are exercised: global (large geo-
graphical areas and extended time frames) and local (small areas and short time
frames). Multilocus sequence typing (MLST) and staphylococcal cassette chromosome
mec element (SCCmec) typing have been widely used to describe global complex
groupings of MRSA (2). However, these methods do not possess the discriminatory
power needed to study outbreaks at the local level. For local investigations, laborato-
rians, infection prevention and control practitioners, and public health professionals
have traditionally relied on pulsed-field gel electrophoresis (PFGE). PFGE was rigorously
evaluated and standardized in several well-known studies and has cross-utility in global
classifications (e.g., USA PFGE clonal groups) (3). More recently, higher-resolution
molecular-based typing examining a repetitive region in spa was shown to be equally
discriminatory to PFGE and was proposed as an alternative method for typing and
studying local outbreaks of MRSA (4).

With the advent of benchtop next-generation (or “second-generation”) sequencing
platforms and advances in microbial bioinformatics, performance of whole-genome
sequencing (WGS)-based typing is attracting increased interest in clinical microbiology
arenas. The data rendered from these experiments allow for comparison to global
typing schemes, higher-resolution typing than previously possible, and the prospect of
further data mining activities, such as resistance and virulence profiling (5–9).

From a clinical microbiology perspective, there is not a standard method for typing
of S. aureus using WGS, as various sequencing methods and analytic strategies are used.
Several benchtop sequencers suitable for use in the clinical microbiology laboratory are
now available, of which the MiSeq system (Illumina, Inc., San Diego, CA) is the most
widely used at the current time. Sequences may be generated with paired-end and/or
mate-pair approaches and either aligned against a reference strain or assembled de
novo with subsequent analytic strategies, including single nucleotide polymorphism
(SNP) analysis and core genome multilocus sequence typing (cgMLST), among others.
However, exactly which overall strategy is ideal for the clinical microbiology laboratory
remains to be determined, with turnaround time, cost, technical difficulty, and accuracy
being the prime considerations.

To address these questions, we studied, in a blinded fashion, a collection of isolates
from three MRSA outbreaks. In addition to being typed via WGS in this study, the
isolates had been previously typed using PFGE. One strategy studied used combined
reads from paired-end and long-mate-pair (8 kb) libraries that were assembled and
analyzed utilizing an in-house assembly and analytical informatics pipeline. The second
used the analytical pipeline assemblies but analyzed them using a commercial software
package, SeqSphere� (Ridom, Münster, Germany), or assembled and analyzed paired-
end data with the commercial software package.

RESULTS
Pulsed-field gel electrophoresis. PFGE results are shown in Table 1. The 2003

Connecticut football team outbreak as well as the 2012 outbreaks from a burn unit all
were PFGE pattern MN391, clonal group USA300. The same PFGE pattern was observed
in some isolates in a 2014 postsurgical unit outbreak, although the postsurgical unit
outbreak involved several PFGE patterns and clonal groups.

In-house MAVIS (MLST, average nucleotide identity, variant, isolate similarity)
pipeline. The Minnesota burn unit outbreak isolates demonstrated “indistinguishable”
results among 13 of 16 isolates by SNP analysis (see Table S1 in the supplemental
material). Two isolates (C2012027346 and C2012025223) were considered closely re-
lated to the larger group, while a single isolate (C2012026546) was considered possibly
closely related to the larger group based on our SNP cutoff values. Within the
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TABLE 1 Study isolates

Isolate origin and no.a
MDHc

PFGE pattern
USA
clonal group

Connecticut football team outbreak, 2003 (35)
C2003002989 MR391 USA300
C2003002990 MR391 USA300
C2003002991 MR391 USA300
C2003002993 MR391 USA300
C2003002995 MR391 USA300
C2003002997 MR391 USA300
C2003003365 MR391 USA300
C2003003366 MR391 USA300
C2003003367 MR391 USA300
C2003003368 MR391 USA300
C2003003369 MR391 USA300
C2003003370 MR391 USA300

Minnesota burn unit outbreak, early 2012
C2012025220 MR391 USA300
C2012025221 MR391 USA300
C2012025222 MR391 USA300
C2012025223 MR391 USA300
C2012025225 MR391 USA300
C2012025226 MR391 USA300
C2012025228* MR391 USA300

Minnesota burn unit, late 2012
C2012026544 MR391 USA300
C2012026546 MR391 USA300
C2012026547 MR391 USA300
C2012026548 MR391 USA300
C2012026549 MR391 USA300
C2012027345 MR391 USA300
C2012027346 MR391 USA300
C2012027348 MR391 USA300
C2012027350* MR391 USA300

Postsurgical unit, 2014
C2014000754 MR100 USA900
C2014000755 MR100 USA900
C2014000756 MR100 USA900
C2014000759 MR100 USA900
C2014006915& MR120 USA100
C2014006919& MR120 USA100
C2014006917 MR1333 USA100
C2014006920@ MR1333 USA100
C2014006916@ MR391 USA300
C2014006918 MR391 USA300
C2014006921# MR391 USA300
C2014006943# MR391 USA300

Other sourcesb

MBRL-833 USA100
MBRL-834 USA200
MBRL-835 USA300
MBRL-836 USA400
MBRL-837 USA500
MBRL-838 USA600
MBRL-839 USA700
MBRL-840 USA800
BAA-1749 USA900
MBRL-841 USA1000
MBRL-842 USA1100
BAA-1765 USA1200

aIsolate symbols: *, two isolates were from a health care worker; &, two isolates from the same patient
(blood and tissue); @, two isolates from the same patient (nasal swab and chest fluid); #, two isolates from
the same patient (nasal swab and chest wound).

bOther sources included isolates obtained courtesy of Henry F. Chambers, Mayo Bacteriology Research
Laboratory (isolate designations that start with the letters MBRL), and isolates from the American Type
Culture Collection (isolate designations that start with the letters BAA).

cMDH, Minnesota Department of Health.
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postsurgical unit outbreak collection, 2 isolates met the criteria for indistinguishable, 8
were closely related, and 4 were possibly closely related (Table S2). All isolates among
the Connecticut football team collection were indistinguishable (Table S3). In all three
outbreak collections, we noted a relationship to PFGE USA clonal groups.

SeqSphere� cgMLST. Overall, results of cgMLST analysis using combined long-
mate-pair and paired-end assemblies or the paired-end assembly alone were similar.
Allelic distances were identical between the two approaches for all three outbreak
isolate sets (Fig. S1 to S6).

The Connecticut football team isolates demonstrated a single, highly clonal cluster
that was most closely related (58 allelic differences in total) to PFGE USA300 (Fig. S1 and
S4). The 12 involved isolates differed from the most closely related isolate by a
maximum of 8 allelic differences.

Fifteen of the 16 isolates from the 2012 burn unit outbreak formed a single cluster
of isolates with a maximum of 8 allelic differences from the most closely related isolate.
These isolates were most closely related (74 allelic differences total) to PFGE USA300
(Fig. S2 and S5). There was a single isolate (C2012026546) recovered during this event
which appeared nonclonal and unrelated to the cluster of 15 isolates but was also
closely related (84 allelic differences in total) to USA300.

The 12 postsurgical unit isolates were more diverse. There were four clusters of
related isolates, and 2 isolates were unrelated. Two clonal clusters, comprised of 2
isolates each, were most closely related (137 and 95 allelic differences, respectively) to
PFGE USA100; a third cluster of 4 isolates was most closely related (228 allelic differ-
ences) to PFGE USA800; the third clonal cluster was highly related (7 allelic differences)
to PFGE USA300. Two unrelated isolates independently grouped closest to PFGE
USA300 (Fig. S3 and S6).

Statistical comparison of SNP and cgMLST data. Mantel correlation and associ-
ated P values for comparisons of SNP and cgMLST data are shown in Table 2. These
results suggest that findings were similar for all three methods studied.

DISCUSSION

As previous studies have demonstrated, the results of our study provide strong
evidence and support for the utility of WGS-based typing for S. aureus. The results
generated not only correlated with those of PFGE, but also were more discriminating.

We examined multiple methodological approaches by comparing sequencing li-
brary preparation methods, assembly tools, and comparison methods. We developed
our own typing pipeline with SNP capabilities and statistically defined SNP cutoffs for

TABLE 2 Statistical comparison matrices for the three outbreaksa

Outbreak and data type SPADES_cgMLST Raw_PE_cgMLST MAVIS_SNP

Minnesota burn unit outbreak
SPADES_cgMLST 1 (1, 1) 0.951 (0.926, 0.966)
Raw_PE_cgMLST �0.00001 0.951 (0.926, 0.966)
MAVIS_SNP �0.00001 �0.00001

Postsurgical unit outbreak
SPADES_cgMLST 1 (1,1) 0.875 (0.838, 0.916)
Raw_PE_cgMLST �0.00001 0.874 (0.837, 0.916)
MAVIS_SNP �0.00001 �0.00001

Connecticut football team outbreak
SPADES_cgMLST 1 (1,1) 0.859 (0.743, 0.932)
Raw_PE_cgMLST �0.00001 0.859 (0.743, 0.932)
MAVIS_SNP 0.00003 0.00006

aFor each outbreak site, the values above the diagonal line formed by the gray-shaded cells are from the
Mantel correlation (with the 95% confidence interval). Values below are the shaded diagonal line are P
values for a test of correlation between the measures. SPADES_cgMLST data are results from analysis using
SeqSphere� cgMLST with paired-end and long-mate-pair assembly data from the MAVIS pipeline.
Raw_PE_cgMLST data are results from analysis using cgMLST with paired-end reads assembled with
SeqSphere�. MAVIS_SNP data are results from MAVIS single nucleotide variant analysis.
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assigning relatedness, and we compared results to those generated using commercial
software with capabilities of assembly and typing, again benchmarked against PFGE
typing. All WGS methods analyzed yielded statistically equivalent results, suggesting
that factors other than methodology, such as cost and turnaround time, may drive the
decision as to which method to use. That paired-end reads assembled and analyzed
with SeqSphere� yielded cgMLST results that were able to differentiate the study
isolates as well as SNP analysis did, which, as performed herein, used combined reads
from paired-end and long-mate-pair (8 kb) libraries and used a custom analytic ap-
proach, suggests that SeqSphere�-based cgMLST is the most practical of the ap-
proaches studied for use with S. aureus. While we did not specifically define thresholds
for defining relatedness using cgMSLT, results of this study suggest that S. aureus
isolates with 0 to 8 allelic differences should be considered related, those with 9 to 29
allelic differences possibly related, and those with 30 or more allelic differences
unrelated. Further studies are needed to confirm these thresholds, alongside the SNP
thresholds we derived.

Several groups have demonstrated the utility of WGS-based typing in local outbreak
prospective and retrospective studies and compared results to PFGE, MLST, spa typing,
or other methods (10–14). There have been multiple analytic strategies used for
processing WGS data and determining relationships between isolates. Some WGS
analytic methods have focused on SNP analysis, occasionally with simultaneous “out-
break tracking” via evolutionary modeling, and they also extensively used command-
line-level software tools for execution. Other methods have focused on expanded MLST
approaches (MLST� or cgMLST), for which developers tout portability, universal no-
menclature, and more user-friendly, graphic-interfaced software juxtaposed to the
command-line-level protocols often found in SNP-oriented literature (6, 15, 16). Overall,
we favor a cgMLST approach, which mitigates the need for additional bioinformatics
resources and favors interlaboratory reproducibility and data portability. However, it
must be acknowledged that SNP analysis has strengths, especially in cases where
isolates are highly related or where evolutionary modeling is desired. In our opinion,
however, such higher-resolution SNP data would only offer academic enhancements
and would likely engender additional costs in a clinical setting.

In conclusion, all processing and analytic methods tested yielded high-quality,
high-resolution WGS results.

MATERIALS AND METHODS
Bacterial isolates. Fifty-four isolates were sequenced, including 42 from three separate outbreaks

(Table 1) and 12 USA PFGE clonal group control strains (Table 1). Outbreak-related isolates were from the
Minnesota Department of Health’s Molecular Epidemiology Laboratory.

Pulsed-field gel electrophoresis. PFGE was performed by creating a cell suspension in Tris-EDTA
buffer to a turbidity of 0.58 to 0.63 using a turbidometer (Dade Behring, Deerfield, IL). A 300-�l volume
of the suspension was incubated at 37°C for 10 min; 4 �l of lysostaphin (1 mg/ml) and 300 �l of agarose
were added to prepare a plug. Cell lysis, restriction endonuclease digestion using SmaI, electrophoresis,
and determination of clonal groups were performed as previously described (3).

Culture and nucleic acid extraction. Isolates were subcultured from long-term freezer storage
(�80°C) and passaged twice on tryptic soy agar with 5% sheep blood (Becton, Dickinson, BBL, Franklin
Lakes, NJ). Cultures were incubated for 18 to 24 h at 35°C to 37°C in an ambient atmosphere. Using a
sterile cotton application swab, culture material was transferred to a 5-ml centrifuge tube containing 500
�l of 1� Tris-EDTA (TE) buffer, pH 8.0 (Thermo Fisher Scientific, Waltham, MA), to an approximate
turbidity of 4 McFarland standard. A 100-�l volume of freshly prepared lysostaphin in water (0.5 mg/ml;
Sigma-Aldrich, St. Louis, MO) was added to the bacterial suspension, and the mixture was incubated for
3 h at 37°C. At the conclusion of the incubation, 10 �l of Invitrogen PureLink RNase (20 mg/ml; Thermo
Fisher Scientific) was added, and the suspension incubated an additional 15 min at room temperature.
The entire suspension was transferred into well 1 of a Maxwell-16 tissue DNA cartridge (Promega,
Madison, WI). Extraction was performed on a Maxwell-16 instrument (Promega) with final elution into
300 �l of elution buffer. To remove contaminating magnetic beads, extracted DNA was further purified
on a Zymo genomic DNA clean and concentrate 25 minicolumn following the manufacturer’s protocol
(Zymo Research, Irvine, CA). Eluted DNA was measured with a Quantus fluorometer and QuantiuFluor
dsDNA system (Promega) and diluted up to 300 �l in Qiagen buffer EB (Qiagen, Valencia, CA). A
minimum concentration of 20 ng/�l was used for WGS library preparation.

Library preparation and Illumina MiSeq sequencing. Sequencing was performed on TruSeq v3
paired-end and Nextera mate-pair libraries (target mate pair insert size of 8 kbp) using a MiSeq
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instrument (Illumina, Inc.) with a 2 � 300-cycle kit, resulting in an average raw genomic coverage of
252� per sequenced isolate.

MAVIS pipeline processing. Sequencing reads were processed for library adapter removal and initial
filtering using Trimmomatic v0.32 with the parameters Illuminaclip:adapters.fasta:2:20:10 Leading:3
Trailing:3 Maxinfo:220:0.1 Minlen:70 (17). KmerGenie v1.6741 was used to construct a k-mer-based
coverage histogram to guarantee a minimum coverage and to normalize the coverage to a standard of
100� (18). A multiphased genome assembly process applied with a custom script was used for genome
assembly. Velvet v1.2.10 was run multiple times on the same data set, varying the k-mer parameter (31
to 121 in steps of 10) (19). The Velvet assembly from all runs was selected based on the largest
continuous contig. SPAdes v3.1.1 was used for guided assembly, with Velvet assembly used as a guide
for progressive k-mer assemblies (k � 21, 33, 55, 77, 99, and 127; the defaults for SPAdes for this read
length) (20, 21). Genome quality control was performed as follows (22). Contigs with low coverage
(�10�) and �250 bp long were removed. Contigs that aligned to quality control sequences (e.g., phiX)
and low-complexity contigs (e.g., homopolymers such as CCCC and AAAA) were removed. Paired-end
reads were mapped to the generated reference genome by using BWA v0.7.12 to detect bases that were
inconsistent with reads in the finished genome (23). SNPs/indels were called using SAMtools v1.1, and
ambiguous bases were replaced with via N= (24). SNP calling was performed relative to an annotated
genome assembly. The reference assembly was obtained by comparing assembled genomes against the
NCBI database and NCBI BLAST. Nearest-neighbor annotated genomes were used as the reference
genome for subsequent analyses. Coverage-reduced paired-end data were mapped to the reference
genome by using BWA v0.7.12. Differences between isolate and reference assemblies were calculated
using variant calling (VarScan v2.3.7; min-coverage of 8, min-reads2 of 8, q 20) (25). VCFtools v0.1.12b was
used to construct a single sample variant call format (VCF) across all samples (26). A custom program was
used to examine the relative coverage of variants in the VCF, compute a distance matrix, and isolate
groupings. cgMLST was also performed. First, orthologues between the annotated and sample genome
were identified by predicting genes (using Prodigal v2.6), and the resulting amino acid sequences were
compared using BLAST� v2.2.26 (27). BioR v2.4.1 was used to annotate the sample genomes and identify
orthologous genes (28). These genes were used to assemble the nucleotide version of a given gene for
all samples. Muscle v3.8.31 was then used to build a multiple-sequence alignment across orthologues for
selected genes (29). FastTree v2.1.7 was used to calculate relatedness across all samples based on the
alignment (30). A detailed and comprehensive description of the pipeline code has been deposited in
GitHub (https://github.com/pjeraldo/S_aureus_typing_methods).

Statistical determination of SNP cutoffs. To determine the number of SNP differences, in order to
classify isolates into different groups (indistinguishable, closely related, different), we cast the data into
a model selection problem and performed model selection based on Bayes factors (31). In essence, we
compared the likelihood of the observed SNP differences under different models (indistinguishable,
closely related, different) and selected the most probable model. We thus needed to estimate the
probability distribution of the number of SNP differences for indistinguishable, closely related, and
different samples, respectively. A training data set consisting of three isolates of MRSA (MBRL-841,
MBRL-1573, and MBRL-1575), with 3 technical replicates of each, was used to estimate the distributions.
The number of SNP differences between these isolates, as well as those from the reference strains
USA100 though USA1200, was calculated. The observed numbers of SNP differences between technical
replicates, between isolates of the same microbial type (e.g., USA1000), and between different types were
used to represent the distribution of the number of SNP differences from indistinguishable, closely
related, and different isolates, respectively. Due to truncation at 0 for indistinguishable samples, we fitted
the data (numbers of SNP differences) by using a scaled chi-square distribution, while the data from the
other two groups were fitted using normal distributions. Parameters of the distributions were estimated
using the method of moments.

Based on the three estimated probability distributions, the Bayes factor approach was used to
determine the cutoff values for classification of isolates. Given a model selection problem in which we
had to choose between two models (e.g., indistinguishable versus closely related), on the basis of
observed data set D (i.e., the number of SNP differences), the plausibility of the two models, M1 and M2,
was assessed by determining the Bayes factor K, as follows: K � [P(D|M1)]/[P(D|M2)], where P(D|M) is the
probability of the data, given model M, which could be estimated using the fitted probability distribu-
tions described above. A Bayes factor of 100 indicates that model M1 is 100 times more likely than model
M2, and hence M1 will be chosen over M2 (32). Based on the principle, the following cutoff values (d)
were derived: indistinguishable, d � 22; possibly closely related, 43 � d � 450; different, d � 600. We
filled gaps with the following groupings: closely related, 23 � d � 43; possibly different, 450 � d � 600.

SeqSphere� cgMLST. Two data sets were examined with SeqSphere� software. First, assembled
contig (from paired-end and mate-pair data) fasta.gz files were uploaded and processed with the S.
aureus cgMLST scheme (6). Final assembly contigs were provided after using SPAdes 3.1.1 and Velvet
1.2.10 (19, 33). Minimum spanning trees (MST) for each of the three outbreak groups were constructed
within the SeqSphere� software. Next, paired-end reads alone were assembled with the SeqSphere�
automated assembly pipeline. Assembled files were processed through the S. aureus cgMLST scheme
within SeqSphere�, and MSTs were constructed for each of the three outbreak groups.

Statistical comparison of SNP and cgMLST data. The Mantel Spearman correlation was calculated
between pairs of the similarity measures within the burn unit outbreak, Connecticut football team
outbreak, and postsurgical unit outbreak (34). Jackknife resampling (resampling without replacement
and 10% omitted) was used to determine 95% confidence intervals for the correlations, based on 100,000
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jackknife samples. To test for associations, permutation-based Mantel tests were conducted using
100,000 permutations.

SUPPLEMENTAL MATERIAL
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