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Abstract

Background: The development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging
from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in
some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data
collected at multiple time points remains a challenge to effective measurement gene expression patternsin

transcriptome analysis.

Results: We present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series
data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell

types from complex mixtures of multiple cell types.

Conclusions: The DTWscore successfully classify cells of different types with the most highly variable genes from
time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R
framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore.
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Background

Methodological advances provide transcriptomic infor-
mation on dozens of individual cells in a single-cell
sequencing project [1-3] to study the complex cellular
states and to model dynamic biological processes [4].
From traditional bulk samples RNA sequencing (RNA-
seq) to single-cell RNA sequencing (scRNA-seq), cell-to-
cell variabilities expose latent biological characteristics
such as cell cyclic processes [5] and transcriptional het-
erogeneity [6], that disappears with bulk gene expres-
sion across thousands of cells. Additionally, biological
processes are often dynamic, while bulk RNA-seq data
may blur heterogeneity [6] and un-synchronization [7]
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of the transcriptional process. These features can be
well represented owing to the advent of scRNA-seq of
sequential gene expression changes, which provides a
set of time slices from individual cells sampling from
different moments in the process [8]. Developments in
techniques for measuring gene expression [9] make time-
series expression studies more feasible with the relative
database growing exponentially [10]. Nonetheless, pro-
filing the low amounts of mRNA within individual cells
leads to several experimental and computational chal-
lenges such as so-called ‘dropout’ events [11], which
involve the false quantification of a gene as ‘unexpressed’
because of the corresponding transcript being ‘missed’
during the reverse-transcription step [12]. This occur-
rence leads to a lack of detection during sequencing,
which is observed in scRNA-seq measurements with
lower expression magnitudes. Moreover, with different
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types of temporal response patterns observed in biologi-
cal processes, identifying the set of genes that participates
in specific response also poses a challenge for advanced
computational methods [13].

Among others, one key objective is to define the sets
of genes that best discriminate transcriptional differences
by inferring the heterogeneity of cells’ unsynchronized
evolution [14]. This strategy is important for discover-
ing multiple cell fates stemming from a single progen-
itor cell type [15]. In essence, with each cell collected
at a distinct time point, sScRNA-seq experiments would
constitute a time series through a biological process by
ordering single-cell expression profiles in multiple time
points [15]. Hence, time-course measurements with time-
series gene expression data benefit researchers by captur-
ing focused genes with transient expression changes [16].
We show an unsupervised approach to infer heterogene-
ity using time-series data derived from unsynchronized
differentiation cells, rather than relying on known marker
genes or experiments starting from synchronized cells
within a quantitative measure of progress. Then we clus-
ter complex mixture of single cells based on these highly
divergent genes to define potential cell types. In the
context of bulk RNA-seq, many popular tools for dif-
ferential expression analysis are used [17-19]. However,
these methods simply compare gene expression levels
between groups, a process that is not suitable to man-
age time-series scRNA-seq data. By contrast, the key
approach for scRNA-seq data analysis is based on dimen-
sional reduction. SLICER [8] makes use of a nonlin-
ear dimensionality reduction algorithm to capture highly
nonlinear relationships between gene expression levels.
Monocle [15] infers a low-dimensional manifold embed-
ded in a high-dimensional space that obtains the observed
geometric relationships among the cells. Other than
dimensionality reduction, Wanderlust [20] can capture
nonlinear behavior through finding the shortest paths by
k—nearest neighbor graphs without dimensional reduc-
tion. Critically, dimensional reduction does not make
full use of the rich information provided by scRNA-
seq time-series data. However, the existing methods may
overlook un-synchronization over the entire time series.
It is a challenging problem to provide the approaches
to identify the set of genes from distinct cells that are
differentially expressed over time. Moreover, estimating
at which time periods the transcriptional heterogeneity
with different cell types is present can provide additional
insight into temporal gene functions.

In this article, we present an algorithm based on the
Dynamic Time Warping score (DT Wscore) [21] that is
used in scRNA-seq time-series data to infer the potential
cell types between time period the first time. DT WSs-
core provides three significant advantages for inferring
the potential cell types: (1) It is capable of managing
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unevenly and sparsely sampled time-series gene expres-
sion data without need for prior assumptions about the
evenness or density of the time-series data; (2) the method
uses dynamic time warping (DTW) algorithms to con-
sider the similarity of pairs of vectors taken from each time
series between the gene expression levels and progression
through a process. The DT Wscore shows the classifica-
tion of potential cell types and corrects for synchroniza-
tion loss; (3) The method is capable of maintaining the
sensitivity and specificity with scRNA-seq gene expres-
sion data that has been tested in various experimental
designs.

Results

Overview of the DTWscore method to detect highly
divergent genes and classify potential cell types from
time-series scRNA-seq data

For single-cell RNA-seq data, the gene expression level
of some fixed time points become more easily obtain-
able than traditional bulk RNA-seq data [8]. A com-
monly used method for assessing the variability is the
ratio of the fold-change [22], calculated as the ratio
between the mean expression values of samples, which
illustrates its limitation in dealing with time-series data.
To overcome the deficiency, we implemented DTW algo-
rithms on synthetic and real time-series scRNA-seq data.
DTW was originally developed for speech recognition
in the 1970s [23]. Similar to the algorithms used for
sequence comparisons, the DTW algorithm is particu-
larly suitable for identifying highly variable genes between
scRNA-seq time-series data especially unsynchronized
time-course data. In several time-series experiments, cells
may not be synchronized over the entire time series,
while these cells may be involved in the same cyclic
progress. For each gene, its expression values from differ-
ent time points represent the biological process. Whether
or not one gene is involved in the different biological pro-
cesses between different cell samples or diverse tissues
is essential for characterizing the heterogeneous genes.
Each gene is given an average DT Wscore based on its
time-series expression levels from all pairs of cells, and
a threshold based on the distribution of all the DTWs-
cores is set to choose the specific genes that present the
significantly variable progression. Cells could be clustered
based on the highly divergent genes to define potential cell
types. To demonstrate the performance of the DT Wscore,
we applied it to several simulated examples and public
datasets with new biological insights.

Briefly, the DT Wscore focuses on detecting the cell-
to-cell heterogeneity among time-period scRNA-seq data
and highlights the highly divergent genes that are used
to define potential cell types. The input of the DT Ws-
core is a matrix of time-series gene expression data.
The rows of the matrix stand for individual genes,
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and the columns represent the gene expression pro-
files of different cells from discrete time points. The
method is performed on both simulated and real datasets.
In particular, if a gene expression level between differ-
ent time periods is quantified through the same process
function, we consider genes of this type to show non-
heterogeneity across cells, while the remaining genes are
deemed as highly variable genes between time series data
for further analysis. A graphical representation of our
method pipeline is displayed in Fig. 1. First, we per-
formed the traditional filter step to filter low-quality cells.
To identify poor-quality libraries from further analysis,
we hold the identifiers for genes expressed in at least
80 percent of total cells in the data set. Second, we cal-
culated the mean DTW distance of all pair of cells as
the index for detecting a specific set of genes for het-
erogeneity analysis. Based on the DTW distance index,
we normalized the DTW index values to reduce the bias
toward extreme values. After normalization, the gene with
the highest DT Wscores are selected for further analysis
and are referred to as the most significantly highly vari-
able gene. The Flexible threshold for choosing the sets of
genes can be adjusted by the normal distribution of the all
the average DT Wscores for each gene. The output of our
result could be used for classifying cells of different types.
Furthermore, some heterogeneous genes could serve as
potential biomarkers that track some disease processes.
The details of the DT Wscore pipeline are described in the
Methods section.
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The DTWscore identifies differentially expressed genes
from time-series scRNA-seq data

Synthetic time-series scRNAseq data

We borrowed functions [8] with a ‘process time” parame-
ter ¢ to simulate gene expression patterns with four differ-
ent ‘biological processes’(see Methods for details). If the
gene expression patterns are tracked during the unfolding
of a biological process, the process can be conceived as
some specific functions over time. Four typical trajecto-
ries of gene expression are simulated graphically (Fig. 2).
Heat maps are a popular way to display gene expression
levels. As shown in Fig. 3, heat map is plotted with equal
width for each time points to make an external direct-
viewing impression on the time-series gene expression
data. The input of the heatmap is a matrix whose rows
represent the four types of process functions and columns
represents the discrete time points.

In the simulation, two groups of scRNA seq data
with time are generated as follows. Group one (non-
heterogenerous genes): the gene expression matrix at mul-
tiple time points is generated by the same function shown
in Fig. 2, indicating that this gene undergoes the same
biological process. Group two (heterogeneous genes): the
gene expression matrix at multiple time points is gen-
erated by different functions shown in Fig. 2, indicating
that this gene undergoes different biological processes.
Additionally, the number of time points could be the
same or different, which is a good feature of DTW algo-
rithms. More details regarding the setup can be found

for all pair of cells

ﬂ

highly variable gene

ﬂ

Step 1. Filter low-quality cells

Step 2. Calculate average DTW distance

Step 3. Identify the most significantly

Step 4. Classify cells of different types

gene expression matrix of scRNA-seq time series data

Cells

80%| -.

E
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Fig. 1 Overview of the DTWscore pipeline. Details are described in the Methods




Wang et al. BMC Bioinformatics (2017) 18:270

Page 4 of 14

Process Functions

20

10

Expression Level

oo

Time

Fig. 2 Simulated trajectories of gene expression levels over time. The x-axis represents time and the y-axis represents FPKM values of gene
expression. The genes are represented by four types of continuous curves that highlight the dynamics of expression changes

in the‘Methods’section. To address the issue with iden-
tifying differentially expressed gene patterns in scRNA-
seq data and classifying different cell types, we perform
the DTWscore pipeline on synthetic datasets under six
conditions (Figs. 4 and 5, Additional file 1: Figure S1,
Additional file 2: Figure S2, Additional file 3: Figure S3 and
Additional file 4: Figure S4). The simulated dataset con-
sists of the two groups of 1000 gene expression levels with
two time periods. In group one, 500 genes undergo the
same biological process between two time periods and
their expression values are simulated by a single family
of functions. In group two, 500 gene’ expression values
are generated from different families of functions. We
compute the average DT Wscore to identify genes that
were from the same biological processes or heterogeneous
processes, as shown in Figs. 4 and 5. After normaliza-
tion for the origin DTW index, high DT Wscore genes
are enriched in the group of genes that are simulated by
different families of process functions. Figure 4c and d
show that the DT Wscores are clustered from different
gene sets. The DT Wscore algorithm successfully identi-
fied time-series genes of non-heterogeneity versus het-
erogeneity. We performed DT Wscore analysis on various
synthetic datasets and repeated the analysis times, and
the results suggest that the DT Wscore performs well in
the analysis (Figs. 4 and 5). Next, we evaluated the dis-
criminative power of the DT Wscore in terms of receiver
operating characteristic (ROC) curves, using two simu-
lating datasets labeled conditions 1 and 2. In particular,
for the comparison, genes are divided into a true-positive

group and a true-negative group according to the simulat-
ing strategy. Thereafter, ROC curves were constructed by
calculating the true and false positive rates for all possible
thresholds (Fig. 6). The black curve represents condition 1
simulated by the biological functions f>(¢) and f3(¢), while
the red curve represents condition 2 simulated by the
biological functions f,(¢) and fa(2).

Highly divergent genes define the potential cell types from
time-series scRNA-seq data

Human skeletal muscle myoblasts (HSMM) data

In this section, DT Wscore is applied to the recently pub-
lished data from human skeletal muscle myoblasts [15]
which were captured between single cells at four time
points. The data were generated from RNA from each
cell, which was isolated and used to construct a sin-
gle mRNA-seq library per cell with a sequencing depth
of ~4 million reads per library. The fragment per kb
per million mapped fragments (FPKM) expression pro-
files are provided on the Gene Expression Omnibus
(GEO) website. Our goal is to classify cells from com-
plex mixtures of multiple cell types and investigate the
cell-to-cell heterogeneity between two time periods by
identifying the highly variable gene expression patterns.
Differentiation across a set of cells proceeds at potentially
different rates, relying strictly on the time points. With
the collected data at different time points, we would like
to determine a set of genes exhibiting variabilities across
cells with the same or different time periods. Our method
was different from the traditional cell cluster detection
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Fig. 3 Four patterns of gene expression for each functions. A more precise overview of different gene expression process in time order. Heatmap
shows gene expression levels from samples that were taken at even time intervals. Experiments shows four pattern of gene expression for each

methods with no need for biological prior knowledge. We
sought to identify the most highly divergent genes that
could be used to define potential differentiation states.
All pairs of cells were chosen from this group of cells
based on two time period and we calculate each genes’
average DTWscores for all pairs of cells. As shown in
Fig. 7, the histogram displayed the density of the DT Ws-
cores which obeys a Gaussian distribution. The Q-Q plot
in Fig. 7 compares the data generated by DT Wscores on
the vertical axis to a standard normal population on the
horizontal axis. The linearity of the points suggests that
the data are normally distributed. We could make full
use of the mean and the standard deviation of the Gaus-
sian distribution to determine the highly variable genes.
Owing to the distribution of DTWscores, we take the
4 standard deviations above the mean as the threshold
for identifying heterogeneous genes (Fig. 8). Three genes

with the top three DT Wscores 4.55, 4.01 and 3.95 show
a significant difference between cell types myoblasts and
fibroblasts. We plot the expression levels of these genes
by boxplots and density plots (Fig. 8), to better high-
light the differences between cell states. Hence, without
any biological knowledge, we have selected the possible
marker genes that tend to be highly informative about
cell states and types. Moreover, we analyzed three genes
with the highest DT Wscores for model-based clustering.
With the two covariance structures, finite Gaussian mix-
ture model provides functions for parameter estimation
via the expectation maximization (EM) algorithm (Fig. 9).
We simply call Mclust function from R package mclust
[24, 25] to perform cluster analysis of the three genes
respectively. Receiver operating characteristic (ROC)
curves for predictions (Fig. 9) shows the good perfor-
mances of our classification. We computes the confidence
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Fig. 4 DTWscore identifies heterogeneous and non-heterogeneous genes from the synthetic data. a Temporal patterns of gene expression from a
single biological function. Diamonds and crosses shows the time points at which samples were collected from the two time periods. Samples were
taken at uneven time intervals. b Temporal patterns of gene expression from two biological functions. Triangles and circles show the time point at
which samples were collected from the two time periods. ¢ Jitter plot of DTWscore between non-heterogeneous genes versus heterogeneous
genes, displaying clear clusters. d Bins in the horizontal axis summarize changes in the overall expression group of bars corresponding to genes
from simulated datasets. Colored bars within each group summarize changes in DTW distance between groups. The figures show that the
DTWscore is effective for identifying gene expression patterns
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Fig. 5 DTWscore identifies heterogeneous and non-heterogeneous genes from synthetic data. a Temporal pattern of gene expression from a single
biological function. Diamonds and crosses shows the time points at which samples were collected from the two time periods. Samples were taken at
uneven time intervals. b Temporal patterns of gene expression from two biological functions. Triangles and circles show the time points at which
samples were collected from the two time periods. ¢ Jitter plot of DTWscore between non-heterogeneous genes versus heterogeneous genes,
displaying clear clusters. d Bins in the horizontal axis summarize changes in the overall expression group of bars corresponding to genes from
simulated datasets. Colored bars within each group summarize changes in DTW distance between groups. The figures show that the DTWscore is
effective for identifying gene expression patterns
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Fig. 6 ROC curves from different conditions. The DTWscore method was applied to two different scRNA-seq time series data sets. The algorithm'’s
performance was assessed by their sensitivity, illustrated in the ROC curves, which demonstrate good performance in all cases. The black curve
represents condition 1 simulated by the biological functions £, (t) and f3(t). The red curve represents condition 2 simulated by the biological
functions f>(t) and f4(t)

interval (CI) of the sensitivity at the given specificity
points. Moreover, two genes or three genes might also
be driving the clustering (Additional file 5: Figure S5 and
Additional file 6: Figure S6).

Comparison with other methods

In order to assess the performance of DT Wscore in rela-
tion to other approaches, we run Monocle and SLICER on
the HSMM data and compared the classification results
from all the three approaches.

Monocle uses independent component analysis (ICA)
to reduce the dimensionality of the expression data before
clustering the cells. Monocle also provides algorithms
on unsupervised cell clustering and semi-supervised cell
clustering with known marker genes. Figure 10b shows
that the cells fall into two different clusters. The cells

tagged as myoblasts are marked in green, while the fibrob-
lasts are tagged in red. Unfortunately, the cells don’t clus-
ter by type. This is not surprising because myoblasts and
contaminating interstitial fibroblasts express many of the
same genes in these culture conditions. While DTWs-
core method makes full use of the information between
all pairs of cells by calculating time series DT Wscores.
This process help DT Wscore infer the most stable marker
genes for defining the potential cell types. Figure 11 shows
the roc curves for the comparison between DT Wscore
and Monocle methods which present the better perfor-
mance of DT Wscore method.

Because SLICER can infer highly nonlinear trajectories
and determine the location and number of branches and
loops, the cells fall on more different branches. Figure 10a
is the default low-dimensional k-nearest neighbor graph
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Fig. 7 Histogram and Q-Q plot of DTWscore based on HSMM datasets. The histogram plot of DTWscores shows that the distribution of values is
normally distributed. The linearity of the points in the Q-Q plot is the best proof. Meanwhile, outlier of the distribution appears on the right corner.
Thus, genes with DTWscore more than 4 standard deviations above the mean are considered heterogeneous genes
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shows the clustering using SLICER branching analysis. It
appears that SLICER benching analysis suggest that cells
should fall on many different branches which maybe more
than the real number of cell types. Obviousily SLICER is
capable of detecting types of features but sometimes it will
overfit. However, DT Wscore is a model-based method to
infer the potential cell types which is more flexible for
diverse datasets.

Discussion

We stress that our method is different from the approach
that detects cell clusters and expression differences, such
as those described previously [8, 15, 20], which seek to
infers cellular trajectories from scRNA-seq data. In addi-
tion to identifying differentially expressed genes from the
time series data, our framework allows us to identify
potential cell types that undergo differetiation at each time
point. Such genes are of great interest. First, they repre-
sent biological heterogeneity within heterogeneous cells,
implying differential regulation of response across cells.
Second, these genes could be used for marker genes to
distinguish from mixture of cell types. Finally, we hypoth-
esize that heterogeneous genes can serve as biomarkers
that track the progressive disease process. If confirmed,
our study will discover and monitor disease processes
prior to the onset of clinical symptoms. We also do

not require dimensionality reduction with many impor-
tant genes going unobserved. The real strength in our
framework lies in the capacity to characterize the poten-
tial cell types by inferring differentially expressed genes,
which provides the opportunity to study the extent of
gene-specific expression heterogeneity within a biological
condition.

The approach is limited in that only classification of
cell types are feasible. A generalized DTW algorithm used
for the analysis will make analyses of more than three
to four cells over time possible; work in that direction is
underway. Finally, we note that, while the differentially
expressed genes identified by the DT Wscore may prove
useful in downstream analysis and cellular branches and
trajectories inference, extensions in this direction are also
underway.

Conclusions

To date, a large amount of available high-throughput data
has been measured at a single time point [26]. Time-series
expression experiments provide a wealth of information
regarding the complete set of gene expression patterns
[27]. Thus, a large body of literature has integrated
these temporal data sets using computational methods
[28-30]. Meanwhile, many quantitative tools have sought
to [31-33] study changes in gene expression and the
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potential cell states at the single-cell level. For a better
understanding of the single-cell expression level com-
bined with time-series data, we focused on the detection
of genes whose biological heterogeneity varies between
cells and inferring the potential cell types from com-
plex mixtures of multiple types. This analysis is quanti-
fied with our proposed DT Wscore, which is used as the
basis to select highly variable genes. According to the
experimental results, the DT Wscore is effective with cell
type clustering based on single-cell expression time-series
data.

Our analysis of scRNA-seq time-series gene expression
datasets increased the ability to study various cellular
mechanism over time. First, in HSMM cells, we identi-
fied highly significantly differentially expressed genes with
time-series data, indicating that the genes are marked
for use in the following clustering. The expression of
these genes possibly arose from the un-synchronized
time-series sScCRNA-seq experiments. Second, given the
various biological processes, the DT Wscore for each
gene was calculated using our pipeline. By combin-
ing the method to set thresholds, quantitative analysis
has enabled the direct separation of heterogeneous and

non-heterogeneous genes. The DT WSscore can manage
uneven and sparsely sampled time series gene expres-
sion data without need for prior assumptions about the
evenness or density of the time-series data. Moreover,
all pairs of cells are calculated by DT Wscore, a proce-
dure that could result in the stability of finding important
highly variable genes. Finally, the DT Wscore could suc-
cessfully identify the potential cell types from bunch of
scRNA-seq data.

Regarding computational future directions, recover-
ing the genes’ heterogeneity over time in individual
cells is only a fist step in understanding the complex
dynamic processes that drive changes in gene expres-
sion. Most scRNA-seq data sets consist of hundreds
(and sometimes thousands) of cells that have recently
allowed parallel sequencing of substantially larger num-
bers of cells in an effective manner, which brings addi-
tional challenges to the statistical analysis of sScRNA-seq
data sets (e.g., because of the existence of unknown
sub-populations, requiring unsupervised approaches).
We expect that developing unified computational meth-
ods with time-series single cell gene expression data
will yield more biological insights. Inferring the potential
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Fig. 11 Receiver operating characteristic (ROC) curves for comparison with Monocle. Genes with the top three DTWSscores are chosen for cells
cluster respectively. ROC was performed for comparing with Monocle method which shows the better performance of DTWscore method

types and states of individual cells is thus a useful tool
for studying cell differentiation and govern a much wider
array of biological processes.

Methods

Details of the data sources

We performed our pipeline on both synthetic time series
data and real temporal gene expression data downloaded
from (GEO). The real time-series scRNA-seq data were
obtained from GSE52529 [15]. The data were generated
from primary HSMMs, that were cultured in high-serum
medium. After a switch to low-serum medium, cells were
dissociated and individually captured at 24-h intervals.
Ninety-six cells were captured at each of four time points.
They original contributors provided a raw FPKM matrix
containing 27,429 genes and 372 cells collected at four
time points in total. The first step in the single-cell RNA-
Seq analysis is identifying poor-quality libraries for further
analysis. The gene expression matrix holds the identifiers

for genes expressed in at least 80 percent of the total cells
in the data set. We then applied the DT Wscore to iden-
tify specific genes from all pair of cells with time-series
expression data. In terms of the simulated strategy, we
simulated a set of dynamic gene expression programs to
assess the performance of our model on inputs with time-
series data. As noted above, time-course experiments fall
into four categories, represented by four families of func-
tions. The expression dynamic across ‘pathways’ were
drawn from the empirical functions as that in [8]. Genes
are classified into two groups. Genes with less varia-
tion in the expression levels with time in two cells are
labeled with non-heterogeneity as group one. We simu-
lated these gene’s expression values from the same func-
tion. The other genes are group two, and the genes with
increased biological variability could respond to differ-
ent kinetics. These genes with heterogeneity labels are
derived from different biological processes. Then each
gene is entitled with a DT Wscore. All the DT Wscores are
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normally distributed. We take the 4 standard deviations
above the mean as the threshold for identifying heteroge-
neous genes. Finally, we call EM algorithm [34] for normal
mixture models that define the potential cell types.

f1(&) = 5¢; cos(t/5) + 8 + €1
fo(t) = 5casin(t/5) + 8 + e
f3(0) = c3(t/10)* + €3 +5
fa(t) =5log(t+1)+8

where ¢; ~ N(1,0.01) and ¢; ~ N(0,02). For the actual
values of ¢, we used the sequence range from 0 to 10 x
of 314 values. We considered 1000 genes from two types,
highly variable genes and non-heterogeneous genes; and
two cells from two time series. For each cell, we var-
ied the interval of each different time points, and the
corresponding DT Wscore is calculated for each gene.

Details of the DTWscore pipeline
The DT Wscore pipeline contains four steps (Fig. 1).

Filter low-quality cells

The first step in single-cell RNA-Seq analysis is identify-
ing poor-quality libraries. Most single-cell workflows will
include at least some libraries made from dead cells or
empty wells in a plate. The expression level of each gene
was represented by FPKM values. DT Wscore hold the
genes expressed in at least 80 percent of the total cells in
the data set. Genes that were non-expressed in more than
80 percent of the total cells were excluded, leaving the
remaining genes for further analysis. Consequently, thou-
sands of genes could be reduced to hundreds for further
analysis.

Calculate the average DTWscore for all pair of cells

The DT Wscore is calculated based on the FPKM gene
expression levels. The dynamic time warping technique
[35] is used to detect changes in the expression patterns
for time-series sScRNA-seq data sets. We assume that two
cells are compared, and each cell contains n, (p = 1,2)

temporal gene expression values. Let Xi(jp ) represents the
expression count of gene i(i = 1,...,N) of jth time
points in the pth (p = 1,2) cells. Briefly, if the expres-
sion levels of some gene i are tracked during the unfolding
of a biological process, the process can be conceived as
tracing out a trajectory over time. We consider the two
temporal gene expression in two cells as two time series:
x = (xgll), ...,x},lrl), ...) and Xl-(iz) = (xglz), ...,x}ﬁ), ...). We
also assume that a non-negative, local dissimilarity func-
tion f is defined between any pair of elements x,, and x,,,
with some type of distance:

d(m,n) = f(xXm,%q) > 0
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Note that the most common choice is to assume the
Euclidean distance, different definitions (e.g.,those pro-
vided by the proxy package [36]) may be useful as well.
Thus, the procedure for evaluating the level of differen-
tial expression between Xi(zl) and Xi@ ) involves finding all
possible routes through the grid and computing each one’s
overall distance, which is defined as the sum of the dis-
tances between the individual elements on the warping
path [37]. Consequently, the final DT'W distance between
Xi(jl) and Xi(«2 ) is the minimum overall distance over all pos-
sible warping paths. The idea underlying DTW is to find
the optimal path ¢ such that

D(X},”, X;z)) = rrgn dy (Xfl.D , X}f))

The DTW algorithm makes use of dynamic program-
ming and works by keeping track of the cost of the best
path at each point in the grid:

y(L,1)=d(1,1)

y(m,1) =d(m,1)+y(m—1,1)

y(l,n)=d1,n)+y1,n—1)

y (m,n) = d(m, n) + min(y (m,n — 1),
ym—1,n—1),y(m—1,n))

Consequently, D(Xlg«l),Xi(jz)) = y(n1,n2)/(n1+ny). Dur-
ing the calculation process of the DTW grid, it is not
actually known which path minimizes the overall dis-
tance, but this path can be traced back when the end
point is reached. We observed that the DTW distances are
strongly correlated with maximum gene expression lev-
els; therefore, a normalizing procedure was necessary. We
used the R package named dtw [38], which provides both
distance and normalized distance for further analysis.

Identify highly variable genes with a model-based threshold

Model-based threshold to identify highly variable genes
will change significantly among various types of datasets.
As the variabilities are high in scRNA-seq time-series
data, a fixed threshold for the DT Wscore is less effective
in many settings. Flexible thresholds for the DT Wscore
are necessary, allowing the test of variabilities in response
to a numerically estimated trend in the predictors, alle-
viating the burden of specifying their distribution. We
utilized the distribution model to identify the specific
gene sets for further analysis. We briefly summarize the
main insight. As noted above, the empirical distribution
of the DT Wscore from all time-course datasets falls into
normal distribution (Fig. 7). Probability density function
could be achieved by the estimation of mean and standard
deviation values. Probability density that equals to 0.95 is
defined as the default threshold for selecting genes and
genes with DT Wscores larger than the threshold are then



Wang et al. BMC Bioinformatics (2017) 18:270

classified as differentially expressed between two single
cells. Those genes could be served as potential biomark-
ers that track some disease process by the researchers.
Following the previous section, the DT Wscore D;, (i =
1,...,N)for each gene is obtained. Suppose

D; ~ N(u,0?%)

where

N N
p=y Dyo’ =Y (Di—w?*/N
i=1 j

i=1

Classify cells of different types by normal mixture model

We can classify cells as follows. First, to cluster the cells,
we choose the gene with the highest DT Wscore and make
full use of its expression values of all the time points.
Next procedure requires R package mclust which provides
Gaussian finite mixture model fitted by EM algorithm
[34]. The roc plot indicates the result of our classifica-
tion is good. Overall, we have successfully classified all
the cells. As noted above, the empirical distribution of
the DT Wscore from all time-course datasets falls into two
normal distribution (Fig. 8). Each type of experiment has
a characteristic expression outcome. However, these dis-
tinct outcomes are achieved by two types of empirical
distribution. the 4 standard deviations above the mean is
defined as the default threshold for selecting genes and
genes with DT Wscores larger than the threshold are then
classified as differentially expressed between two single
cells. Those genes could then subjected to cell cluster anal-
ysis by the researchers. Combinations of these basic out-
comes result in the flexible application of the DT Wscore
methods. In future work, we will explore more conditions
from various datasets.
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