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The immune-correlate analysis of the
RV144 clinical trial revealed that

human plasma IgA immune responses
elicited by the RV144 vaccine correlated
positively with a risk for HIV acquisition.
This result once again emphasized that
HIV vaccines can potentially have
adverse effects leading to enhancement of
infection. Here, we discuss previously
reported evidence of antibody-dependent
enhancement of HIV infection. We also
describe how a structure-based epitope-
specific sieve-analysis can be employed to
mine the molecular mechanism underly-
ing this phenomenon.

Introduction

Significant evidence suggests that the
elicitation of a protective antibody (Ab)
immune response by a vaccine could pre-
vent acquisition of human immunodefi-
ciency virus (HIV).1,2 Indeed, the recent
RV144 HIV vaccine clinical trial could be
viewed as a proof-of-principle that a vac-
cine can prevent HIV infection in
humans.3 However, in addition to a pro-
tective effect, the RV144 vaccine appears
to have elicited plasma immunoglobulin
A (IgA) responses in vaccinated human
subjects that correlated positively with an
increased risk of infection.4 Precisely
understanding the mechanisms behind
this potentially adverse immune response
to RV144 vaccination may be extremely
important to the design of a safe and effec-
tive anti-HIV vaccine.

A number of previous studies postu-
lated that vaccination could potentially be

not only ineffective, but actually harmful,
by rendering vaccine recipients more sus-
ceptible to infection rather than protecting
them. Such a phenomenon, called a vac-
cine-induced enhancement, is known for
infections by various viral pathogens5

including members of lentivirus family
(e.g., feline immunodeficiency virus6-8).
The first-ever clear evidence of vaccine-
induced enhancement of HIV in clinical
studies was also recently reported when an
increased HIV acquisition risk was
detected in selected subgroups of vacci-
nated subjects enrolled in the STEP
study.9,10

Antibody-Dependent
Enhancement of Viral Infection

Antibody-dependent enhancement
(ADE) is the molecular mechanism of
enhancement of viral infection which
has been previously documented for var-
ious viral pathogens. The most studied
example of ADE is dengue virus, where
documented increases in pathogenicity
in humans were associated with prior
heterotypic Abs.11,12 Additionally, ADE
has also been reported for infection with
Murray Valley encephalitis, respiratory
syncytial, ebola, and measles.13-16 Even
though the first evidence of ADE in
HIV was discovered in vitro in late
1980s,17 the idea of ADE has been
largely ignored by the HIV research
community for many years until the
recently completed immune-correlate
analysis of RV144 clinical trial showed
that the binding of non-neutralizing
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plasma IgA Abs to env correlated directly
with the rate of infection in vaccine
recipients.4 ADE, however, was likely
not responsible for the infection
enhancement observed in the STEP
study mentioned in the Introduction
section above as the STEP vaccine was
not designed to elicit Abs.

ADE in HIV has historically been sus-
pected to be associated with non-neutral-
izing functions of Abs: complement
activation18,19 and Fc receptor biding.20

Such mechanisms increase local concen-
trations of fully functional virus in the
proximity of target cell surface, substan-
tially increasing the probability of binding
and fusion of a virus to a target cell. Alter-
natively, both neutralizing and non-neu-
tralizing anti-HIV Abs may also enhance
the infection by inducing conformational
changes and “locking” HIV’s envelope
gp41-gp120 spikes in conformations facil-
itating host receptor/co-receptor recogni-
tion by the virus.21

ADE of HIV Infection in
Clinical Studies

Despite the fact that the ADE of
HIV infection in vitro was discovered
decades ago, no indication of ADE in
clinical HIV trials had been observed
until 2005, when statistical analysis of
AIDSVAX clinical trials22,23 revealed
that VAX004 vaccinees with low
rgp120 Ab responses had a rate of HIV
infection higher than that of the
‘placebo’ cohort.24 That observation

was recently revived by the results of
the RV144 immune-correlate analysis
mentioned above.23

Enhancement of HIV Infection in
AIDSVAX Vaccine Trials

Sieve-analysis is a powerful bioinfor-
matics approach which allows mining
and understanding immune responses
elicited by vaccination.25 Previously, we
reported an epitope-specific sieve-analy-
sis of the VAX003 and VAX004 clinical
trials of AIDSVAX vaccine.26 Specifi-
cally, we profiled the distributions of
Ab-targeted epitopes of several anti-V3
neutralizing monoclonal Abs (mAbs)
among the sequences of the break-
through HIV viruses isolated from the
volunteers infected during the AIDS-
VAX trials. We compared the epitope-
specific infection counts between vacci-
nated and placebo cohorts statistically
to see if any epitope-specific narrow
protective immune responses could have
been elicited by AIDSVAX vaccination.
In this review, the same epitope distri-
bution data is, however, used to test the
reverse hypothesis: to see if a significant
increase in the rates of epitope occur-
rence could be observed in vaccinees
comparing to placebo recipients. In
other words, we test the null hypothesis
of no enhancement of the HIV infec-
tion in the ‘vaccine’ group by using the
left-tailed Fisher Exact Test instead of
the right-tailed test applied in our pre-
vious published analysis.

Reversed hypothesis testing reveals
that the infection counts for the 3 epit-
opes, those targeted by mAbs 268-D,
447–52D, and 537–10D, are signifi-
cantly (p < 0.05) higher in the
‘vaccine’ VAX004 cohort comparing to
the ‘placebo’ VAX004 cohort (Table 1).
Notably, 2 of the epitopes, the ones tar-
geted by mAbs 268-D and 447–52D,
are also statistically significant after
Bonferroni correction for multiple
hypothesis testing. None of the compar-
isons for the presence of other epitopes
in breakthrough viruses result in detec-
tion of a statistically significant differ-
ence, including the comparison for the
epitope targeted by the mAb 3791,
which was not present in the AIDSVAX
immunogens (internal negative control,
as described by Shmelkov, et al26).
These data suggest that the VAX004
vaccine resulted in the elicitation of Abs
that increased the risk of infection of
the vaccinees with viruses decorated
with the epitopes targeted by mAbs
268-D, 447–52D, and 537–10D.

One could hypothesize that if the
increase in epitope-specific infection
counts in the ‘vaccine’ cohort of the
VAX004 trial as compared to the
‘placebo’ truly occurred as a result of
the AIDSVAX vaccination, there should
be no such increase in counts for the
same Ab-targeted epitopes in the STEP
cell-mediated vaccine study. Therefore,
the STEP study can serve as an external
negative control. We performed the
analyses described above on the break-
through sequences from the STEP

Table 1.Mapping anti-V3 mAb epitopes in gp120 sequences of HIV breakthrough viruses infecting the AIDSVAX study population

AIDSVAX Trial ID: VAX003 VAX004

Viral sequence Placebo Vaccine Left-tailed p-value Bonferroni correction Placebo Vaccine Left-tailed p-value Bonferroni correction

2219 containing 23 12 0.9867 1.0000 85 156 0.5126 1.0000
2557 containing 21 13 0.9525 1.0000 75 153 0.1003 0.7021
268-D containing 1 2 0.4962 1.0000 33 105 0.0002 0.0014
3074 containing 84 82 0.6633 1.0000 103 181 0.8207 1.0000
3791 containing 9 9 0.5884 1.0000 1 1 0.8752 1.0000
447–52D containing 16 18 0.4126 1.0000 74 168 0.0024 0.0168
537–10D containing 9 12 0.3137 1.0000 64 142 0.0241 0.1687
Unknown sequence 6 8 n/a n/a 8 24 n/a n/a
Total infected 105 106 n/a n/a 127 241 n/a n/a

Note: Numbers in ‘Placebo’ and ‘Vaccine’ columns are the numbers of human subjects infected with viruses bearing specified Ab-targeted epitopes. ‘Left-
tailed p-value’ columns show p-values computed with the left-tailed Fisher Exact test. Bonferroni correction bounds were computed using a factor of 7 for
each of the 2 trials separately.
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clinical trial27 and, as expected, no sig-
nificant difference in distribution of
Ab-targeted epitopes was observed
between ‘vaccine’ and ‘placebo’ cohorts
(data not shown).

Elicitation of mAb 268-D By
Vaccine Components May
Enhance HIV Infection

The most obvious explanation of the
statistically significant increase in infection
counts for the epitopes targeted by mAbs
268-D, 447–52D, and 537–10D in the
vaccinated VAX004 cohort is that elicita-
tion of Abs with the same specificity as
one or several of these mAbs by the AIDS-
VAX B/B immunogen resulted in ADE of
HIV infection. Indeed, Kliks, et al. previ-
ously demonstrated that the outcome of
HIV interaction with some mAbs depends
on the sequence of the V3 loop of viral
env and specifically, mAb 268-D can
induce both neutralization as well as
enhancement of infection by various HIV
strains.28 This study suggests that the
highly significant (p D 0.0002) increase in
infection rates of the epitope targeted by
mAb 268-D (Table 1) seen in VAX004
trial may relate to activation of ADE
mechanisms in trial subjects as a result of
AIDSVAX B/B vaccination.

Conclusions

Statistically significant differences
between the occurrences of overlapping
epitopes targeted by mAbs 447–52D,
537–10D, and 268-D in VAX004
‘placebo’ and ‘vaccine’ cohorts could turn
out to be an extremely important observa-
tion. The most obvious explanation of
this difference is that a vaccine-induced
enhancement (namely ADE) of infection
has occurred as a result of AIDSVAX vac-
cination. A problem with this scenario is
that in phase 1 and 2 of the AIDSVAX
vaccine trials, there was no evidence of
ADE.29 On the other hand, there is exper-
imental evidence that at least one of the 3
potentially enhancing in the VAX004
mAbs can induce ADE in vitro.28

It is important to note that the signa-
ture motifs of the epitopes targeted by

mAbs 268-D (10-[R,K]xx[H,R]xxPxR-
18), 447–52D (16-PxR-18), and 537–
10D (9-Rxxxx[I,M]xPxR-18) have the
same sequence pattern 16-PxR-18.30,31

Therefore, a set of sequences bearing the
motif 268-D as well as a set of sequences
bearing the motif 537–10D are subsets of
a bigger set of sequences with the 447–
52D motif. That characteristic makes the
results of the analysis for each of the 3
epitopes potentially interdependent.
Therefore, it is likely that the true ADE
effects induced by one of these mAbs (or
even some other mAb with a similar epi-
tope) could be responsible for the increase
in numbers of breakthrough HIV sequen-
ces containing epitopes of the other mAbs.

Interestingly, the increase in epitope-
specific infection rates only occurred in
VAX004 trial vaccinees but not in
VAX003 trial vaccinees. In addition to
being a convincing internal control, this
observation raises the possibility that the
enhancement of HIV infection was only
induced by the AIDSVAX B/B immuno-
gen used in VAX004. Indeed, epitopes
targeted by the mAbs 268-D, 447–52D,
and 537–10D were present in both the
GNE8 and the MN strains used for the
VAX004 trial vaccine but none of them
were present in the A244 strain used
together with the MN strain for the
VAX003 trial vaccine.26 It is also possible
that an increase could have also occurred
in VAX003 vaccinees but was not detected
by the statistical approach employed due
to low infection rates with viruses bearing
the 268-D-targeted epitope (primarily
subtype B) in the VAX003 Thai popula-
tion where subtype E is prevalent (only 3
subjects were infected with 268-D epi-
tope-decorated viruses in VAX003 trial,
see Table 1). Finally, it is important to
remember that the study population in
the VAX004 trial (men-who-have-sex-
with-men and heterosexual transmission)
was different from the population of the
VAX003 trial (IVDU and heterosexual
transmission).

Interestingly, following the completion
of the AIDSVAX trials, Gilbert, et al.24

reported that VAX004 vaccinees with low
rgp120 Ab responses had a rate of HIV
infection higher than that of the ‘placebo’
cohort while the vaccinees with medium
responses had a rate of infection

comparable to that of the ‘placebo’ cohort
and the vaccinees with high responses had
a rate of infection lower than that of the
‘placebo’ cohort.24 In their paper Gilbert,
et al. discussed the possibility of infection
enhancement in VAX004 vaccinees with
low Ab responses but rejected the idea due
to the lack of evidence. However, our
analyses of these data raise the question of
a possible AIDSVAX vaccine-induced
enhancement of HIV infection yet again.

Intricate mechanisms, many of which
have been poorly studied, could form the
basis of the vaccine-induced enhancement
of HIV infection.32 The detection of
enhancement via the Ab-targeted epitopes,
rather than any element of the Ab, revives
the intriguing hypothesis that the observed
enhancement is dependent on the tertiary
structural presentation of epitopes on
gp12021 rather than on the Ab Fc region
as has been most frequently studied previ-
ously for HIV.33,34 The study by Kliks,
et al.28 suggests that there may be a very
delicate balance between the induction
of neutralization and enhancement of
infection by the same Ab species. The
analysis discussed in the current review
and the constantly evolving state-of-
the-art epitope-delineation informatics
approaches30,31,35-38 may be important for
mining diverse HIV-host data, such as
clinical trial data, and understanding the
molecular basis underlying the effects of
ADE. Further experimental assessment of
the serum from patients infected during
the AIDSVAX and RV144 trials may also
reveal important insights into the possibil-
ity of antibody-dependent enhancement of
HIV infection upon vaccination.
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