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Abstract:    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, 
pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in 
clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians 
and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on 
demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk 
factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. 
A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple 
perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and 
weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic rea-
soning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases 
and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 
203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory 
tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian 
Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model 
could be potentially used in intelligent diagnosis and help decrease public health expenditure. 
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1  Introduction 
 

The ability to more accurately predict and pre-
vent disease has the potential to transform clinical 
practice. However, what limits the accuracy of dis-
ease predicting and prevention results from our limi-
tation in understanding the link between clinical 

presentation and disease progression (Madabhushi  
et al., 2010). Although vast amounts of data are col-
lected in clinical practice, ranging from organ images 
to blood and genetic tests, there are challenges asso-
ciated with analyzing, combining, and correlating 
these data to make diagnostic predictions. Currently, 
although the perception of evidence-based medicine 
is widely accepted and various sorts of clinical 
pathways and guidelines are put forward and renewed, 
the diagnostic method is still influenced by subjective 
factors and the correct diagnosis is largely correlated 
with doctors’ comprehensive experience. Regional 
imbalances of health care and physician training in 
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specializations have made diagnosis difficult in a 
complex clinical background. Intelligent diagnosis 
approaches have the potential to cover rare situations 
across a wide range of specialist domains, while no 
clinical expert can be expected to possess such an 
encyclopedic knowledge of disease manifestations. 
Recently, artificial intelligence diagnostic tools have 
given rise to more and more interest in the biomedical 
community, and offered a promising improvement in 
sensitivity and specificity of disease detection, diag-
nosis, and prognosis. Until now, various clinical  
expert systems based on rules, cases, fuzzy logic, 
Neural Networks, Bayesian Networks, or hybrid 
reasoning have been developed (Keith et al., 1995; 
Hatzilygeroudis and Prentzas, 2004; Malek et al., 
2005; Sasikumar et al., 2007; Lee, 2008; Avci, 2012; 
Oladipupo et al., 2012; Siniscalchi et al., 2014; Shen 
et al., 2015), and have been used as diagnosis aids 
across a wide range of specialties, such as vertigo 
(Dong et al., 2014a), Alzheimer’s disease (Suk et al., 
2014), autism (Bhat et al., 2014), image diagnosis (Li 
et al., 2014), and pathological diagnosis (Kruk et al., 
2014).  

As a technical development, the dynamic un-
certain causality graph (DUCG) method which deals 
with the causal link between uncertain information 
with graphical expression and probability measure-
ment is proposed (Zhang et al., 2014; Zhang, 2015a). 
DUCG is a probabilistic graphical model which intu-
itively expresses a causal relationship among varia-
bles in an explicit pattern, and uses a “chaining” in-
ference algorithm to achieve efficient reasoning. 
DUCG can propagate probabilities through causality 
chains, achieve dynamic reasoning either with or 
without spread of causality between time slices 
(Zhang and Geng, 2015), achieve reasoning in the 
case of logic circles (Zhang, 2015a), and handle fuzzy 
evidence (Zhang, 2015b). The greatest advantage of 
DUCG in clinical diagnosis is that it can display the 
reasoning process and results graphically, and make 
an inference with incomplete information and less 
accurate parameters than conventional methods such 
as Bayesian Networks. The DUCG model has been 
applied in the clinical diagnosis of vertigo (Dong  
et al., 2014a) and for troubleshooting in nuclear 
power station electric generators, spacecraft power 
systems, and chemical process systems (Dong et al., 
2014b) with competitive results. 

Jaundice is a common and complex clinical 
symptom with potential involvement in hepatology, 
general surgery, infectious diseases, pediatrics, ge-
netic diseases, gynecology, and obstetrics, and it is 
fairly difficult to distinguish jaundice as a cause in 
clinical practice (Bhutani and Johnson-Hamerman, 
2015; Gottesman et al., 2015). An intelligent diag-
nosis tool would greatly improve the general level of 
health care, decrease public health expenditure, and 
offer distinctive value in the less developed areas of 
the world. In this paper, we used the DUCG theory to 
build an intelligent diagnosis system for jaundice and 
tested its validity in clinical cases.  
 
 
2  Methods 

2.1  Graphical representation 

DUCG as a newly developed framework of in-
telligent system represents complex causalities ex-
plicitly and easily with graphical symbols including 
logic gates. In DUCG, Xnk is commonly used and 
represents any event variable state with the first sub-
script used to index the variable and the second sub-
script to index the state of the variable, between which 
a comma is used for separation and can be ignored 
when there is no confusion. The conditional proba-
bility between a child Xnk and its parent Vij is replaced 
by the weighted causal functional events Fnk,ij and 
their occurrence probabilities fnk,ij=(rn,i/rn)ank,ij, where 
ank,ij=Pr{Ank,ij} and Ank,ij is the virtual random event 
that Vij causes Xnk, “,” is used to divide the subscripts 
of parent Vi and the subscripts of child Xn, rn,i>0 is the 
causal relationship intensity between Vi and Xn, 

, .n n i
i

r r  It is obvious that a-type parameters quan-

tify the uncertain causality between Vij and Xnk and 
rn,i/rn is in effect the weighting factor of this causality. 
When we do not have samples, we can give parame-
ters of fnk,ij directly according to the domain expert’s 
knowledge. 

A simple DUCG sub-graph is shown in Fig. 1, 
while the variable types used and their graphic 
meanings are shown in Table 1. 

2.2  Development of jaundice knowledge base 

A DUCG represents a causality structure among 
event variables. For a specific disease related to 
jaundice, it can be the sorting of the causality  
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relationship among symptoms, signs, laboratory tests, 
disease, and pivotal complications. In the construc-
tion of a knowledgebase, symptoms, signs, and la-
boratory tests are expressed in separate sub-graphs, so 
that the medical knowledge base is easily understood. 
Firstly, a “B”-type variable is created to represent a 
specific disease with a priori probability. Then, the 
corresponding integrated causal variable “BX” is 
created to represent the integrated probability of the 
disease weighted by a combination of the disease 
incidence (“B”) and the impact of the demographic 
information (“X”) and risk factors (“X”) along with 
D-type events. After that, categorical variables such 
as symptom, sign, and test were created and con-

nected to the “BX” variable with weighted functional 
variable “F” as its downstream part. The {b-, a-, r-}- 
type parameter values were adopted in the parameter 
setting where key symptom, sign, and test have a 
relatively high values depending on their clinical 
significance. A sum of 27 most common jaundice- 
related diseases was contained in the knowledge base. 

Five senior clinical experts were invited to help 
with the determination of each F-type causal func-
tional event. First, reference research was performed 
to set up reference values for those widely accepted 
causal effect events such as risk factors, probability of 
a certain sign or symptom in a certain disease, or the 
positive rate of certain clinical testing or imaging in a 
certain disease. When published data were not 
available for some causal effect event, local research 
was done based on history cohorts to examine the 
primary value. After that, the five clinical experts 
evaluated the whole probability sheet separately, and 
if the primary value is not agreed, a new value will be 
demanded. When two or more experts disagreed with 
the primary value, it would be discussed in a meeting 
and the mean value would be chosen if no agreement 
was achieved. 

2.3  Inference calculation 

The inference calculation was performed in 
home-made DUCG diagnosis software where four 
key steps, i.e. simplification, decomposition, event 
expanding, and probability calculation, were carried 
out. The detailed algorithm has been demonstrated 
previously (Zhang, 2012; 2015a) and is briefly illus-
trated as follows. 

The inference process is basically to analyze the 
causal logic with the information obtained and to 
determine whether a reasonable candidate hypothesis 
(a pair of B and BX events) is sufficient to account for 
current abnormalities.  

The first step of DUCG inference is to simplify 
the graphical knowledge base conditional on obser-
vations before other calculations, so that the scale and 
complexity of the diagnosis process can be reduced 
exponentially. The simplification process is based on 
the 10 reduction rules of DUCG (Zhang, 2012), dur-
ing which non-existent and non-sense variables and 
causal relationships are deleted. These rules can be 
applied repeatedly until no more simplification can be 
performed. 

Table 1  Medical meaning of variables used in DUCG 
model 

Variable type Medical meaning Symbol

B Root causes of disease, have only 
output 

 

BX Integrated disease corresponding 
to B but weighted by a  
combination of B and risk  
factor impaction 

 

X Symptoms, physical signs,  
complications, laboratory and 
imaging examinations, and risk 
factors, etc. 

 

D Default causes of X, particularly 
without other input 

 

F Causal effect event (disease risk 
factors, disease impact on 
symptoms, medical tests or 
complications). The start node 
is the parent node, and the arrow 
pointing node is the child node 

 

F with 
condition Z 

F-type causal functional event or 
event matrix with condition 
event Z. When Z is observed as 
true, F is as above; otherwise F 
is eliminated 

 

Fig. 1  A simple sub-graph representing typical construc-
tion of DUCG 
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Then, the decomposition was performed aiming 
to reduce the scale of the causality structure during 
the diagnosis process. By assuming different disease 
Bij, a large and complex DUCG can be divided into a 
set of sub-DUCG graphs, which are overall exhaus-
tive. The DUCG model can find the symptoms asso-
ciated with each B-type variable (disease) by the 
above strategy. 

Before probabilistic calculation, the event ex-
panding operations were conducted on the observed 

abnormal evidence nk
n

E X  based on each 

sub-DUCG to avoid redundant calculations and de-
crease the overall reasoning cost. Event expanding 
was performed according to Eq. (1) until reaching 
B-type events, during which the BX-type candidate 
hypotheses and hypothesis space SH are obtained.  

 

, , ,( / ) ,nk nk i i n i n nk ij ij
i i j

X F V r r A V              (1) 

 
where Vi (V{X, B, G, D}) are the parents of Xnk. G 
represents logic gate variable type which is not used 
in this study. Hk,j and Hk,jE can also be expanded 
based on Eq. (1), where Hk,j corresponds to BXk,j and 
then Bk,j. During the event expanding of E and Hk,jE, 
logic operations, such as AND, OR, XOR, NOT, 
absorption, exclusion, and complement, are applied. 
The corresponding probability calculation of the logic 
expression is similar to  
 

, , ,( / ) ,nk nk i i n i n nk ij ij
i i j

x f v r r a v              (2) 

 
where a, f, and v represent corresponding probabilities. 

Finally, probabilistic calculations were carried 
out according to 
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           (4) 

 
where hs and hr represent the posterior probability and 
rank probability of Hk,j, respectively. 

2.4  Jaundice diagnostic model verification 

Patients hospitalized in the First Affiliated Hos-
pital of Zhejiang University (Hangzhou, China) with 
elevation of serum total bilirubin (twice as high as the 
upper limit) were selected. The study protocol was 
approved by the Human Ethics Committee of the First 
Affiliated Hospital, School of Medicine, Zhejiang 
University and a written informed consent to partic-
ipate in the study was signed. In total 203 cases cov-
ering the 27 most common jaundice-related diseases 
were extracted from the hospital information system, 
accounting for 5.09% of qualified cases. Ten cases 
were randomly selected for each disease, and when 
fewer than 10 cases exist for a disease in the system of 
the hospital, all the cases were included.  

Home-made information management software 
was used to collect and store the related demographic 
and medical information. The diagnosis of each case 
was performed with the DUCG jaundice diagnostic 
model. For each case, the calculation was performed 
twice with or without laboratory tests and imaging 
tests to verify the diagnostic power of symptoms and 
signs alone. After probabilistic calculation, posterior 
probability of possible diseases was calculated and 

sorted according to the rank probabilities r
kjh  calcu-

lated by Eq. (4).  
 
 
3  Results 

3.1  Jaundice diagnostic model on DUCG 

In sum, 421 variables and 1062 causes were in-
cluded in the DUCG graph (Fig. 2). A sub-DUCG for 
hepatitis C is shown in Fig. 3 and the diagnosis pro-
cess is explained in detail as follows. The diagnostic 
system can merge these sub-graphs to obtain the 
whole knowledge graph of jaundice as shown in  
Fig. 2. In the process of reasoning and calculation, the 
inference engine uses the whole knowledge graph. 

The definitions of variables used in hepatitis C 
sub-DUCG graphs are outlined in Table 2. Hepatitis 
C is a common cause of liver dysfunction and eleva-
tion of bilirubin characterized by hepatitis C virus 
(HCV) infection and has a high prevalence in blood 
transfusion, hemodialysis, and intravenous drug 
abuse. The symptoms of hepatitis C are mostly 
non-specific, including loss of appetite, nausea, fever,  
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jaundice, dark urine, and fatigue. The laboratory 
findings include specific testing (HCV RNA and anti- 
HCV IgG), common liver dysfunction indexes (bili-
rubin, alanine transaminase (ALT), aspartate ami-
notransferase (AST), and urobilinogen), and findings 
related to its complications (leukopenia, thrombocy-
topenia, globulin, and α-1-fetoprotein (AFP)). HCV 
cause complications such as liver cancer, fatty liver, 
and cirrhosis.  

In one case, the symptoms, physical signs, la-
boratory and imaging tests are transformed into cor-
responding variable states as follows: ES1=X1,1;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ES2=X2,6; ES3=X8,1; ES4=X44,1; ES5=X1032,1; EC1=X3010,2; 
EC2=X3011,4; EC3=X3012,4; EC4=X3119,1; EC5=X3023,1; 
EC6=X3043,1; EC7=X3048,1; EC8=X3049,1; EC9=X3064,1; 
EC10=X3066,1. The symbol ESi represents evidence  

Table 2  Variable definitions in the sub-DUCG of 
hepatitis C 

Name Description 
B3, BX3 Hepatitis C 
X111–X116 Risk factors of hepatitis C, including 

general population, blood donation, 
intravenous drug abuse, blood  
dialysis, hemophilia, and prostitution

X110 Signs and symptoms of hepatitis C 
X3020 Laboratory tests of hepatitis C 
X3010–X3012, 

X3019, X3021, 
X3023, X3048, 
X3049, X3064, 
X3066 

Bilirubin, alanine transaminase 
(ALT), aspartate aminotransferase 
(AST), urobilinogen, hepatitis C  
virus (HCV) RNA, anti-HCV IgG,  
leukopenia, thrombocytopenia, 
globulin, and α-1-fetoprotein (AFP)

X117, X118 Signs and symptoms of acute or 
chronic hepatitis C 

X3, X4, X7, X8, 
X16, X44 

Symptoms of hepatitis C successively 
loss of appetite, nausea, fever,  
jaundice, dark urine, and fatigue 

X1001, X1003, 
X1004 

Signs of hepatitis C successively  
hepatomegaly, splenomegaly, and 
hepatalgia 

X119, X133, X135 Complications of chronic hepatitis C 
successively liver cancer, fatty liver, 
and cirrhosis 

Fig. 3  Sub-DUCG for hepatitis C 

Fig. 2  DUCG graph for jaundice diagnosis 
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of symptoms and physical signs, and ECi denotesrel-
evant evidence from laboratory and imaging tests. All 
knowledge base variables for symptoms, physical 
signs, and tests are in the normal state, while the sta-
tuses of intermediate variables such as complications 
are set in an “unknown” state. In the first step of di-
agnosis, only ESi was included in the model and 19 
possible diseases were inferred, among which com-
mon reasons of jaundice such as bile stone and drug- 
induced liver injury were included. These have a 
higher probability rank (Table 3). “Jaundice during 
pregnancy” is excluded, because all its disease- 
specific manifestations are negative; seven diseases, 
such as “hyperthyroidism” and “hepatolenticular nu-
clear lesions”, are excluded because they cannot ex-
plain two or more abnormal symptoms. During the 
second step, the evidence of ESi and ECi was entered 
into the DUCG clinical diagnosis decision system and 
performed by DUCG software automatically. The 
result indicates hepatitis C as the only result (ranking 
as 100%), and the simplified DUCG is shown in Fig. 4 
that clearly explains the causalities of the disease and 
all related factors, symptoms, and test results. 

3.2  Diagnostic performance 

To verify the efficacy of the DUCG diagnostic 
system, we tested 203 jaundice-related cases. The  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

overall diagnosis accuracy with evidence without 
laboratory or imaging tests was 83.33%, while the 
accuracy was raised to 99.01% with laboratory and 
imaging tests. The number of cases and detailed di-
agnostic results are presented in Table 4.  

 
 

4  Discussion 
 

This study proposed a computer-aided diagnos-
tic system of jaundice in primary clinics based on the 
DUCG model. Intelligent diagnosis can make up for 
personal knowledge limitations and specialty limita-
tions, and this could increase diagnostic efficacy and 
accuracy. 

Since the Bayesian Network is currently a 
widely recognized way of dealing with uncertain 
causal relations, the comparison between the Bayes-
ian Network approach and DUCG should be noted. 
The Bayesian Network expresses the causal rela-
tionship among variables by means of graphs and 
structured forms, and expresses the conditional 
probability distribution through a conditional proba-
bility table (Pearl, 2009). The Bayesian Network can 
use the evidence to achieve the forward, reverse, or 
hybrid probability reasoning and possesses the ad-
vantages of intuitive graphical representation, clear 
physical meaning, strict probabilistic theory base, 
easy use of statistical data, localized calculation, and a 
rigorous theoretical system (Xu, 2012). However, the  

Table 3  DUCG inference results based on symptoms 
and physical signs 

Disease Rank probability (%)

Common bile duct stone 32.76 
Drug-induced liver injury 23.52 
Intrahepatic bile duct stone 13.51 
Hepatitis A 9.44 
Cirrhosis 7.34 
Hepatitis E 6.84 
Gilbert syndrome 2.55 
Infectious mononucleosis 1.46 
Hepatitis D 1.10 
Severe systemic bacterial infection 0.62 
Dubin-Johnson syndrome 0.23 
Hepatitis B 0.21 
Hepatitis C 0.12 
Primary liver cancer 0.11 
Autoimmune hepatitis 0.09 
Exanthematous typhus 0.07 
Malaria 0.04 
Pancreatic cancer 0.01 
Primary biliary cirrhosis 0.01 

 

Fig. 4  DUCG diagnostic result of a “hepatitis C” example
(a) The simplified DUCG of “hepatitis C” based on symptoms
and physical signs only; (b) The simplified DUCG resulted
from full evidence. The symbols are shown in Table 1. Blue
circles represent decreased value lower than its lower normal
limit, while yellow and orange circles represent moderate or
high elevation to upper normal limit, respectively 
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Bayesian Network cannot deal with a static logic loop 
or a directed cyclic graph, and these are difficult to 
avoid in complex closed-loop feedback systems or 
interaction mechanisms in the field of complex dis-
ease diagnosis. This is because a directed cyclic graph 
cannot be established in Bayesian Network algorithm 
by its definition of a factorization graphic represen-
tation of the joint probability distribution of a set of 
variables. In addition, the Bayesian Network relies 
heavily on structural learning and parameter learning 
from the sample data, and when there are insufficient 
samples, the conditional probability table needs large 
and complete conditional probability parameters from 
domain experts, which is basically impossible to 
achieve. In addition, although the structure learning 
results of a Bayesian Network may be objective and 
can effectively match the sample data, it may not 
correspond to the knowledge structure of domain 
experts because its poor interpretability makes the 
result difficult to understand and accept by domain 
experts (Poole and Zhang, 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In contrast, DUCG possesses the character of 

graphical representation and low parameter depend-
ence, which perfectly fit the use for clinical diagnosis. 
DUCG uses a causal matrix to express causal effect 
probabilities, and does not require expression of the 
correspondence among all states of causal variables. 

In other words, the expression of the conditional 
probability distribution can be incomplete, which 
means that in constructing the causal matrix of the 
DUCG knowledge base, only the concerned causal 
relationship and its uncertainty need to be expressed, 
and the “not concerned” relationship can be ignored, 
which greatly reduces the difficulty and complexity 
of DUCG knowledge base construction. In addition, 
the first step of DUCG reasoning calculation is a  
logic operation, during which the original DUCG 
knowledge base will be greatly reduced in size and 
complexity according to the input information, and 
qualitative possible result sets will be obtained. If  
the simplified DUCG knowledge base contains only 
one possible outcome, the inference computation is 

Table 4  Overall accuracy of the DUCG diagnostic system 

Disease Case number Accuracy in the 1st step (%) Accuracy in the 2nd step (%)
Hepatitis A 10 100.00 100.00 
Hepatitis B 10 100.00 90.00 
Hepatitis C 10 80.00 100.00 
Hepatitis D 10 80.00 90.00 
Hepatitis E 10 100.00 100.00 
Undefined viral hepatitis 10 90.00 100.00 
Alcoholic liver disease 10 80.00 100.00 
Autoimmune hepatitis 10 90.00 100.00 
NAFLD 10 90.00 100.00 
Cirrhosis 10 100.00 100.00 
Primary liver cancer 10 100.00 100.00 
Exanthematous typhus 2 100.00 100.00 
Severe systemic bacterial infection 2 100.00 100.00 
Infectious mononucleosis 8 100.00 100.00 
Dubin-Johnson syndrome 3 100.00 100.00 
Gilbert syndrome 4 100.00 100.00 
PNH 1 100.00 100.00 
AHE 6 83.33 100.00 
Common bile duct stone 10 100.00 100.00 
IBDS 10 90.00 100.00 
Pancreatic cancer 10 0.00 100.00 
Primary biliary cirrhosis 10 80.00 100.00 
Hyperthyroidism 2 100.00 100.00 
DILI 10 100.00 100.00 
Malaria 6 83.33 100.00 
Jaundice of pregnancy 1 100.00 100.00 
Hepatolenticular degeneration 8 12.50 100.00 
Total 203 84.73 99.01 

NAFLD: nonalcoholic fatty liver disease; PNH: paroxysmal nocturnal hemoglobinuria; AHE: autoimmune hemolytic anemia;  
IBDS: intrahepatic bile duct stone; DILI: drug-induced liver injury 
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completed without any numerical calculation. So the 
DUCG does not require high probability accuracy and 
has a high robustness and stability. The benefits of 
this study are listed as follows. 

Firstly, other inference methods, such as the 
Bayesian Network, rely on complex conditional 
probability tables and the results are hard to translate 
into explainable clinical language. Taking the hepati-
tis C case we exhibited before as an example, the 
DUCG system can display which abnormalities are 
related to the proposed diagnosis for what logical 
reasons. In addition, it can also tell us which abnor-
malities are not explained in the model. Clinicians can 
evaluate the proposed diagnosis with their profes-
sional knowledge rather than facing an intricate di-
agnosis probability. This combination can further 
increase diagnostic accuracy and facilitate its clinical 
application.  

Secondly, traditional diagnostic models rely 
heavily on precise probability parameters, and this 
might directly affect the result. In this study, the 
DUCG model can obtain a satisfactory result with 
most of parameters specified by the domain experts 
based on their knowledge and experience. In clinical 
practice, with the shift of demographic characteristics 
and social characteristics, fixed probability faces the 
need of constant updating which is time-consuming 
and of low efficacy. With the feature of a loose 
probability restriction, DUCG can perform a correct 
diagnosis under dynamic circumstances. 
 
 
5  Conclusions 
 

The DUCG model has the features of graphical 
representation and low-parameter dependence, which 
facilitate its application in medical diagnosis. The 
jaundice diagnostic system possesses the advantage 
of easy construction, fast computation, high accuracy, 
and universal scope of application. 

Future work will be focused on integrating se-
mantics recognition into this system, which will au-
tomatically analyze the nature of the language used 
and the variants of medical nomenclature, and trans-
late the imaging testing description into a corre-
sponding imaging diagnosis. Such a combination will 
improve diagnosis accuracy and efficacy, and reduce 
the burden on public health care resource. 
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中文摘要 
 
题 目：基于动态不确定性因果图（DUCG）模型的黄疸

待查智能诊断研究 
目 的：黄疸待查是一个常见而复杂的临床问题，涉及到

内、外、妇、儿等多个学科。目前我国医学专家

存在数量相对不足，分布不均匀等情况，导致了

区域性和部门性医疗服务水平不足。本研究旨在

建立一个客观的黄疸待查智能诊断系统，以提高

医学诊断的正确性，提升基层医院及急诊的诊断

水平，同时减少病人的花费。 
创新点：本研究采用了国际先进的动态不确定性因果图

（DUCG）模型，建立了黄疸待查相关疾病的知

识库，通过 203 例临床病例的测试，其准确率达

99.01%。文章以图形化的方式给出了疾病的诊断

过程，方便医师理解和学习。 
方 法：本研究采用了 DUCG 模型进行疾病诊断，首先根

据 DUCG 模型的定义和黄疸诊断思路建立了包

含 27 种黄疸相关疾病（表 4）的知识库（图 2），

其中包括了疾病的危险因素、临床症状和体征、

客观检查检验结果等。然后与根据 DUCG 算法

（公式 1–4）编写的推理软件相结合形成诊断系

统，对 203 例临床黄疸患者进行智能诊断，准确

率达 99.01%。最后对一例丙型病毒性肝炎患者

的具体诊断过程进行了拆解阐述，体现了 DUCG
模型适用于复杂逻辑关系、计算效率高、不依赖

推理概率和结果易于理解等优点。 
结 论：DUCG 模型成功实现了对黄疸待查相关疾病的智

能诊断，准确率高，实用性好。该方法具有在其

他医学领域推广应用的价值。 
关键词：动态不确定性因果图（DUCG）；人工智能；黄

疸；智能诊断 


