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Because intracellular processes are inherently noisy, stochastic reac-
tions process noisy signals in cellular signal transduction. One essen-
tial feature of biological signal transduction systems is the amplifi-
cation of small changes in input signals. However, small random
changes in the input signals could also be amplified, and the trans-
duction reaction can also generate noise. Here, we show theoretically
how the abrupt response of ultrasensitive signal-transduction reac-
tions results in the generation of large inherent noise and the high
amplification of input noise. The inherently generated noise propa-
gates with amplification through intracellular molecular network. We
discuss how the contribution of such transmitted noise can be shown
experimentally. Our results imply that the switch-like behavior of
signal transduction could be limited by noise; however, high ampli-
fication reaction could be advantageous to generate large noise,
which would be essential to maintain behavioral variability.

cellular noise � ultrasensitivity � signal-transduction cascades � gene-
expression noise

Many cellular processes respond abruptly to internal and
external variations by using networks of interacting mole-

cules. One mechanism for sharpening the response is the cooper-
ativity observed in hemoglobin (1–3). Response is also heightened
when a messenger is activated and deactivated cyclically by a pair
of opposing enzymes (4, 5), as observed in a combination of kinase
and phosphatase reactions. In these reactions, the response is
switch-like, with a threshold in the concentration of stimuli. In a
cascade of such switch-like reactions, as observed in mitogen-
activated protein kinase (MAPK) cascade, the amplification of the
whole cascade can be much larger (6). Therefore, steep cellular
responses may imply the often-adopted view that complicated
combinations of those switches operate cellular behaviors. Is it
more appropriate for the cellular system to have ultrasensitivity
with higher Hill coefficients to have all-or-none behaviors? Because
cellular processes are inherently noisy (7), such intrinsic cellular
noise might affect the behavior of ultrasensitive signal transduction.

Recently, the existence of strong noise in biochemical reactions
in cells has been demonstrated experimentally, particularly in gene
expression (8–11). When such a noisy chemical component regu-
lates a reaction, the noise seems to affect the behavior of the
reaction. As the noise intensity of the regulating component
increases, the noise intensity of the regulated component also
appears to increase. This transmission of noise indicates that the
following two distinct noise sources contribute to the noise of each
component: the noise inherent in its own reaction (intrinsic noise)
and the noise generated in other chemical components that affects
the reaction (extrinsic noise). Elowitz et al. (10) pointed out and
demonstrated this distinction experimentally in gene expression. A
consistent view for previous experiments (8–11) on the noise in
gene expression was provided by Paulsson (12), who analyzed the
propagation of noise in a gene network theoretically. He showed a
quantitative expression for both intrinsic and extrinsic noise based
on a simple birth-and-death process of two chemical species.

The cellular signal transduction systems are also inherently noisy
(13–15). How cells respond properly to noisy signals by using noisy
molecular networks is an important problem in elucidating the

underlying ‘‘design principle’’ of cellular systems. Oosawa (16, 17)
discussed that such intracellular noise is hierarchically organized
from thermal fluctuations to spike-like large fluctuations, which
produce spontaneous signals to change the behavior of swimming
cells such as bacteria and paramecia. Recently, the noise in signal
transduction was discussed (18, 19), suggesting the large amplifi-
cation results in the generation of strong random fluctuations in the
output signal. As Elowitz et al. (10) and Paulsson (12) discussed in
their studies on gene networks, the noise generated in a reaction
propagates in signal transduction networks. The high amplification
of input signals may imply the high amplification of the noise in
input signals. Thus, the intrinsic and extrinsic noises are related to
the amplification of signal-transduction processes.

Therefore, the problem that we address in this article is how
intrinsic and extrinsic noises relate to the amplification of signals.
We show the connection more clearly and systematically between
the observable quantity such as gain, which quantifies the amplifi-
cation, and both intrinsic and extrinsic noise intensities. We show
that the intrinsic and extrinsic noises are described by the functions
of the gain of signal-transduction reactions, summarized as the
gain–intrinsic noise relation Eq. 8 and the gain–extrinsic noise
relation Eq. 10. As the gain increases, the total noise in the output
signal shows the crossover from the intrinsic-noise dominant regime
to the extrinsic-noise dominant regime (Eq. 11 and Fig. 4). These
gain–fluctuation relations are applicable to many types of reactions.
In this article, the relations are studied for the three reactions that
are always found in signal transduction cascades (1) (Fig. 1): the
Michaelis–Menten-type reaction, and the ultrasensitive reactions
such as the cooperative reactions in single proteins and the push–
pull antagonistic reaction. Last, we propose criteria to verify
experimentally which noise (intrinsic or extrinsic) is dominant in the
cellular noise, and we discuss the biological relevance.

Signal-Transduction Reactions
The Michaelis–Menten-Type Reaction. The Michaelis–Menten-type
reaction is the simplest signal-transduction reaction that behaves as
a molecular switch.

S � Y 7 X, [1]

where S is the signaling molecule that binds to the inactive state Y
so that the protein is switched on to the active state X (Fig. 1a). This
best-known reaction gives rise to the Michaelis–Menten kinetics
(Fig. 2a).

The Monod–Wyman–Changeux (MWC) (Concerted) Model. As an ex-
ample of cooperative binding reaction, we study the MWC (con-
certed) model (1, 2), in which a number of identical subunits in a
protein have two structural states, T and R (Fig. 1b). The state T
shows a relatively low affinity for substrate, whereas the R state
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shows a higher affinity. The subunits in a protein are either all in
the T state or all in the R state:

R0
¢O¡
KR

R1
¢O¡
KR

R2 ¢ · · · ¡ Rn

L8 8 8 8

T0
¢O¡
KT

T1
¢O¡
KT

T2 ¢ · · · ¡ Tn,

[2]

where n is the number of subunits, and Ri and Ti indicate that i
substrates bind to the molecule. L, KR and KT are the equilibrium
constants. The subunits binding to the substrate transmit signals.
Thus, the input signal S is the concentration of the substrate and the
output signal X is the concentration of the subunits that bind to the
substrates. Therefore, X is a linear combination of the concen-
trations of the states: X � [R1] � [T1] � 2[R2] � 2[T2] � � � � �
n[Rn] � n[Tn]. The output signal can show a steeper response than
that of the Michaelis–Menten kinetics (Fig. 2b).

The Push–Pull Antagonistic Reaction. The push–pull antagonistic
reaction is the simplest example of a cyclic modification reaction
that can also show sharp response (4, 5). In the push–pull reaction,
the signaling molecule, which is an enzyme, switches its substrate
protein from an inactive to an active state, whereas another enzyme
switches the protein off (Fig. 1c). Each step is characterized by
Michaelis–Menten kinetics:

Y � Ea7 YEa3 X � Ea

X � Ed7 XEd3 Y � Ed,
[3]

where Ea is the signaling enzyme which switches inactive state Y to
active state X, and Ed switches X off. Thus, the input signal is the

concentration of Ea. If each Michaelis–Menten reaction works near
saturation, sharp response is obtained (Fig. 2c).

Note that if KT�KR � 1 or L � 0 in the MWC model, or both of
the Michaelis–Menten kinetics in the push–pull reaction work far
from saturation, these reactions are reduced to the Michaelis–
Menten-type reaction. Therefore, in the next section, we study the
MWC model and the push–pull reaction.

Characterization of Signal Amplification
The amplification can be evaluated by changing the signal intensity
S to S � �S and measuring the response �X in the output signal X
from its stationary value X� . The amplification can be quantified as
follows by the gain g defined as the ratio between the fractional
change in the output signal X and the fractional change in the input
signal S:

g �
�X�X�

�S�S
. [4]

In this article, we consider that there is only a small change in S.
Then, the gain is rewritten as g � d log X�d log S. For the three
reactions discussed in Signal-Transduction Reactions, the gain is
shown in Fig. 2. Ultrasensitivity is defined as the response of a
system that is more sensitive to change in S than is the normal
hyperbolic response in Michaelis–Menten kinetics, in which the
maximum gain g is unity. Thus, the maximum gain g of an
ultrasensitive system is larger than unity.

Results and Discussions
Ultrasensitive Reactions Can Be Strong Noise Sources. First, we study
how the gain is related to the intrinsic noise. In signal-transduction
reactions, a modification or degradation reaction that switches the
activated signal molecules off determines both the time constant of
the output signal and the strength of the response. If the modifi-
cation or degradation reaction rate � is small, the response to the
change in the input signal may be large; conversely, if � is large, the
response may be small. For a given value of the production reaction
rate, with which the active signal molecules are produced, the gain
is proportional to the inverse of the reaction rate �,

g �
1
�

, [5]

if the change in the signal intensity is small.
The concentration of the output signal X f luctuates in time

because of the intrinsic noise of chemical reactions, even if the
input signal does not fluctuate in time. The variance of this
intrinsic noise, �in

2 , is also determined by the rate �. The temporal
evolution of X is a stochastic process. In such a process, the
correlation between X at time 0 and at time t typically decays
exponentially over time. Therefore, the information that a reaction
takes place at a particular time disappears after the time constant
� � 1��. Because the number X at a particular time is approximately
given by integrating the stochastic change in X during the interval
�, the standard deviation �in in the distribution of such a number as
X is proportional to ��, according to the central-limit theorem in
the probability theory. Thus, the variance of the intrinsic noise �in

2

can be written as follows:

�in
2 �

1
�

. [6]

From Eqs. 5 and 6, we conclude that the gain is proportional
to the intrinsic noise,

g � �in
2 . [7]

Fig. 1. Three typical signal-transduction reactions. (a) The Michaelis–Menten-
type reaction. (b) The Cooperative binding reaction. (c) The push–pull antago-
nistic reaction. The circle indicates the R state and the square is the T state. The
subunits that are occupied by substrates are filled.

Fig. 2. Ultrasensitive responses in signal-transduction reactions. The fractional
concentration of the output signal X (left axis) and the gain g (right axis) are
plotted as functions of the concentration of signal molecule. The Michaelis–
Menten-type reaction (a), the MWC model (b), and the push–pull antagonistic
reaction (c) are shown.
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This relation reveals that a high response that is characterized by
high gain results in large intrinsic noise, whereas large intrinsic noise
implies high gain. We can conclude at least that the gain and the
intrinsic noise cannot be controlled independently. This gain–
intrinsic noise relation in signal-transduction reactions, is exactly
written as follows:

g � �
�in

2

X�
, [8]

where X� is the average number of X before the change in the input
signal and � is a particular constant depending on the reaction (see
Appendix for the derivation). Note that � is not a dimensionless
parameter and that it depends on the measurement of X. When we
suppose that the output signal X is the number of the output
molecule rather than the concentration, � is obtained as a simple
number. In the reactions discussed in Signal-Transduction Reac-
tions, we obtain � � 1. Stochastic simulations were performed for
the MWC model and the push–pull reactions. The result, shown in
Fig. 3, indicates clearly that the relation is satisfied in these reactions
with � � 1.

Single gene expression also follows the relation Eq. 8. When X is
the number of protein products of a gene expression � � 1�(b �
1), where b is the translation efficiency defined as the average
number of protein products produced from a single mRNA (see
Appendix). Not only the reactions that we studied here, but also
many other types of reactions, follow this reaction. For example, the
ultrasensitive reactions such as the Koshland–Némethy–Filmer
sequential model of allosteric enzymes (3), and the generalized
model of allosteric enzymes (21, 22) follow the same relation.

However, in the case of the adaptive signal transduction reactions
such as the kinetics of bacterial receptor responsible for chemotaxis
(23, 24), the relation between the gain and the fluctuation could be
more complicated than Eq. 8.

The Amplification of Noise in Input Signal Is Less than the Gain. If the
signal-transduction reactions amplify the small changes in the input
signal, the noise in the input signal may also be amplified. Here, we
show how the amplification of input noise is related to the gain.

When the incoming signal contains noise with the standard
deviation �s, the extrinsic noise contribution in the output signal is
measured as the standard deviation of the extrinsic noise intensity
�ex. The ratio between the relative noise intensities �ex�X� and �s�S
gives the amplification rate of the noise �, as follows:

� �
�ex�X�

� s�S
. [9]

As we will show, the amplification rate � is determined by the time
constant of the noise in the input signal, �s, and that of the
signal-transduction reaction, �, and the gain g.

First, we consider the case in which the time constant of the input
noise, �s, is much larger than that of the transduction reaction, � (i.e.,
�s �� �). Then, such a noise is considered as slow modulation in the
input signal, and thus, such a noise cannot be distinguished from an
external systematic change in the input signal. The response of the
change in an input signal is measured by the gain g. Therefore, in
this case, the amplification rate � is equal to the gain g and nothing
else; i.e., � � g.

Consider the other extreme case in which the time constant of the
input noise, �s, is much smaller than that of the reaction, � (i.e.,
�s 		 �). The impact of the input noise on the output signal is
evaluated by taking the temporal average of input noise during the
time interval �. The standard deviation of the temporal average is
proportional to ��s��. Consequently, the amplification rate � in
this regime is given by � � g��s��.

Including the above two cases, the amplification rate � is obtained
by � � g��s�(� � �s). Thus, the gain–extrinsic noise relation is
written as follows:

�ex

X�
� g � � s

� � � s

� s

S
. [10]

The gain–extrinsic noise relation indicates that the amplification
rate of the input noise is at most the gain g. When �s �� �, the
amplification rate � approaches the gain g. When �s 		 �, the noise
in the input signal is averaged out and the amplification rate
decreases proportionally to ��s as the time constant �s decreases.
The derivation of Eq. 10 is shown in Appendix.

Both Intrinsic and Extrinsic Noises Contribute the Total Output Noise.
From Eq. 10 the dependence of the extrinsic noise on the gain is
given by �ex

2 � g2. Remember that the variance of the intrinsic noise

Fig. 3. The gain–intrinsic noise relation of signal transduction systems. The gain
g is plotted as a function of the variance divided by the mean number. Changing
the concentration of the input signal S, the gain, the variance, and the mean
number are obtained by performing stochastic simulations of schemes, as shown
in Eqs. 2 and 3, according to the Gillespie’s numerical algorithm (20). (a) The MWC
model. We used the parameter values: KT � 1, and n, KR, and L shown in the
figure. The kinetic constants were arbitrarily chosen. (b) The push–pull reaction.
The Michaelis constant is Ka for the activation reaction, as is indicated, and Kd �

1 for the deactivation reaction. The maximum velocities of activation and deac-
tivation reactions are given by Va � Vd � 100, respectively.
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�in
2 is proportional to the gain g; i.e., �in

2 � g, as shown in Eq. 8.
Because the total noise is made up of the intrinsic and extrinsic
noises, the dependence of the variance of the total noise is both
linear and square on the gain g. In the MWC model and the
push–pull reaction, it is numerically verified that �tot

2 � g when g is
small, and �tot

2 � g2 when g is large (see Fig. 4). Therefore, if the gain
g is small, the intrinsic noise is dominant in the total noise, whereas
if the gain g is large, the extrinsic noise dominates (Table 1).

Consequently, for the signal-transduction systems such as the
three reactions introduced in Signal-Transduction Reactions and
gene expression as well, the relative noise intensity of the total
noise, �tot�X� , in the stationary state is related to the gain g as the
gain–fluctuation relation:

�tot
2

X� 2 � g
1

�X�
� g2

� s

� � � s

� s
2

S2, [11]

where the first term on the right hand side is the intrinsic noise (Eq.
8), and the second term is the extrinsic noise (Eq. 10) (see Appendix
for the derivation). Similar expression was derived by Paulsson (12)
for the reaction noise of simple coupled chemical reactions to study
gene-expression noise. Because the essential functioning of signal
transduction is the amplification, we emphasize in our result based
on Eq. 11 the connection between the noise intensity and the
experimentally observable quantity gain g.

Transmitting Noise in Signal Transduction Cascades. The gain–
fluctuation relation Eq. 11 is generalized in cascade reactions, such
as the MAPK cascade. In a cascade, a signal-transduction system
regulates another downstream signal transduction. Then, the fluc-
tuation in the ith reaction is as follows:

�i
2

X� i
2 � gi

1
�iX� i

� gi
2 �̂i
1

�i � �̂i
1

�i
1
2

X� i
1
2 , [12]

where the subscript i indicates the reaction number in the cascade.
In the case of MAPK cascade, when the ith reaction is a MAPK
reaction, the i 
 1th reaction is MAPK kinase reaction. In the
second term, �i is the time constant of the ith reaction, and �̂i is the
time constant of the output noise of the ith reaction. In the second
term, �i
1�X� i
1 is the total noise of the i 
 1th reaction. The
contribution of the intrinsic noise generated at a particular up-
stream reaction to the extrinsic noise of a downstream reaction is
estimated as the product of the amplification rates � of the reactions
between them. Therefore, if the cascade consists of reactions with
high gain, the extrinsic noise dominates the fluctuation in the output
signal.

However, even when the cascade is made up of ultrasensitive
reactions, if the downstream reactions work at almost saturation,
the gains in these reactions can be much smaller than unity. As
a result, the extrinsic noise contribution can be attenuated. Such
an example was studied recently in a cascade of ultrasensitive
reactions (25).

The Difference Between Dominating Extrinsic Noise and Dominating
Intrinsic Noise. Which noise, intrinsic or extrinsic, dominates the
cellular noise? How can we answer this question experimentally? In
a gene network, Elowitz et al. (10) showed that the extrinsic noise
contribution is dominant in the constitutive plasmid system. The
question is also answered by measuring the dependence of
the standard deviation on the average number. Suppose that the
dependence of gain g on the output signal intensity X� is weak. Then,
from Eq. 11, when the intrinsic noise is dominant, we have �tot �
�X� . However, if the extrinsic noise dominates, it follows that �tot
� X� (Table 1).

In gene expression, it was reported that when the expression
levels of many genes are measured in different conditions in many
kinds of species, the difference of the expression levels in each gene,
�X, is in average linearly proportional to the expression level X� of
each gene; i.e., �X � X� (26). This experimental result, together with
the definition of the gain, indicates that the expression levels move
in the range where the gain g is almost constant against the change
in the conditions. Then, the above criterion is applicable to gene

Fig. 4. Amplification of noise in signal-transduction systems. To show the
dependence of the total noise intensity �tot on the gain g, �tot�X� is plotted as a
function of the gain g. Changing the average concentration of the input signal,
g, �tot, and X� were obtained numerically. The numerical calculation was per-
formed by using the Gillespie’s algorithm (20), as in Fig. 3. In the present case, the
concentration of the input signal also fluctuates in time, and the average con-
centration increases under the condition that the relative noise intensity is
maintained to be constant. The following parameters are shown: the MWC
model KT � 1, KR indicated in a; the push–pull reaction, Va � Vd � 10, Ka and
Kd indicated in b.

Table 1. Characteristics of intrinsic and extrinsic noises

Characteristics Intrinsic noise Extrinsic noise

Noise to gain �in � �g �ex � g
Noise to output �in � �X� �ex � X�

Dominant frequency Higher Lower

The dependence of noise intensity on the gain and output signal intensity
are shown in the first two rows. The intrinsic noise dominates higher-
frequency noise, whereas the extrinsic noise dominates low-frequency noise,
as shown in the third row.
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expression. Ozbudak et al. (9) showed that the variance of expres-
sion noise is proportional to the expression level; �2

tot � X� , whereas
Banerjee et al. (27) reported by using a different system that the
standard deviation is proportional to the expression level; �tot � X� .
Therefore, in these two different systems, the intrinsic noise is
dominant in the former system, and the extrinsic noise is in the latter
system.

Extrinsic Noise Dominates Low-Frequency Noise. For signal transduc-
tion systems, the ultrasensitive behavior of bacterial chemotaxis was
reported (22, 28, 29). This ultrasensitivity suggests, from the view-
point of the gain–fluctuation relation, that there is a strong under-
lying stochasticity in the network of chemotaxis responses. From
our result, it can be further suggested that if the extrinsic noise
dominates, the upstream reactions affect the fluctuation of the most
downstream reaction, which determines the cellular behavior. As a
result, the behavioral fluctuations are made up of the contributions
of the fluctuations of several upstream reactions. On the other
hand, if the intrinsic noise dominates, only the intrinsic noise of the
most downstream reaction determines the behavioral fluctuations.
As a result, the behavior could be simpler than the case in which
extrinsic noise is dominant.

This distinction in the effects of the intrinsic and extrinsic noises
on cellular behaviors can be clearly seen by performing a spectrum
analysis of an output signal. The contributions of intrinsic and
extrinsic noises to the total noise intensity depend on the frequency
(see Eq. 20 in Appendix and Fig. 5). As the frequency � increases,
the intrinsic noise contribution �in is a constant up to the frequency
�
1, and it then decreases proportionally to �
1. However, the
contribution of extrinsic noise �ex is a constant up to the frequency
(�2 � �s

2)
1�2, and for higher frequency �, it decreases proportion-
ally to �
2. Therefore, the low-frequency component can be
dominated by the extrinsic noise if the gain g is large, whereas the
high-frequency component is dominated by the intrinsic noise
(Table 1). Consequently, the low-frequency modulations in the
downstream reactions can be affected by the behaviors of upstream
reactions, whereas the high-frequency modulations are expected to
be independent of upstream reactions.

Recently, Korobkova et al. (15) measured the stochastic behavior
of chemotaxis network in a single bacterium and reported the
complex temporal behavior. They reported that, as the concentra-
tion of an upstream molecule receptor methyltransferase CheR
increased, the temporal behavioral variability was reduced and
suppressed. The power spectrum intensity of the temporal behav-

iors decreased in the low-frequency region as the increase of
[CheR], whereas the intensity in the high-frequency region was
almost maintained. Because the low-frequency noise is dominated
by the extrinsic noise, the experimental result suggests that, as
[CheR] increases, whereas the intrinsic noise is unchanged, the
extrinsic noise is suppressed and, as a result, the behavior becomes
simpler. Therefore, the result implies that the extrinsic noise is
essential to maintain the behavioral variability in wild-type bacteria.

Outlook. Our results imply that the signal transduction capacity can
be limited by large noise of ultrasensitive reactions but, however,
such reactions can be advantageous to generate large noise, which
could be essential to maintain behavioral variability and sponta-
neous behaviors. Even though the three reactions discussed in this
article include nonlinear reactions, our theoretical analysis de-
scribes well the behaviors obtained numerically. However, when a
reaction works with strong nonlinearity, the effects of noise can be
difficult to predict. In such cases, increasing the input noise can
result in either enhancing or reducing the total noise of output
signal, depending on the system (30). Nonlinearity also gives rise to
a variety of phenomena, including multistabilities (31, 32) and
temporal oscillations (33, 34). In these cases, the relation between
the response and the fluctuations can be more complicated than the
relations we studied. However, our present results would be the
starting point for elucidating the role that the cellular noise
performs for functioning of cellular systems.

Appendix
Deriving the Gain–Fluctuation Relation. To derive the gain–
fluctuation relation Eq. 11, in this section, we mainly study the
signal-transduction reaction, in which the chemical component Y is
activated to X, and at the same time, X is deactivated to Y. This type
of reaction includes many signaling reactions such as the Michaelis–
Menten type reaction and push–pull reaction. The number of
chemical component X and Y are X and Y, respectively, and the
total number of X and Y is N � X � Y. If the number X is
considered approximately as a continuous number, the temporal
evolution of X is described by the chemical Langevin equation (19),
given by the following:

dX
dt

� �a�Y�Y � �d�X�X � �� t� , [13]

where �a(Y) and �d(X) are the activation and deactivation reaction
rates, respectively, which depend on the numbers X and Y. In the
case of the push–pull reaction (19), the reaction rates are given by
�a(Y) � kaS�(1 � Ka


1Y), and �d(X) � kd[Ed]�(1 � Kd

1X), where

S is the concentration of the input molecule Ea, Ka, and Kd are the
Michaelis constants of each enzymatic reaction, and ka and kd are
the kinetic constants. The last term �(t) is a white Gaussian noise
with �(t) � 0 and �(t)�(t
) � ��

2	(t 
 t
). Because chemical reaction
events take place in time as a Poisson process, the noise intensity
��

2 is given by ��
2 � �a(Y)Y � �d(X)X (35).

To calculate the gain and the noise intensity, we study the linear
response of X to the change in S. For such a linear response, the
variance of the noise ��

2 is considered approximately as a constant
in time. Therefore, substituting the stationary number X� and Y� for
X and Y, ��

2 is given by the following:

��
2 �

2�a�dN
�a � �d

. [14]

The temporal evolution of the small deviations x and s from X� and
S is described by the linearized Langevin equation of Eq. 13,

dx
dt

� 
s � �x � ��t�, [15]

Fig. 5. The frequency-dependent total, intrinsic, and extrinsic noise intensities,
shown in Eq. 20, with particular parameter values plotted as functions of the
frequency �. The intrinsic noise (dashed line) is dominant in the higher-frequency
region, whereas the extrinsic noise (dotted line) is dominated in the lower-
frequency region.
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where � � �a�(1 � Ka

1Y� ) � �d�(1 � Kd


1X� ) and


 �
��a

�S
Y� �

�a�dN
��a � �d�S

. [16]

First, we show the gain-intrinsic noise relation Eq. 8. We note that
this relation is considered as a variant of the fluctuation–dissipation
theorem in nonequilibrium statistical mechanics (36).

The gain is calculated from the mean response x� to the input
change s as follows:

g �
x��X�

s�S
�


S

�X�
. [17]

To calculate the intrinsic noise intensity of the output signal X in the
steady state, we solve Eq. 15 under the condition that s(t) � 0. Then,
the intrinsic noise intensity �in

2 � x(t)2 is obtained by �in
2 � ��

2�2�.
Consequently, the gain g is proportional to the intrinsic noise as follows:

g �
2
S
��

2

�in
2

X�
. [18]

Substituting Eqs. 14 and 16 into Eq. 18, the gain–intrinsic noise
relation is obtained as Eq. 8 with � � 1.

Whereas the above reaction was described essentially by a single
variable, the above derivation can be applied to the systems
described by multiple variables, such as the MWC model and the
Koshland–Némethy–Filmer model. In such cases, the intensity of
the output signal X is a linear combination of the concentrations
of n chemical components X1, X2, . . . , Xn. For example, in the case
of MWC model, the intensity of the output signal is given by X �
[R1] � [T1] � 2[R2] � 2[T2] � � � � � n[Rn] � n[Tn]. Even in such
cases, the gain–intrinsic noise relation Eq. 8 holds between the gain
and the variance of the output signal X, if the reactions satisfy the
detailed balance condition for the steady state (35, 37). Note that
this condition does not mean that the reactions must always be in
the steady state. In fact, in the process of response, the reaction is
away from the steady state. Moreover, the steady state is not
necessarily thermodynamic equilibrium.

Next, we consider the case in which the number of input signal
molecule is subjected to temporal stochastic fluctuations. Thus,
suppose that the input modulation s(t) in Eq. 15 is a stochastic
process, and for simplicity, the correlation of the fluctuation s(t)
decays exponentially in time with the time constant �s. When s(�)

is the Fourier transform of s(t), the power spectrum density �s����2
is given by the following:

�s����2 �
�2

2�

1
�2 � �s


2, [19]

where � is a particular constant. Then, the variance of the noise in
signal, �s

2, is calculated as �s
2 � �
�

� �s(�)�2d� � 1
2
�2�s.

Note that no correlation exists between s(t) and �(t). When x(�)
is the Fourier transform of x(t), solving Eq. 15 with Eqs. 8, 17, and
19, the power spectrum density �x(�)�2 is obtained by the following:

�x����2

X� 2 �
g

�X�
�
1�
1

�2 � �
2 �
g2�
2

�2 � �
2

�
1�s

1

�2 � � s

2

� s
2

S2, [20]

where � � �
1 is the time constant of the signal transduc-
tion reaction. This expression gives the frequency-dependent
total noise intensity. The total noise intensity �tot

2 � x(t)2 is
given by �tot

2 � �
�
� �x(�)�2d�. Therefore, the frequency inte-

gral of Eq. 20 gives the relative noise intensity of the total noise
Eq. 11 with � � 1.

The Gain–Intrinsic Noise Relation in Gene Expression. Here, we
calculate the parameter � in Eq. 8 for a single gene expression,
which is modeled as follows:

GO¡
kSb

P, and P ¡

�

,

in which G and P are the gene and its protein product, respec-
tively. The transcription rate is k; the translation efficiency is
denoted by b, which is defined as the translation rate divided by
the degradation rate of mRNA; and the degradation rate of the
protein product is �. In the present case, S is the gene activity,
which is the fraction of the occupancy of the operator region by
a regulatory protein that activates the transcription, and X is
the number of protein products. Eq. 15 is applicable to this
case, in which 
 � kb, ��

2 � kbS(1 � 2b) � �X� (38). From
Eq. 18, the parameter � is obtained as � � 1�(1 � b). This result
is still valid for gene expression with autoregulation.
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