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Agent-based modeling is a technique currently used to simulate
complex systems in computer science and social science. Here, we
propose its application to the problem of molecular self-assembly.
A system is allowed to evolve from a separated to an aggregated
state following a combination of stochastic, deterministic, and
adaptive rules. We consider the problem of packing rigid shapes on
a lattice to verify that this algorithm produces more nearly optimal
aggregates with less computational effort than comparable Monte
Carlo simulations.
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S elf-organization is one of the most fascinating phenomena in
nature. It appears in such apparently disparate arenas as
crystal growth, the regulation of metabolism, and dynamics of
animal and human behavior (1-3). One of the great challenges
in the field of complexity is the definition of the common
patterns that make possible the emergence of order from appar-
ently disordered systems. Although it is not proven that self-
organization in apparently unrelated systems can be studied
within a unique framework, many researchers are trying to
identify new methods for interpretation of this aspect of com-
plexity that allow a unified view. One example is given by the
scale invariant networks that appear to offer a good perspective
for many complex systems (4). Another possibility is the study of
emergent phenomena through agent-based (AB) modeling. This
developed, almost in parallel, in computer science (5-7) and
social science (8-10) and has proved to be an excellent tool for
the study of self-organizing computer programs, robots, and
individuals. In this paper, after defining briefly the principles of
AB modeling, we explore the possibility that such a modeling
paradigm could be useful for the study of self-organizing chem-
ical systems, complementing the currently used stochastic
(Monte Carlo) or deterministic (molecular dynamics) methods.

Agent-Based Model of Molecular Self-Assembly

Background. An agent is a computer system that decides for itself
(11, 12). After sensing the environment it takes decisions based
on some rules. A typical example is a thermostat that switches
on and off the heating after sensing the temperature. An
intelligent agent is capable of “flexible” autonomous actions: (7)
It interacts with other agents and its environment; (ii) its actions
(rules) might change in time as a result of this interaction; and
(iii) the agent shows goal-directed behavior (i.e., it takes the
initiative to satisfy a goal). An AB simulation is a simulation with
many intelligent agents interacting among themselves and with
the environment. In a typical AB simulation of social behavior,
the agents are the individuals that take rational decision based
on their neighbors’ decisions. Very interesting social phenomena
have been recently investigated for example by Axelrod (13)
(cooperation), Epstein (14) (social instability), and Helbing (15)
(crowd modeling).

The great advantage of this modeling technique is that the
emergent phenomena can be modeled through very simple rules
governing the behavior of each agent. The global effect resulting
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from the interaction of the individuals is often unpredictable.
Common features of the agent rules are as follows. (i) Nonlin-
earity: The rules have thresholds and if-then conditions. (if)
Locality: Some of the decisions are taken considering only the
local environment and not the global average. (iii) Adaptation:
The rules may change in time through processes of learning.

Rule-based models for physical systems, as alternatives to the
traditional partial differential equation models, were recently
suggested for several problems. In Cellular Automata (CA)
modeling (16), the physical system is idealized as a discrete
lattice whose cells can take a finite set of values. The equations
of motion are replaced by rules that govern the discrete evolution
of the lattice configuration, and in many cases, this method has
provided an excellent description of complex phenomena. Fa-
mous examples include lattice gas automata (17-19), which were
used for the description of complex phenomena in flow dynam-
ics, and models for diffusion (20-22) and percolation (23)
processes. AB modeling can be considered a generalization of
CA where the model system is (in general) not required to be on
a lattice and the rules can take any form including adaptive
elements and goals-directed behavior. These models take ad-
vantage of the extreme simplification of the physical system and
of the efficient computer implementation of rule-based models
compared with differential equation models.

Application to Molecular Self-Assembly. A problem that arises very
often and for which a general approach has not been devised is
the following: Given N molecules, what is the lowest-energy
organized structure that they can form? It is useful to recall the
reasons that make this question very challenging and largely
unanswered. The processes of self-organization occur on mul-
tiple time scales and involve motions of portions of the system of
different sizes. For example, it is not generally possible to
characterize the dynamics of molecular crystal growth without
considering the conformational dynamics of the individual mol-
ecule. But the latter is usually faster than the diffusion processes
involved in the former, and a deterministic approach like
molecular dynamics (or simulated annealing) will only slowly
lead to the correct structure because small integration times are
required together with very long trajectory calculations. A
different but related problem arises when these processes are
modeled with stochastic methods such as Monte Carlo (MC).
The random moves that allow the formation of small clusters of
molecules from a disordered gas are usually inefficient for
describing the fusion between small clusters of molecules and the
formation of larger ordered domains. In an ideal simulation,
smaller and larger portions of the system should be moved
together (for a discussion of several techniques recently intro-
duced to deal with these problems, see refs. 24-28).

Using an AB approach, the original question is modified as
follows: Is it possible to devise a set of rules that let a system of
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Table 1. Cell interaction table for AB simulations (reduced units)

Neutral Positive Negative
Neutral -1 -1 -1
Positive -1 9 -1
Negative -1 -1 9

N molecules evolve toward the lowest-energy ordered structure?
Because this is an optimization problem, any method that leads
to a better minimum is preferable. It is not necessary that the
evolution follow a particular path on the potential surface (as in
the deterministic methods) nor that the final distribution con-
verge to some standard distribution (as in most stochastic
methods). However, because it is not possible to build a set of
rules completely de novo, it could be convenient to start from a
well established method and introduce an additional set of rules
that bypass the traditional bottlenecks. In this first attempt at AB
modeling for self-assembly, we will start with a computational
scheme that resembles the Metropolis MC simulation on a
lattice. Then we introduce a few additional rules that avoid the
limitations of the Metropolis algorithm and, through a popula-
tion learning algorithm, speed up the formation of low-energy
ordered structures.

We tried to devise a unique set of rules that leads any given
system, defined by the interactions between its components, to
the best self-assembled structure. Other researchers (29-31) are
investigating instead the self-assembly of structures whose com-
ponents are designed to assemble according to different sets of
predefined rules. The most promising chemical systems of this
kind are the two-dimensional arrays of “DNA tiles” (32) that
could be, in principle, used to perform large-scale parallel
computation.

Model Systems. As a test-bed for the algorithm, we considered the
problem of packing rigid shapes (models for rigid molecules) on
a two-dimensional square lattice with periodic boundary condi-
tions. All shapes were formed by four contiguous cells of one of
the three cell types: neutral, positive, or negative. Cell interac-
tions are nearest-neighbor only and obey Table 1. This table
mimics van der Waals attraction between all cell types plus
Coulombic repulsion/attraction between similarly/differently
charged cells. To build a large unbiased set of shapes, we
considered possible shapes made by four contiguous cells where
two cells are neutral, one is positive, and one is negative, or
where all four are neutral. The 25 possibilities, excluding those
equivalent by symmetry, are shown in Fig. 1. We considered
relatively small systems made by 40 particles on a 32 X 30 lattice.

The Algorithm. We identify an agent with a molecule or a group
of molecules. Initially each agent coincides with a rigid molecule
(or shape); as the simulation proceeds, the agents change to
represent stable portions of the system that can be considered
locally minimized. Each agent, during the simulation, can un-
dertake one of the following actions: (i) move to a new position
on the lattice, (if) merge with another agent, or (iii) split into two
different agents (if formed by more than one inseparable
component). Splitting is forbidden for each of the initial, prim-
itive agents. The rules are such that the movement of an agent
is decided stochastically, merging decisions are deterministic,
and the decision to split one agent in two has elements of
learning/adaptation.

(i) The move of each agent resembles a Metropolis MC
algorithm, with multiple attempted moves. A set of M predefined
moves, defined by a fixed set of allowed translations and
rotations, is assessed. As an example, the simulations discussed
in Results occur on a square lattice. The allowed moves are
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Fig. 1. The 25 primitive agents considered in this article. The colors represent
the cell type: red, neutral; blue, positive; black, negative.

translations by a single lattice unit and rotations by multiples of
90°. For each move m the new potential energy E,, is computed
(E, = +o if the attempted move leads to an overlap with
another agent). The actual move is selected among the at-
tempted moves with probability

P,, = min{l, exp((Ey — E,)/kgT)}/M 1 = m=M [la]

M
Py=1— > min{1, exp((Eo — E,.)/ksT)}/M. [1b]

m=1

P, is the probability to stay in the current configuration, and E,
is the potential energy before the move. T is a parameter that
would correspond to the temperature of a canonical MC algo-
rithm if we did not include merging and splitting, which do not
obey detailed balance.

(#) If none of the possible moves lowers the energy from the
current position, and the algorithm chooses to keep the current
configuration, an agent merges with the agent with which it has
the largest attractive interaction. This merging introduces a
major difference with respect to a conventional simulation
because it allows the formation of clusters of molecules (the
extended agents) that are then moved as a whole. In this way, the
exploration of the system configuration is much faster because
large and stable portions are moved globally. This move suite is
in the spirit of previous Monte Carlo studies (24-28), which
included cluster moves (but with different “bonding” criteria).
The effect of nondeterministic “bonding” in Monte Carlo is
considered in a companion paper (33).

(#ii) Of course, not all of the agents formed by merging smaller
agents are the best possible units for the self-assembly. If the
number of initial molecules is sufficiently high, at least a group
of molecules will find the best aggregation. We can make the rest
of the agents “learn” of this best arrangement if we compare the
energy of an agent made by several molecules with the energy of
the most stable agents of equal or smaller size. In practice, we
continuously update a list of the best (most negative) energy E "
of all of the agents made by s molecules. An agent of energy E,
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Fig. 2. A flow-chart representation of the agent-based algorithm as imple-
mented in this work.

constructed from n molecules is split unless E, satisfies the
following equation?:

E,/n<E"'sforl1<s=n. [2]

Eq. 2 should be valid if the agent represents a stable portion of
the system (e.g., a tetramer should be more stable than two
dimers, etc.). In our algorithm, if a selected agent does not satisfy
Eq. 2, itis split, because it is clear that there is at least one portion
of the system where a better cluster of molecules has been
formed. This approach is clearly a case of population learning,
e., during the simulation, whenever an energetically good
solution is found, all of the agents share this information and
modify their actions. The way an agent (made by more than two
molecules) can be split in two agents is not unique. Here, we
compute the interaction of each molecule within an agent with
all of the other molecules in the same agent. The molecule with
the lowest interaction with the others (i.e., the most weakly
bound) will be defined as a new agent, and all of the remaining
molecules will be the other new agent. Other, more complicated
choices did not improve the performance but might be consid-
ered for different systems.
The overall algorithm takes the form outlined in Fig. 2: An
agent is chosen; its energy is compared with the best energies of
smaller and equally sized agents to determine whether it will split

SAlternatively, an agent can be split if its energy does not satisfy the less strict criterion £,
= EB*t (i.e., the energy is compared only with the best energy of the agents of the same
size).
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Fig.3. Typical steps of an AB simulation. (a) Initially, each shape is a primitive
agent (an agent is delimited by the dashed gray line). (b) When two agents
interact and do not find a move that lowers the energy, they merge into a
unique agent (a dimer in this case). (c) The same can happen in another point
of the lattice where a better dimer can be formed. (d) Because a better dimer
has been formed, the dimer formed in b is split the next time it is moved.
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into two agents; if it does not split, a multiple-try Metropolis
move is attempted; if the agent does not move, and all possible
moves increase the total energy, the agent is merged with the one
it interacts with most attractively. Overall, the difference with
respect to a conventional Metropolis algorithm is given by the
splitting and merging possibilities. They are not symmetrical:
The splitting is done to keep the agent as the most stable unit of
its size or smaller in the simulation and is an “intelligent” action
in the sense that exploits the experience gained globally by the
simulation; the merging is a purely deterministic choice done to
escape from the impasse of having no available moves. One can
set the maximum number of molecules that form an agent: If this
number is set to one, the simulation proceeds as a normal
Metropolis algorithm; in general it is possible to tune the degree
of clustering by reducing the maximum number of molecules in
one agent. We noted that it is better to slow down the formation
of clusters at the beginning of the simulations, to avoid the
formation of relatively unstable agents. We set our simulation so
that the maximum number of molecules in one agent increases
from one to a predefined value linearly during a simulation. It
seems reasonable to set the maximum number of molecules in
one agent to a number not much larger than the square root of
the total number of molecules (we set this parameter to 9 in our
example).

In Fig. 3, we sketched some typical actions occurring during a
simulation that illustrate how this algorithm learns the building
blocks of the assembled structure by trial and error. Differently
from other stochastic algorithms, this one does remember the
good solutions and propagates them through the system.

Results

During the implementation and testing of this algorithm, the
evolution of the system was monitored by inspection for all
considered shapes. To evaluate the performance of the method,
we ran 10 AB simulations of 15,000 steps for each of the primitive
agents (shown in Fig. 1) and tabulated the average lowest energy
encountered by the simulation ((Eap)). A similar quantity,
(Emc), was computed from equally long Metropolis MC simu-
lations (the same code produces a comparable MC simulation if
the maximum number of molecules per agent is fixed to 1). The
two averages are collected in Table 2 for all of the considered
shapes. The quantity ((Emc) — (Ean))/[{Emc)| (also included in
Table 2) expresses the relative improvement of the AB method
with respect to the MC method.

The AB method always outperformed the MC, and in more
than one-half of the considered shapes, the structure found by
the AB method has a total energy >15% lower than the
corresponding MC. In these cases, the inspection of the final
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Table 2. Average lowest-energy configuration found for
different primitive agents with AB and MC methods

Shape (Ea) (Emc) (Emc) — (Ea))/KEmo)|
1 -515+4 —-428 + 6 0.204 + 0.018
2 —800 + 14 —-749 +7 0.068 + 0.021
3 —1,051 = 18 —900 + 24 0.168 + 0.034
4 -607 =7 —495 +7 0.227 = 0.019
5 —-829 + 19 —-724 = 10 0.145 + 0.030
6 —1,029 = 21 —-929 = 11 0.108 + 0.026
7 —1,080 = 20 -935+9 0.155 + 0.023
8 —1,156 + 22 —-972 + 10 0.189 + 0.025
9 —886 + 13 —-690 = 11 0.283 + 0.024

10 —-767 =17 -719 £ 15 0.066 + 0.032

1 —595 +5 —450 £ 5 0.322 +£ 0.016

12 —-779 £ 18 =719 £ 1 0.083 + 0.029

13 —-974 + 16 —-854 + 11 0.141 = 0.023

14 —1,225 + 13 —-981 + 14 0.248 + 0.020

15 —827 £ 12 —738 £ 12 0.120 + 0.024

16 —-551+7 —-462 + 6 0.194 + 0.020

17 —-809 + 17 =716 = 11 0.130 + 0.028

18 —-841 £ 10 —-814 + 13 0.033 £+ 0.021

19 -1,118 = 20 -1,002 + 8 0.115 = 0.022

20 —-819 + 19 —-722 £ 16 0.134 + 0.034

21 —-790 £ 7 —603 £ 8 0.309 + 0.018

22 —-822 + 20 -741 £ 14 0.109 + 0.033

23 —1,446 + 26 -1,132 + 20 0.278 + 0.029

24 —1,589 + 25 —-1,275 = 16 0.247 + 0.024

25 -1,039 =+ 9 —-793 £ 9 0.310 = 0.016

The numbering scheme for primitive agents is as shown in Fig. 1.

structures reveals that the AB simulation produced a more
ordered and uniform structure. Fig. 4a, for example, shows the
energy decrease during the simulation, comparing the Metrop-
olis method and the AB simulation for one of the considered
shapes. Fig. 4b shows the system configuration after 15,000 MC
steps, and Fig. 4c shows the configuration after the same number
of steps of the AB calculation. The improvement introduced by
the AB simulation is striking in this and other cases.

One reason for the poorer performance of the MC algorithm
is the inadequacy of the set of attempted moves. After the
formation of smaller clusters of molecules, single-agent moves
are almost always rejected. Formation of large clusters is en-
tropically disfavored, a fact that is reflected in small proposal

probabilities for aggregation beyond small clusters in Metropolis
MC. On the other hand, escape from a cluster is energetically
disfavored, resulting in small acceptance probabilities in Me-
tropolis MC (26). A solution would be the definition of more
complex moves, but those can be very complex and are ideally
treated on a case-by-case basis. On the other hand, AB modeling
does not depend on the particular molecule considered. We do
not investigate here the relative importance of the learning
aspect of the algorithm versus the improved set of moves.

Beyond the identification of the most stable molecular ar-
rangement, these simulations can be helpful for the study of
several other aspects of the self-assembly process. Fig. 5a
displays a snapshot of a simulation showing how the ordered
regions are separated by grain boundaries. At the end of the
simulation, the agents tend to coincide with the grains, and the
simulation explores the grain—grain conformation and merging.
In a few cases, we observed the coexistence of more than one
ordered phase (Fig. 5b), suggesting that this technique might be
useful for localizing nonequivalent minima. Importantly, the
algorithm is very efficient in identifying the correct substructure
that is responsible for the crystal growing process (see the
example in Fig. 5¢), demonstrating that this approach might also
provide useful information on the mechanism of growth.

It should be noted that the algorithm in its present form could
not lead to the most stable aggregate if the subunits that form
the latter are not the most stable clusters. For the model systems
considered here, characterized by short-range interactions, this
event is very unlikely, but when the interaction range is very long
(e.g., for salts or metals), this possibility should be taken into
account. The possibility of forming the wrong building blocks can
be systematically reduced by increasing the population size and
performing an “equilibration,” i.e., a number of simulation steps
where the merging is suppressed.

Conclusions

We have considered the application of agent-based modeling on
the problem of molecular self-assembly. We have shown that it
is possible to devise a combination of stochastic, deterministic,
and adaptive rules that lead a disordered system to organize itself
in an ordered low-energy configuration. We considered the
problem of packing rigid shapes verifying that this approach can
efficiently predict the structure of the self-organized structure.
A key feature is that the algorithm, through the self-definition of
the agents, defines the moves to be attempted and updates them
as the simulation proceeds.
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Fig. 4. Comparison of MC and AB simulations. (a) The energy decrease during 15,000 simulation steps for shape no. 9 (see Fig. 1). Red, MC simulation; blue,
AB simulation. (b and ¢) The final configurations for MC and AB simulations, respectively.
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Fig. 5.

Several snapshots illustrating the formation of grain boundaries (a), the coexistence of different phases (minority phase circled) (b), and the

identification of the building block for the growing process (circled) (c). (Upper) Some intermediate stage of the simulations. (Lower) The last snapshots of the

simulation.

An important remaining question is the following: Is it
possible to adapt the current algorithm so that the final distri-
bution simulates the distribution of some thermodynamical
ensemble? The preliminary answer is composite. There are two
novelties in the presented algorithm: the definition of group
moves, and the learning processes that affect the grouping. It is
probably possible to bring the grouping component into the
orthodoxy of the MC method (as done for example in ref. 33,
employing data-augmentation techniques). Any learning com-
ponent cannot be introduced into a purely stochastic method.
Several researchers, however, are working on adaptive MC
methods (34), i.e., stochastic methods that improve the quality of
the attempted moves as the simulation converges to the limit
distribution.
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The concepts of intelligent merging and splitting can be used
to extend simulation schemes different from MC and to
perform off-lattice simulations of realistic systems. Many
molecular modeling packages implement rigid-body motions,
i.e., the user decides at the beginning of the simulation what
portions of the system are rigid (i.e., the solvent molecules or
some portions of a protein) and the dynamics/optimiza-
tion/MC proceed treating that portions of the system as rigid
bodies (35-37). One can use agent-based rules to define “on
the fly” what portions of the system are rigid, changing the
definition continuously as the simulation proceeds.
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