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Abstract
Cardiogenic shock (CS) remains a major cause of in-hospital mortality in the
setting of acute myocardial infarction. CS begins as a hemodynamic problem
with impaired cardiac output leading to reduced systemic perfusion, increased
residual volume within the left and right ventricles, and increased cardiac filling
pressures. A critical step towards the development of future algorithms is a
clear understanding of the treatment objectives for CS. In this review, we
introduce the “door to support” time as an emerging target of therapy to
improve outcomes associated with CS, define four key treatment objectives in
the management of CS, discuss the importance of early hemodynamic
assessment and appropriate selection of acute mechanical circulatory support
(AMCS) devices for CS, and introduce a classification scheme that identifies
subtypes of CS based on cardiac filling pressures.
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The “door to support” time in cardiogenic shock
Cardiogenic shock (CS) remains a major cause of in-hospital 
mortality in the setting of acute myocardial infarction (AMI).  
Several recent reports identified an increase in the prevalence of 
CS among patients with AMI from 6–7% to 10–12%1,2. Despite 
early revascularization, an estimated one in three patients will die  
during their hospitalization for AMI-CS and one in five patients  
will die within the first year after discharge for AMI3,4. More  
sobering is the fact that over 30% of AMI-CS survivors develop 
recurrent heart failure (HF) within the first year after discharge5. 
The natural history of HF is a progressive decline in ventricular 
function as compensatory remodeling ultimately fails and patients 
present with recurrent episodes of acutely decompensated HF and 
ultimately CS owing to advanced HF (CS-HF). A recent analysis 
of the Interagency for Mechanical Circulatory Support (INTER-
MACS) registry identified that 52.5% of patients with advanced 
HF referred for surgical left ventricular (LV) assist device (LVAD) 
placement present with CS-HF defined as INTERMACS levels 1 
or 2 HF6. By 2030, 8 million people in the United States alone will 
be diagnosed with HF7. Collectively, these data identify CS as a 
persistent clinical problem and further suggest that the distribution 
of CS patients may be shifting from CS-AMI to CS-HF over the 
next decade.

Irrespective of the injurious mechanism, CS begins as a hemody-
namic problem with impaired cardiac output leading to reduced 
systemic perfusion, increased residual volume within both ven-
tricles, and increased cardiac filling pressures. If these hemody-
namic derangements persist, reduced tissue perfusion and elevated 
filling pressures lead to multi-organ ischemia, increased lactate  

accumulation, hepatic and venous congestion, and worsening  
multi-organ function8. At this stage, CS has transitioned from a 
potentially reversible hemodynamic problem to a more complex 
“hemo-metabolic” problem that may not respond to treatment of 
the underlying cause or hemodynamic support alone (Figure 1).  
For this reason, early identification of CS and application of  
hemodynamic support in CS may improve clinical outcomes. 
Rapid triage and treatment algorithms for CS require a similar 
approach currently employed for ST-segment elevation myocardial 
infarction (STEMI), whereby early diagnosis, emergent network  
activation, and short “door to balloon” (DTB) coronary reperfusion 
times have substantially reduced in-hospital mortality associated 
with STEMI. For CS, a similar quality metric that reflects the  
time between onset of CS and initiation of acute mechanical  
circulatory support (AMCS) should be developed as the “door to 
support” (DTS) time. Several recent reports support the concept 
of a DTS time and have observed improved survival with early  
initiation of AMCS before percutaneous coronary revascularization 
or before the initiation of inotropes and vasopressors in the setting 
of AMI-CS9–11. Future studies quantifying the optimal DTS time in 
CS are required.

The hemodynamic support equation
A critical step towards the development of future algorithms is 
a clear understanding of the treatment objectives for CS. These  
four primary objectives are summarized in the “hemodynamic  
support equation” and include 1) circulatory support, 2) ven-
tricular unloading, 3) myocardial perfusion, and 4) decongestion  
(Figure 1). Adequate circulatory support is defined by an increase 
in mean arterial pressure and enhanced microvascular organ  

Figure 1. The hemodynamic support equation. The Hemodynamic Support Equation encompasses the four major management objectives 
for patients with cardiogenic shock, which include: circulatory support, ventricular unloading, myocardial perfusion, and decongestive 
strategies. BNP, brain natriuretic peptide; CK-MB, creatinine kinase and its MB isozyme; EDP, end-diastolic pressure; ESP, end-systolic 
pressure; LFT, liver function test; LV, left ventricle; MAP, mean arterial pressure; PA, pulmonary artery; RA, right atrium; RV, right ventricle.
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perfusion. Ventricular unloading is defined as a reduction in myo-
cardial work and wall stress, which is best achieved by reducing 
native ventricular pressure and volume12. Myocardial perfusion is  
defined as increased epicardial and microvascular coronary blood 
flow and is often associated with successful circulatory and ven-
tricular support. Decongestion refers to a reduction in total  
body volume and elevated venous filling pressures, which is com-
monly associated with worsening renal function, hepatic failure, 
bowel edema, and subsequent sepsis. To solve the hemodynamic 
support equation, all four objectives must be achieved in a timely 
manner.

Pharmacologic approaches fail to solve the hemodynamic support 
equation. Often drug therapy will solve one part of the equation 
but at the cost of another. For example, early use of vasopressors 
such as norepinephrine in CS may increase mean arterial pressure  
but not microvascular organ perfusion. Furthermore, increased 
mean arterial pressure will increase LV afterload, thereby increas-
ing myocardial work and wall stress, which promotes myocardial 
ischemia, impairs cardiac function, and increases cardiac filling 
pressures. Similarly, inotropic therapy in CS may increase mean 
arterial pressure but directly increases myocardial work, thereby 
potentially worsening myocardial ischemia. For these reasons, CS 
refractory to one or more vasopressors or inotropes is associated 
with increased in-hospital mortality.

Solving the hemodynamic support equation with 
acute mechanical circulatory support devices
In the contemporary era, the hemodynamic support equation can 
be readily addressed with early and appropriate use of AMCS  
devices, which can be broadly categorized by their mechanism of 
action as pulsatile or rotary flow pumps (Figure 2).

The intra-aortic balloon counter-pulsation pump (IABP) is a  
catheter-mounted balloon that augments pulsatile blood flow by 
inflating during diastole, thereby increasing diastolic pressure 
in the aortic root and enhancing coronary blood flow, while also  
displacing blood volume in the descending aorta. During systole, 
rapid deflation of the intra-aortic balloon generates a pressure sink, 

which reduces LV afterload and increases LV cardiac output13. 
The magnitude of hemodynamic support generated by an IABP 
is directly related to LV cardiac output. Recent studies confirm  
that the more dysfunctional the LV, the less effective an IABP 
becomes14–16. In 2012, the IABP-SHOCK II study reported no  
benefit with IABP therapy in patients with AMI-CS. No large,  
randomized studies have evaluated the utility of IABP therapy in 
HF-CS17.

In contrast to counter-pulsation balloons, rotary-flow pumps  
generate rotational kinetic energy, which increases blood flow. 
Rotary flow pumps can be further categorized based on the type 
of motor as axial-flow or centrifugal-flow systems18. Axial- 
flow AMCS pumps are placed across the aortic valve and dis-
place blood from the LV into the ascending aorta. The net result of  
these trans-valvular axial pumps is a reduction in LV pressure  
and volume with a concomitant increase in mean aortic root pres-
sure. As a result, systemic perfusion is increased, LV wall stress is 
reduced, and the trans-myocardial perfusion gradient (aortic diasto-
lic pressure – LV diastolic pressure) is increased. Furthermore, 
several prior studies have shown that under ischemic conditions, 
coronary blood flow is increased after activation of a trans-valvular 
axial-flow pump19,20. Trans-valvular axial-flow pumps directly solve 
three of the four major objectives in the hemodynamic support 
equation by increasing mean arterial pressure, reducing LV pres-
sure and volume, and increasing coronary blood flow. Contempo-
rary trans-valvular axial-flow pumps include the Impella (Abiomed 
Inc, Danvers, MA) or the HeartMate percutaneous heart pump 
(PHP) (Abbott Inc, Chicago IL)21,22. The PHP device is currently 
under investigation in the United States as part of the SHIELD II 
trial. The Impella devices are the only AMCS pumps approved by 
the US Food and Drug Administration for use in CS.

Centrifugal-flow pumps include the TandemHeart device (Tandem-
Life, Pittsburgh, PA) and veno-arterial extracorporeal membrane 
oxygenation (VA-ECMO)22. The TandemHeart and VA-ECMO 
systems draw blood from the left or right atrium, respectively, into 
an extracorporeal pump that displaces the blood into the femoral 
artery, thereby pressurizing the arterial tree and increasing mean 

Figure 2. Left ventricular acute mechanical circulatory support devices. Contemporary acute mechanical circulatory support devices 
for left ventricular support are illustrated and categorized by mode of action (pulsatile or continuous-flow pumps), type of rotary flow pump 
(axial- or centrifugal flow), and pump location (intracorporeal or extracorporeal). IABP, intra-aortic balloon counter-pulsation pump; PHP, 
percutaneous heart pump; VA-ECMO, veno-arterial extracorporeal membrane oxygenation.
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arterial pressure. Since VA-ECMO displaces venous blood into 
the arterial system, an oxygenator is placed in the circuit prior to 
the return of blood to the femoral artery. The distinct location of 
the inflow cannula has a profound impact on the hemodynamic  
effects of these two systems23. Since VA-ECMO drains blood from 
a large venous reservoir, at typical flow rates of 4 to 6 liters/minute, 
VA-ECMO does not significantly reduce LV volume. As a result, 
VA-ECMO increases LV pressure, wall stress, and myocardial work 
and fails to solve the hemodynamic support equation. In contrast to 
VA-ECMO, by displacing blood from the left atrium, the Tandem-
Heart device effectively reduces LV preload, thereby reducing LV 
volume, wall stress, and workload, while increasing systemic mean 
arterial pressure and myocardial perfusion24. The TandemHeart sys-
tem is able to solve the same three objectives of the hemodynamic 
support equation as do trans-valvular axial-flow pumps; however, 
a major technical limitation of the TandemHeart device is the need 
for a puncture across the interatrial septum to deliver the 21 French 
cannula that drains the left atrium.

In summary, the trans-valvular axial-flow pumps and the Tandem-
Heart left atrial-to-femoral artery centrifugal-flow pump success-
fully achieve three of the four major objectives of the hemodynamic 
support equation: circulatory support, ventricular unloading, and 
enhanced coronary perfusion.

Right ventricular acute mechanical circulatory 
support devices
Over the past 5 years, the introduction of right ventricular (RV) 
non-surgical AMCS devices has advanced our ability to support 
patients with CS and either isolated RV failure or biventricular 
(BiV) failure. Options for RV-AMCS include the Impella RP, the 
TandemHeart RVAD, and VA-ECMO (Figure 3). The Impella RP 
and TandemHeart RVAD function by displacing blood from the 
right atrium (RA) to the pulmonary artery, whereas VA-ECMO 
drains the RA and displaces blood into the arterial system. The use 
of RV-AMCS devices has increased awareness of RV dysfunction 
in the setting of AMI, CS, and HF and after LVAD surgery. While 
clinical reports support the hemodynamic effects of RV-AMCS25–27, 
no guidelines regarding their use have been developed to date.

Decongestion in cardiogenic shock: an important 
target of therapy
A critical barrier to successful clinical outcomes in advanced HF 
and CS is persistent systemic volume overload or congestion. 

Recent studies have identified that elevated right heart filling pres-
sures are directly related to worsening renal function and further 
that elevated BiV filling pressures are associated with increased 
short-term mortality28,29. In CS, adequate circulating volume is 
necessary to maintain cardiac output; however, excess circulating 
volume may be detrimental to multi-organ function. As described 
above, AMCS devices can effectively address parts of the hemo-
dynamic support equation. However, in isolation, AMCS devices 
alone cannot address the fourth objective, namely, decongestion. 
Decongestive approaches such as concomitant diuretic therapy or 
renal replacement therapy should be considered early in CS for 
patients with elevated BiV filling pressures refractory to diuretics 
and AMCS device support.

Hemodynamic profiles in cardiogenic shock
The contemporary definition of CS must evolve beyond metrics 
associated with the early stages of hemo-metabolic shock such 
as hypotension and evidence of low perfusion, including cold and 
clammy extremities and end-organ dysfunction19,30. At this stage, 
CS is becoming irreversible. Emerging evidence supports the use of 
pulmonary artery catheters (PACs) to identify CS before metabolic 
failure ensues and to define the hemodynamic condition of patients 
in advanced HF and CS31. PAC guidance must be strongly consid-
ered in patients with suspected CS to confirm the presence of CS 
(low cardiac output), define the congestive profile in CS (cardiac fil-
ing pressures), and to evaluate the patient’s response to therapeutic 
interventions.

Early acquisition of hemodynamic data also helps to define CS as 
univentricular or BiV. Beginning in the early 1980s, several studies 
identified the importance of right and left heart filling pressures in 
AMI, CS, and advanced HF32–34. The relationship between RA and 
pulmonary capillary wedge pressure (RA:PCWP ratio) has been 
used to identify RV failure in AMI and is associated with progno-
sis in advanced HF. Analogous to the 2×2 evaluation of patients 
with advanced HF as being “warm or cold and dry or wet”35, the 
RA:PCWP ratio allows us to classify CS based on congestive state 
into four hemodynamic profiles: hypovolemic, LV-, RV-, or BiV- 
dominant congestion36. For patients with CS failing to improve 
despite the initiation of one vasopressor or inotrope, each of 
these four categories may require a different therapeutic approach  
(Figure 4). The hypovolemic-CS patient may require volume  
resuscitation. The LV-CS or RV-CS patients may require specific 
approaches to modulate univentricular preload or afterload or 

Figure 3. Right ventricular acute mechanical circulatory support devices. Contemporary acute mechanical circulatory support devices 
for right ventricular support are illustrated and categorized by type of rotary flow pump (axial- or centrifugal-flow). pRVAD, percutaneous right 
ventricular assist device; VA-ECMO, veno-arterial extracorporeal membrane oxygenation.
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treatment with a left- or right-sided AMCS device, respectively. 
The BiV-CS patient may require more aggressive decongestive 
therapy along with LV or BiV AMCS therapy. Future studies are 
required to determine whether defining CS based on hemodynamic  
profile alters management strategies and leads to improved clini-
cal outcomes. Now is the time for a series of prospective, rand-
omized trials or prospective registries confirming the clinical  
utility of hemodynamic assessment and AMCS device therapy 
in CS. One recently launched prospective registry is the Detroit  
Shock Initiative, which involves early application of the Impella 
trans-valvular axial-flow pump in the setting of AMI-CS37.

In conclusion, as our options to stabilize and rescue patients from 
the slippery slope of hemodynamic to hemo-metabolic CS grow, 
we must develop new guidelines that involve 1) early hemodynamic 
assessment of CS, 2) early use of AMCS devices for refractory CS, 

3) identification of the optimal DTS time, 4) appropriate AMCS 
device selection based on the clinical scenario, and 5) early use 
of decongestive therapies to reduce the propensity for worsening 
metabolic failure despite adequate circulatory support.
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