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ABSTRACT Mycoplasma gallisepticum, known primarily as a respiratory pathogen of
domestic poultry, has emerged since 1994 as a significant pathogen of the house
finch (Haemorhous mexicanus) causing severe conjunctivitis and mortality. House
finch-associated M. gallisepticum (HFMG) spread rapidly and increased in virulence
for the finch host in the eastern United States. In the current study, we assessed vir-
ulence in domestic poultry with two temporally distant, and yet geographically con-
sistent, HFMG isolates which differ in virulence for house finches—Virginia 1994
(VA1994), the index isolate of the epidemic, and Virginia 2013 (VA2013), a recent
isolate of increased house finch virulence. Here we report a significant difference be-
tween VA1994 and VA2013 in their levels of virulence for chickens; notably, this dif-
ference correlated inversely to the difference in their levels of virulence for house
finches. VA1994, while moderately virulent in house finches, displayed significant vir-
ulence in the chicken respiratory tract. VA2013, while highly virulent in the house
finch, was significantly attenuated in chickens relative to VA1994, displaying less-
severe pathological lesions in, and reduced bacterial recovery from, the respiratory
tract. Overall, these data indicate that a recent isolate of HFMG is greatly attenuated
in the chicken host relative to the index isolate, notably demonstrating a virulence
phenotype in chickens inversely related to that in the finch host.
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Mycoplasma gallisepticum is a bacterial pathogen associated with acute and chronic
respiratory disease in domestic poultry. Previously, M. gallisepticum was thought

to be relatively host specific and pathogenic only for gallinaceous birds (1). The
emergence of M. gallisepticum infection in a wild North American songbird host—the
house finch (Haemorhous mexicanus)—was first reported in 1994 in Virginia and
Maryland and was associated with severe and chronic lymphoplasmacytic conjunctivi-
tis, sinusitis, and rhinitis, contrasting with the respiratory form of M. gallisepticum
disease primarily observed in poultry (2–4). The epidemic quickly spread throughout
the eastern, or introduced, house finch range across the mid-Atlantic and the eastern
states, and it eventually spread to the native house finch range in the western United
States (2, 5–8). House finch-associated M. gallisepticum (HFMG) has been associated
with dramatic declines in house finch populations, likely as a result of affecting the
host’s ability to forage or to avoid predation (3, 9–11). This well-documented spread of
HFMG has enabled dynamic modeling of various aspects of the epidemic as an example
of the spread of an emergent pathogen (12, 13).
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House finches represent the first recognized M. gallisepticum reservoir sustained in
the wild (14). Samples have been collected from wild birds spanning both the geo-
graphic and temporal ranges of the epidemic, and while other wild bird species can be
affected by M. gallisepticum, house finches are considered the primary host of HFMG
(14, 15). Indeed, bacterial multilocus genetic analysis has revealed a closely related,
monophyletic HFMG clade relative to known poultry isolates, indicating that a single M.
gallisepticum introduction became established and successfully spread in the North
American house finch epidemic (16).

Notably, HFMG isolates from disparate geotemporal spaces in the epidemic exhibit
different virulence phenotypes. These differences have indicated a decrease in HFMG
virulence during transmission from eastern to western range hosts and parallel in-
creases in HFMG virulence during local spread within eastern and western range host
populations (17–19). Genomic changes occurring in the HFMG strain during the epi-
demic have been examined, again matching geotemporal patterns of isolation with
phylogeny (20, 21), and with the most dramatic genomic changes involving regions
encoding phase-variable, surface-expressed lipoprotein (21). Thus, HFMG virulence is
evolving as it spreads and becomes endemic in the novel house finch host.

Given the spread of HFMG in the wild, the potential transmission of M. gallisepticum
from wild bird reservoirs to domestic poultry populations is of concern. Such potential
has been indicated experimentally and through genetic typing of wild bird and poultry
isolates (16, 22). Experimentally, HFMG was able to transmit by direct contact from
infected house finches captured early in the epizootic to contact chickens, but no
disease or pathology was observed in chickens and transmission was inferred from
bacterial isolation and seroconversion (22). Also, experimental inoculation of an “early”
HFMG isolate (K4058, Georgia 1996) into chickens induced respiratory pathology which
was attenuated relative to that produced by virulent poultry strain R (23). Through
genotyping, certain isolates from domestic turkeys appeared to be derived from HFMG
within a decade of emergence (16). How HFMG isolates of evolved virulence pheno-
types may infect or cause disease in domestic poultry is currently unknown.

To better understand threats associated with potential reintroduction of evolved
HFMG into poultry species, we conducted experiments to compare the levels of
virulence of house finch-adapted M. gallisepticum strains in chickens. Two HFMG
isolates were compared in domestic poultry hosts through experimental challenge and
assessment of pathology and bacterial recovery. One of these isolates, Virginia 1994
(VA1994), represents the known index isolate of the HFMG epidemic and is of moderate
virulence in house finches. The second, Virginia 2013 (VA2013), is a more recent isolate
of high virulence in house finches. Here we report that VA2013 is less virulent in
chickens than VA1994.

RESULTS
Gross anatomic lesions in chickens. As previously described (23), early epidemic

HFMG induced air sac anatomic gross lesions in chickens, as caseous exudates were
present in and around the abdominal air sacs in chickens infected with VA1994 (data
not shown). Air sac exudates observed in chickens infected with virulent poultry strain
Rlow were largely associated with thoracic, rather than abdominal, air sacs. Gross
lesions were absent in all air sacs of chickens inoculated with either late-epidemic
HFMG isolate VA2013 or with growth medium alone. Additionally, no ocular lesions
were observed in any inoculated chickens.

Histologic lesion scores in chickens. Chicken tracheal histologic lesion scores were
significantly different (P � 0.05) between the two HFMG isolates (Fig. 1A). Chickens
inoculated with the VA1994 isolate demonstrated tracheal lesion scores that were
higher than those of medium control chickens and statistically the same as those of
chickens inoculated with virulent strain Rlow. Chickens inoculated with VA2013, how-
ever, demonstrated lesion scores that were significantly lower than those from VA1994-
inoculated chickens and were, in fact, not significantly different from those from the
medium control chickens. Chickens inoculated with VA1994 demonstrated mild mu-
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cosal thickening resulting from multiple lymphofollicular infiltrates, while those inoc-
ulated with VA2013 demonstrated minimal focal lymphofollicular infiltrates. Chickens
inoculated with Rlow displayed moderate mucosal thickening resulting from diffuse
lymphocytic and histiocytic infiltrates of the lamina propria. Medium controls chal-
lenged with medium alone showed no significant histologic lesions. Similarly, lung
histologic lesion scores were significantly higher in chickens inoculated with VA1994
than in those inoculated with VA2013 or the control medium (Fig. 1B).

Taking the data together, the histologic lesion scores of chicken respiratory tissues
indicated a reduction in the virulence of VA2013 compared to VA1994. Again, consis-
tent with previous results, neither strain caused the severity of lesions induced by
virulent poultry strain Rlow, suggesting continued reduction of HFMG virulence for
chickens after the initial adaptation to house finches.

Tracheal thickness in chickens. As an objective second measure of tracheal histo-
pathology, tracheal thickness was assessed. Chickens inoculated with VA1994 demon-
strated mild mucosal thickening, with measurements significantly (P � 0.05) higher
than in medium controls but significantly lower than in those inoculated with virulent
Rlow (Fig. 2). Chickens inoculated with VA2013 showed minimal mucosal thickening—
significantly less than the thickening seen with chickens inoculated with Rlow but
intermediate with respect to and statistically indistinguishable from the thickening
seen with those inoculated with either VA1994 or medium control (Fig. 2). Chickens
inoculated with Rlow displayed moderate mucosal thickening.

Bacterial recovery from chickens. There was a difference in the levels of recovery
of M. gallisepticum from respiratory tissues of infected chickens at 14 days postinocu-
lation (dpi) (Fig. 3). Mycoplasmas were isolated from tracheas of 70% of the VA1994-
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FIG 1 Lesion scores from (A) tracheas or (B) lungs of M. gallisepticum-infected or medium control
chickens at 14 dpi. n � 20 total animals per group (n � 10 per group per experiment). Error bars indicate
standard errors of the means (SEM), and asterisks (*) and brackets indicate groups significantly different
(P � 0.05) in pairwise multiple comparisons.
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inoculated chickens but, notably, not from those of VA2013-inoculated chickens.
Similarly, mycoplasmas were recovered from lungs of 65% of VA1994-inoculated
chickens but not from those of VA2013-inoculated chickens (Fig. 3). Mycoplasmas were
recovered from both types of respiratory tissues of 80% to 100% of virulent Rlow-
inoculated chickens but not from those of control medium-inoculated chickens.

Virulence of VA2013 for house finches. To verify the increased virulence of VA2013
for house finches relative to VA1994, data from multiple independent experiments
were compiled (Fig. 4). In a single experiment using directly inoculated finches, VA2013
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FIG 2 Tracheal thickness of M. gallisepticum-infected or medium control chickens at 14 dpi. n � 20 total
animals per group (n � 10 per group per experiment). Error bars show SEM, and asterisks (*) and brackets
indicate groups significantly different (P � 0.05) in pairwise multiple comparisons.
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FIG 3 Average percentages of chickens in which M. gallisepticum was recovered from the (A) trachea or
(B) lung. n � 20 total animals per group (n � 10 per group per experiment). Error bars indicate SEM in
comparisons between two experiments.
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was demonstrated to be more virulent than NC1995 (for isolate treatment, F1,28.17 �

52.0, P � 0.0001), an isolate shown previously to be more virulent than VA1994 (18)
(Fig. 4A). In experiments where sentinel finches were placed in contact with directly
inoculated index finches, VA2013 induced higher cumulative eye lesion scores than did
VA1994 (Fig. 4B). Starting the second week after the initial lesions were observed in
sentinel finches, cumulative lesion scores were significantly higher in finches exposed
to VA2013 than in those exposed to VA1994 (week 2, U � 11, P � 0.02; week 3, U �

4, P � 0.002; week 4, U � 6.5, P � 0.06; week 5, U � 5.5, P � 0.004; week 6, U � 6, P �

0.005; week 7, U � 6, P � 0.005). These combined data confirm increased virulence of
VA2013 for the house finch relative to VA1994.

DISCUSSION

Data presented here show that two temporally distant HFMG strains are significantly
different in virulence for chickens, notably in a manner reciprocal to their virulence for
house finches. We found that HFMG strain VA2013, indicated here to be more virulent
than VA1994 in the house finch eye, was significantly less virulent than VA1994 in the
chicken respiratory tract as measured by tracheal and lung histopathology. Most
striking was the complete lack of M. gallisepticum recovery from chickens challenged
with VA2013, since chickens inoculated with VA1994 retained recoverable mycoplasma
at 14 dpi. These data indicate that VA2013, while more virulent in and better able to
colonize the eyes of the house finch host, was less able than VA1994 to colonize and
cause pathology in the lower respiratory tract of chickens. Collectively, these data
indicate that the levels of M. gallisepticum virulence for house finch and poultry hosts
are not comparable, and they suggest that an inverse relationship is possible. The
differential virulence results described here for HFMG isolates from early and late in the
house finch epidemic for different hosts have implications for M. gallisepticum virulence
evolution—a topic for which HFMG has become a well-established model.

M. gallisepticum virulence for house finches has previously been shown to increase
over time in a given geographic region (18). Data presented here confirm previous
findings in that a recent HFMG isolate, VA2013, continues to be highly virulent in house
finches. Notably, data presented here now indicate that the virulence for chickens of a
recent isolate (VA2013) is attenuated relative to that of an early isolate (VA1994, the
index isolate of the ancestral HFMG genotype [21]), suggesting that a finch-adapted
HFMG isolate with increased virulence for finches has developed a commensurately
reduced capacity to induce disease in chickens. While the bacterial determinants that
are important for the differences in HFMG virulence for chickens and house finches
remain to be identified, specific genetic features—insertion/deletions and variations in
repetitive elements and genes, notably those for surface lipoproteins— have previously
been characterized as variable and potentially under diversifying pressure in HFMG
clade M. gallisepticum from across the house finch epidemic (21). Similar features could
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FIG 4 Virulence of HFMG strains for house finches. (A) Mean total (left plus right) eye lesion scores in
house finches directly inoculated with VA2013 (filled squares) and VA1995 (open circles), an isolate more
virulent than VA1994 (18) (n � 15 total animals per group). (B) Mean cumulative eye lesion scores in
sentinel house finches in contact with index birds directly inoculated with VA2013 (filled squares, 2014
experiment) and with VA1994 (open squares, 2010 experiment), starting at first appearance of lesions
(n � 10 animals per group). Error bars indicate SEM.
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conceivably affect the virulence differences between VA1994 and VA2013 observed
here.

While data presented here are limited to two isolates, they represent isolates
adapted on either end of the epizootic across which virulence evolution is well
established. Previous studies have shown that HFMG virulence evolution is not constant
but is instead dynamic and dependent on ecological context (e.g., expanding versus
established geographic ranges) (18, 24). It is clear that M. gallisepticum was virulent for
finches by the time that it was first noted and collected as VA1994 (coalescence analysis
has indicated that HFMG first truly emerged in house finches 4 to 7 years prior [20, 21]);
however, here it is indicated that the period of time in which HFMG was circulating in
finches prior to 1994 was insufficient to dramatically attenuate HFMG virulence for
chickens. The 19 years since 1994 appear to have resulted in altered virulence pheno-
types for the VA2013 isolate; however, the rates at which virulence for different hosts
may have changed are not known. While increases in HFMG virulence for finches have
been shown to be more rapid in a given geographic location (18), how changes in
virulence for chickens may be related requires further study. Assessment of larger
numbers of HFMG isolates for virulence for both house finch and poultry hosts, and
concurrent assessment of HFMG genomics for identification of specific elements asso-
ciated with evolution in each host, would be of interest for future studies.

Of particular interest regarding HFMG virulence are the changes in tissue
tropism observed along with altered virulence for different hosts. HFMG virulence
in the finch eye is positively correlated with pathogen load and disease transmis-
sion, fitting a virulence tradeoff model where virulence evolves to trade host fitness
for pathogen transmission (17, 18, 25). The attenuation of HFMG for the chicken
respiratory system may possibly redirect such a tradeoff in chickens toward in-
creased host fitness and lower levels of pathogen transmission. Conceivably, shifts
in HFMG tissue tropism could impact different mechanisms of transmission in
different hosts. HFMG transmission is known to be impacted by bird feeder use (26),
and ocular disease and bacterial shedding could possibly impact direct or fomite
transmission at feeders, thus making feeder use a potential driving factor for
changes in HFMG virulence in the eye (3). Conversely, HFMG does not cause
conjunctivitis in chickens (23), and data presented here suggest that HFMG may
evolve in finches away from virulence and the ability to colonize in the chicken
lower respiratory tract. Thus, while other studies have indicated that HFMG appears
to adapt to the ocular niche in finches, our data from the VA2013 isolate suggest
that adaptation to the finch eye may potentially be at the expense of the ability to
colonize and cause disease in the poultry respiratory tract. Tissue tropism and
transmission effects potentially play significant roles in this change.

Finally, natural occurrences of HFMG reintroduction into individual domestic
poultry have been reported (16), suggesting that such occurrences may pose a
potential threat to domestic poultry populations as a whole. Our data indicate that
domestic poultry remain susceptible to infection with house finch-adapted strains
from free-ranging birds; however, they also suggest that as M. gallisepticum adapts
to wild bird species it becomes less virulent for domestic poultry. With a decrease
in HFMG virulence for poultry, the disease and epidemiological risk associated with
HFMG reintroduction from wild species and spread in poultry populations may
conceivably be reduced.

MATERIALS AND METHODS
Bacterial culture. For chicken experiments, M. gallisepticum stocks were prepared by inoculating

HFMG strain VA1994 (North Carolina State University [NCSU] ADRL no. 7994-1) or VA2013 (NCSU ADRL
no. 2013-089-15), or poultry strain Rlow, into fresh Hayflick’s medium and incubating at 37°C until
mid-log-phase growth was reached. Titers of cultures were determined, and 1-ml stock aliquots were
frozen at �80°C for future use. Before challenge, one aliquot of each M. gallisepticum stock (Rlow,
VA1994, and VA2013) was grown at 37°C with shaking at 130 rpm in fresh Hayflick’s complete medium
for 5 h prior to inoculation. M. gallisepticum concentrations were estimated by determination of the
optical density at 620 nm (OD620) and were adjusted to a challenge concentration of 5 � 108 CFU/ml in
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Hayflick’s complete medium as described previously (27). Viable titers of challenge inocula were
confirmed by 10-fold serial dilution and culture for endpoint assessment of color-changing units (CCU).

For house finch experiments, M. gallisepticum stocks were prepared and cryopreserved for the strains
described above plus for VA1995 (NCSU ADRL no. 13295-2) at North Carolina State University (NCSU) as
described previously (18, 19, 28, 29) and shipped frozen to Virginia Tech and Cornell.

Animal infection. For chicken experiments, 4-week-old female specific-pathogen-free White Leg-
horn chickens were purchased (Spafas, North Franklin, CT). Upon receipt, chickens were divided into
groups of 10 per HEPA-filtered isolator, tagged, and allowed to acclimate for 1 week prior to experi-
mentation. Nonmedicated feed and water were provided ad libitum throughout the experimental period.
All animal procedures were conducted in accordance with state and federal policies to ensure the
humane use and care of research animals as approved by the University of Connecticut Institutional
Animal Care and Use Committee (IACUC) (approval no. A15-056).

Groups of 10 chickens were inoculated intratracheally with 200 �l (1 � 108 CFU) of M. gallisepticum
in Hayflick’s complete medium per bird on days 0 and 2 (27). Medium control chickens received 200 �l
Hayflick’s complete medium on days 0 and 2. The experiment was repeated once in full to validate initial
results.

For house finch experiments, wild house finches were captured. Capture was conducted with mist
nets or cage traps in Virginia under permits from the Virginia Department of Game and Inland Fisheries
(VDGIF) (permit 044569) and the United States Fish and Wildlife Service (USFWS) (MB158404-1) and in
New York under permit license 39 (New York State Fish and Wildlife, Albany, NY) and permit 22669
(United States Geological Survey, Department of the Interior [Laurel, MD]). All sampling procedures were
approved by Cornell University’s Institutional Animal Care and Use Committee (permit 2006-094). Finches
were held in groups during quarantine, during which they were monitored for clinical signs of M.
gallisepticum and at the end of which they were tested for prior M. gallisepticum exposure via enzyme-
linked immunosorbent assay (ELISA) (30, 31) and quantitative PCR (qPCR) (32) as done previously.
Animals with signs of disease or seropositivity were excluded from the experiment. As done previously,
house finches were housed singly indoors (Virginia Tech) or in groups of 12 in large semioutdoor aviaries
(Cornell) and were provided food and water ad libitum as approved by university IACUCs. House finches
were inoculated by diluting cryopreserved inocula to a concentration of 1 to 2 � 107 CCU/ml immedi-
ately prior to use and inoculating bilaterally in the palpebral conjunctiva with 0.04 to 0.05 ml of an HFMG
strain. At Virginia Tech, all birds were directly inoculated and observed daily for clinical lesion scores; at
Cornell, two index animals were directly inoculated, and 10 in-contact sentinel animals were observed
daily for clinical lesion scores.

Lesion scores and tracheal thickness. Chickens were humanely euthanized and immediately
subjected to necropsy on day 14 after the second round of infection. Gross anatomic lesions were noted,
and tracheas and lungs were collected for histologic processing, examination, and scoring in a blind
fashion based on criteria adapted from Nunoya et al. (33) and described by Gates et al. (27). Lung scoring
was done on the basis of the presence of increasing amounts of lymphofollicular (B-cell follicles) and
disseminated lymphocytic accumulations around the primary bronchi and interlobular septa with some
epithelial hyperplasia. Additionally, tracheal thickness measurements were determined for all chickens as
previously described (27).

Finches were examined regularly postinoculation or postcontact to assign scores corresponding to
the severity of inflammatory eye lesions as described by Sydenstricker et al. (28). Lesions were scored on
a scale of 0 to 3 as follows: 0, no detectable swelling or eversion; 1, minor swelling around the eye ring;
2, moderate swelling and eversion of the conjunctival tissue; 3, the eye nearly hidden by swelling and
crusted exudate. Lesion scores for each eye were summed within individuals for a given sampling day.

Bacterial recovery. At chicken necropsy, a ring from the distal portion of the trachea and a caudal
portion of lung were collected directly into Hayflick’s complete medium and incubated for 5 h at 37°C.
After the incubation period, cultures were passed through 0.45-�M-pore-size filters to remove nonmy-
coplasmal contaminates, adjusted to pH 7.8, and reincubated at 37°C. Samples were considered positive
for M. gallisepticum recovery if the color shifted to yellow within 30 days.

Statistical analysis. Histological data were subjected to nonparametric Kruskal-Wallis one-way
analysis of variance (ANOVA) in the ranks test, in which all pairwise multiple-comparison procedures were
performed using the Student-Newman-Keuls method for groups of equal sizes or Dunn’s method for
groups of unequal sizes. Statistical tests were conducted using SigmaPlot 11.0 (Systat Software, San Jose,
CA). Eye lesion scores in individually housed birds inoculated directly with distinct M. gallisepticum
isolates were compared using a mixed model in JMP 13.0 (SAS Institute, Cary, NC) that considered
treatment and days postinoculation and their pairwise interaction. Individual bird identifiers (ID) were
included as a random effect to account for repeated, nonindependent observations from the same
individuals (n � 15 per isolate) over time. Cumulative eye lesion scores in sentinel house finches exposed
to different M. gallisepticum isolates were compared using a Wilcoxon rank sum test in STATISTIX 10
(Analytical Software, Tallahassee, FL).
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