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Abstract

Translating advances in neuroscience into benefits for patients with mental illness presents 

enormous challenges because it involves both the most complex organ, the brain, and its 

interaction with a similarly complex environment. Dealing with such complexities demands 

powerful techniques. Computational psychiatry combines multiple levels and types of computation 

with multiple types of data in an effort to improve understanding, prediction and treatment of 

mental illness. Computational psychiatry, broadly defined, encompasses two complementary 

approaches: data driven and theory driven. Data-driven approaches apply machine-learning 

methods to high-dimensional data to improve classification of disease, predict treatment outcomes 

or improve treatment selection. These approaches are generally agnostic as to the underlying 

mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge 

of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and 

abstraction. We review recent advances in both approaches, with an emphasis on clinical 

applications, and highlight the utility of combining them.

The translation of advances in neuroscience into concrete improvements for patients 

suffering from mental illness has been slow. Part of the problem is the complexity of disease 

classification and outcome measurement in psychiatry1. A broader reason, however, is the 

complexity of the problem: mental health depends not only on the function of the brain, the 

most complex of organs, but also on how that function relates to, influences, and is 

influenced by the individual’s environmental and experiential challenges. Understanding 

mental health, and its disruption, therefore relies on linking multiple interacting levels, from 

molecules to cells, circuits, cognition, behavior, and the physical and social environment.
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One of the difficulties is that the mapping between these levels is not one-to-one. The same 

biological disturbance can affect several seemingly unrelated psychological functions and, 

conversely, different biological dysfunctions can produce similar psychological and even 

neural-circuit disturbances2–4. Disturbances can arise independently in some levels without 

dysfunction in other levels. Low mood, for example, may affect social function 

independently of its particular biological cause. Mappings between health and biology also 

vary with external circumstances5. For example, neurobiologically determined emotion-

regulation abilities may suffice for some environments, but produce mood disorders in 

others. The current age of big data, with the ability to acquire and manipulate extremely 

high-dimensional, multimodal data sets, including clinical, genetic, epigenetic, cognitive, 

neuroimaging and other data types6,7, holds great promise to uncover these complex 

relations, but poses formidable data-analytic challenges. Here we argue that these theoretical 

and data-analytic challenges are insurmountable without powerful computational tools and 

the conceptual frameworks they provide. Computational psychiatry, conceived broadly, is 

therefore critical to the future of psychiatry and will likely have a central role in the rational 

development of treatments, nosologies and preventive strategies.

Computational psychiatry encompasses two approaches8: data-driven, theoretically agnostic 

data-analysis methods from machine learning (ML) broadly construed (including, but 

extending, standard statistical methods), and theory-driven models that mathematically 

specify mechanistically interpretable relations between variables (often including both 

observable variables and postulated, theoretically meaningful hidden variables). We review 

advances in both approaches, with an emphasis on clinical applications, and discuss how 

they can be combined. Further aspects of computational psychiatry have been reviewed in 

other general9–12 and more specific reviews8,13–16.

The blessing and curse of dimensionality

Very few individual signs, let alone symptoms, are sufficiently specific to identify 

underlying diseases. Depressed mood, for example, is insufficient for the diagnosis of major 

depressive disorder. The intuition behind classification schemes such as DSM17 and ICD18 

is that the presence of additional features, such as anhedonia, fatigue, overeating and suicidal 

thoughts, increases specificity by identifying a group of people with a relatively worse 

outcome that requires intervention, and thereby sanctions the labels disorder or disease. This 

description proceeds in the absence of any understanding of the underlying biological (or 

environmental) pathology, and without any guarantee about an identifiable relationship 

between symptom clusters and biology. The hope is that biomarkers might provide 

additional information and either augment (stratify1) or even (partially) replace19 symptoms.

Improving classification through the addition of features is in fact an important concept in 

ML, with blessings and curses. The ‘kernel trick’ consists of implicitly adding a large or 

infinite number of features20. The blessing of dimensionality is that in this infinite-

dimensional space any finite-sized data set can always be classified perfectly using a simple 

linear classifier (Fig. 1a–c). The resulting classification in the original space can be complex 

and nonlinear, particularly if the included (implicit) features are nonlinear or involve 

interactions or correlations between original data dimensions or features. Practically, this 
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blessing can also be a curse, as it is always possible to perfectly distinguish n patients from 

m controls by using n + m − 1 features (Fig. 1d–g). As this is true for any outcome of 

interest and any features, it will perform well even on random noise (Fig. 1e–g) and overfit 

(Box 1), meaning that the results will generalize poorly to new data (for example, future 

subjects). The danger of overfitting decreases as the number of subjects, not number of 

measurements, increases, motivating larger studies and consortia pooling their efforts6,7,21.

Three broad approaches exist to cope with the curse of dimensionality. First, unsupervised 

methods can be used to perform dimensionality reduction before classification or regression 

(Fig. 2 and Box 1). Second, techniques such as regularization, Bayesian model selection and 

cross-validation can be used to select the most informative features for classification or 

regression20, thereby integrating dimensionality reduction with the predictive task of interest 

(Fig. 2 and Box 1). Both of these approaches are entirely data driven (although Bayesian 

approaches allow the incorporation of prior knowledge). A third, radically different 

approach uses theory-driven models to extract theoretically meaningful parameters based on 

models of the underlying processes. These parameters can then be used as efficient, low-

dimensional representations of the very high-dimensional data to which ML techniques for 

classification or regression can subsequently be applied (Fig. 2). For example, models of a 

variety of time-varying processes, such as learning22, multi-neuron recordings23 and BOLD 

time series24, can collapse long and seemingly complex time series into a few parameters 

characterizing the underlying dynamics. To the extent that the theory-driven models 

accurately portray or summarize the processes generating the data, they may improve the 

performance of ML algorithms beyond approaches that do not consider such generative 

mechanisms13,24,25.

Data-driven approaches

ML approaches have been applied to several clinically relevant problems, including 

automatic diagnosis, prediction of treatment outcomes and longitudinal disease course, and 

treatment selection. We provide an overview of the central methodological features of these 

approaches and highlight some illustrative examples. Other recent reviews provide 

complementary information beyond the scope of this review26,27.

Diagnostic classification

Most symptoms in the compendia of psychiatric classification are shared between two or 

more disorders28. Current classification schemes attempt to improve diagnosis by requiring 

the presence of multiple symptoms17,18. Unfortunately, individuals often still satisfy criteria 

for multiple disorders (co-morbidity29) or do not fit any category clearly30, the categorical 

thresholds do not separate clusters differing in illness burden31, and diagnostic reliability for 

some disorders is still problematic32.

A now substantial body of work has applied ML to automatically classify patients versus 

controls26,27. The state of the art for using MRI data to distinguish schizophrenia from 

healthy controls was recently examined in a competition33. The best entry reached an area 

under the curve (AUC) for classification of validation data of 0.89 (ref. 34), and a 

combination of the top approaches reached 0.93. The first three entries achieved similar 
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performance despite using different techniques35. There is nevertheless scope for further 

improvement through the integration of more modalities36, or from algorithmic advances, 

for example, with deep belief networks37 or other methods38 that outperform more standard 

approaches on a variety of ML benchmarks35,39,40. Similar accuracies have been reported 

for other disorders27, and these results have been extended in several ways—for example, 

probabilistic classification approaches yield an estimate of how certain the classification 

is34,35, and multi-class techniques deal with the clinically more relevant problem of 

distinguishing between diagnostic groups27,41.

The fact that ML analyses of neuroimaging data can distinguish cases and controls suggests 

that, at least in these cases, the symptom clusters do map onto specific neurobiological 

substrates, despite diagnostic caveats and likely heterogeneity in disorders32. However, one 

cannot always identify the relevant neural substrates simply by inspecting the features used 

by the classifiers: these features are typically complex, counterintuitive and not meaningful 

in isolation, and cannot usually be collated across different ML techniques42. These 

approaches also have several limitations that would need to be overcome to make them 

practically useful. First, the comparison of cases to healthy controls might treat severity in a 

flawed manner34,43: although severity exacerbates comorbidity and hence blurs diagnostic 

boundaries, it is also often used as a quantitative marker for degree of caseness, making an 

understanding of how to deal with severity and comorbidity critical44. Second, existing 

binary or multi-class classification approaches usually treat comorbidity incorrectly by 

assuming that different diagnoses are mutually exclusive; addressing this limitation may 

require statistical schemes that allow for multiple labels for each individual (for example, 

see ref. 45) that are much more demanding computationally. Third, the extent to which these 

algorithms, which are typically trained on unambiguous cases, yield useful information for 

ambiguous cases, which are clinically more relevant, remains to be explored. Finally, these 

approaches may be fundamentally limited because they reify46 symptom-based 

classification, although they could feasibly be used to refine them by subdividing existing 

classes1.

Prediction of treatment response

The current limitations in nosology have led to a shift toward predicting inherently more 

valid and immediately useful variables such as relapse in alcoholism, suicide, longitudinal 

conversion in at-risk groups47–52 and treatment response. The latter addresses a pressing 

need in psychiatry.

In depression, for example, although up to three quarters of patients will eventually respond 

to an antidepressant, two thirds require multiple treatment trials before responding53. Several 

quantitative electroencephalography (qEEG) markers have each been found to predict 

pharmacological response in depression54,55. However, a recent large-scale study, the 

International Study to Predict Optimized Treatment in Depression (ISPOT-D6), tempered 

hopes about several of these individual qEEG predictors56–58. Some combinations of qEEG 

variables, such as cordance59 or the antidepressant treatment response index60, outperform 

individual predictors. The combination of qEEG features in a fully data-driven way promises 

better results: combined features yielded better prediction of treatment response (81% 
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specificity, 95% sensitivity) than relying on any individual predictor (60% specificity, 86% 

sensitivity)61, although this sample size was too small to include a proper separate validation 

sample (Fig. 1).

Results from other modalities similarly highlight the usefulness of applying ML techniques 

for prediction using multiple features. For example, a reanalysis of data from STAR*D and 

COMED, two large trials in depression, suggested that a combination of supervised 

dimensionality reduction and multivariate classifiers yielded a cross-validated prediction of 

remission with an area under the curve (AUC; Fig. 1) of 0.66. The number needed to treat 

(NNT) was 14, meaning that applying the algorithm to 14 patients should result in one 

additional remission62. Similarly, although univariate cognitive markers acquired in ISPOT-

D did not distinguish remitters from non-remitters63,64, the multivariate pattern of task 

performance did predict response to the selective serotonin reuptake inhibitor (SSRI) 

escitalopram in a subgroup of patients64. Multivariate structural MRI analyses also improved 

the identification of patients unlikely to respond, beyond the level achieved using individual 

markers65. As these examples illustrate, ML techniques can lead to improvements in 

treatment-response prediction. In addition to these combinations of features in modalities, it 

seems likely that a combination of features across multiple modalities would lead to even 

further performance improvements.

Treatment selection

The most relevant question for practitioners is not necessarily whether a given treatment will 

work, but rather which of several possible treatments (or treatment combinations in the age 

of polypharmacy) will work best for a given patient. Theoretically, multiclass classifications 

can be cast in terms of multiple binary classifications66. Practically, however, it presents 

additional challenges: it may not be feasible to perform different tests (for example, 

neuroimaging, genetics, etc.) for each treatment option, so, ideally, the same set of tests 

should be used to distinguish responses to multiple treatments. Furthermore, if different 

tests, or even different ML algorithms for the same tests, are used for different treatments, 

these predictions may not be directly comparable and hence not facilitate choice between 

treatments.

Nevertheless, studies have started to address this question using data from trials in which 

subjects were randomized to multiple treatment arms, by looking for interactions between 

treatments and relevant variables in multiple regression. This has shown that being married 

and employed and having had more life events and more failed antidepressant trials 

predicted relatively better response to cognitive-behavioral therapy (CBT) over 

antidepressants, whereas comorbid personality disorders favored response to antidepressants 

over CBT67. The improvement that could be expected through allocating each patient to the 

ideal treatment was a further reduction of 3.6 points on the Hamilton Rating Scale for 

Depression beyond the reduction obtainable using standard treatment selection, a clinically 

significant effect68. Similar approaches to the ISPOT-D data yielded predictions for 

remission with escitalopram in individuals with poor cognitive function with a NNT of 3.8, 

meaning that assigning patients in this group to escitalopram on the basis of their cognitive 

performance pattern led to remission in one additional patient for every four evaluated64. 
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One study63 was able to make individual response predictions that were strong enough to 

guide treatment choice in the majority of patients, resulting in NNTs of 2–5.

Steps toward using ML applied to neuroimaging data for treatment selection are being made. 

One group69 used a univariate marker, amygdala responses to subliminal facial emotion 

stimuli, to predict overall responses to SSRIs and serotonin-noradrenaline reuptake 

inhibitors (SNRI) and differential responses to SNRIs versus SSRIs. Another group showed 

that increased insula activity related to better response to CBT, but worse response to 

escitalopram. The effect size was large, although predictive power was not examined70. As 

in the case of treatment-response prediction, it seems likely that treatment-selection 

approaches will also benefit from including multiple variables from various modalities.

To the best of our knowledge, only one study has thus far attempted to validate the clinical 

utility of an automatic treatment-selection algorithm in a randomized clinical trial71, with 

tantalizingly promising results. This study used a proprietary algorithm constructed from a 

reference database of EEGs from over 1,800 subjects with within-subject information about 

response to multiple treatment attempts (about 17,000 treatment attempts in total). The 

algorithm extracts 74 features from the EEG of each patient to predict the most likely 

successful medication for depression. Notably, the automatic algorithm significantly 

outperformed clinical selection (Fig. 3). One caveat is that the medications prescribed in the 

two arms differed substantially, and the improvement in the automatic-selection arm might 

not have arisen purely through better targeting of the medications, but rather through using 

more monoamine oxidase inhibitors and stimulants (although stimulants have generally 

fared poorly in the treatment of depression72).

Understanding relations between symptoms

Limitations of current diagnostic schemes have been mentioned above and are discussed 

elsewhere1,32,73. An alternative framework that provides insight into patterns of co-

occurrence and sequential expression of symptoms comes from descriptions of symptoms as 

networks, where, rather than being considered as expressions of an underlying latent 

variable (a given disorder), symptoms are viewed as entities in their own right with direct 

relationships to other symptoms. Sleep disturbances, for example, typically cause fatigue; 

their co-occurrence might therefore be a result of their direct causal interaction rather than, 

say, underlying depression74. Indeed, computational modeling of the symptoms that appear 

earliest before, and remain longest after, depressive episodes—hopelessness and poor self-

esteem75—suggests that they might drive features such as anhedonia and lack of 

motivation76.

Network analyses of the descriptions in the DSM itself have shown that the symptom 

overlap across DSM diagnoses by itself recapitulates many key features of empirically 

observed comorbidity patterns and reveal one dominant cluster with a small-world 

topology28 (Fig. 4): a few symptoms strongly mediate between other symptoms (having high 

betweenness and centrality) with short ‘paths’ from one symptom to another. Strong 

coherence between many symptoms has been argued to reflect a general psychopathology 

factor p, capturing concurrent and sequential comorbidity patterns in a manner akin to how 
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the factor g of general intelligence captures covariance between multiple cognitive 

abilities44.

Dynamic network analyses that examined the temporal occurrence patterns of symptoms 

over days (assessed, for example, using experience-sampling methods77) revealed frequent 

loops of mutually reinforcing symptoms that could potentially stabilize each other78–80. 

Indeed, before transitions between non-depressed and depressed states, or vice-versa, 

symptoms show increased variance and increased autocorrelations81. These are signs of so-

called critical slowing down, which are indicative of a transition from a stable state to 

another stable state in dynamical systems. Indeed, residual subthreshold symptom variation 

is known to be a risk factor for relapse and may relate to the variance identified here82,83.

Dispensing entirely with latent variables is questionable in the long run, as symptoms do 

reflect multiple underlying variables. Network analyses could be integrated with other levels 

of analyses (for example, genetics, neural-circuit function, etc.) using graphical models20. 

These provide a probabilistic generalization of network descriptions that can include hidden 

as well as observed variables and can incorporate complex relationships between variables at 

different levels, potentially forming a bridge to more mechanistic models.

Theory-driven approaches

We now turn to theory-driven models. Unlike data-driven approaches, these models 

encapsulate a theoretical, often mechanistic, understanding of the phenomena at hand. Their 

descriptions at theoretically independent84, but practically linked, levels provide powerful 

tools for integration. Models can be classified in many different ways; here, we will 

distinguish between synthetic, algorithmic and optimal models.

Synthetic models, exemplified by biophysically detailed models, may be the most intuitive 

‘model building’ exercises. They are informed by data from multiple sources relevant to the 

particular system(s) of interest (for example, a neural system, its modulation by specific 

neurotransmitters, etc.) and explore the interaction between these factors through 

simulations and mathematical analysis. These models often bridge different levels of 

analysis and can be used deductively to infer the likely consequences of known or suspected 

causes (for example, what effect a change in the concentration of a given neurotransmitter 

will have on neural-circuit dynamics or behavior) or abductively to try to infer the likely 

causes for a known consequence (for example, what type of disturbance in the concentration 

of certain neurotransmitters could give rise to observed neural-circuit or behavioral 

disturbances)9. These models can have many different parameters that are constrained by a 

broad scientific literature. They are validated by qualitatively examining their predictions, 

which may include multiple levels of analysis (for example, neural activity and behavior).

Algorithmic models, exemplified here by reinforcement learning (RL) models, are usually 

simpler. Validation typically occurs through quantitative statistical means (for example, 

model-comparison and model-selection techniques) that assess whether the data warrants the 

features and complexities embodied in each model (for example, see ref. 85). They contain a 

comparatively small number of parameters, whose values can be estimated for individual 
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subjects by fitting the models to the data. These parameters, which represent theoretically 

meaningful constructs, can then be compared across groups, correlated with symptom 

severity, etc9. These models are particularly useful as tools for measuring hidden variables 

and processes that are difficult or impossible to measure directly.

Optimal (Bayesian) models attempt to link observed behavior to the Bayes-optimal solution 

of a problem. This is particularly revealing when that optimum is unique, as it can be used to 

show whether subjects can solve a task and whether they have done so in a particular 

experimental instance. Bayesian decision theory broadly provides three routes to 

psychopathology86: solving the wrong problem correctly (for example, consistently 

prioritizing alcohol intake over health), solving the correct problem wrongly (for example, 

using alcohol to ‘treat’ emotional problems), and solving the correct problem correctly, but 

in an unfortunate environment or after unfortunate prior experiences (for example, having 

persecutive worries after persecutory experiences).

The distinction between these model types can be blurry. For example, a biophysically 

realistic model of the basal ganglia may have an algorithmic-like RL component to calculate 

prediction errors. Furthermore, the different model types can sometimes profitably be used 

in concerted fashion. For example, by approximating a detailed neural model with a more 

abstract algorithmic model to allow quantitative estimation of parameters from subject 

data87. This approach also allows one to refine the details of one level of description 

constrained by the other. For example, detailed basal-ganglia models distinguish between 

opponent direct and indirect pathways that differentially process dopaminergic 

reinforcement signals. Incorporating this feature in more abstract models allows one to 

formally analyze its consequences for a variety of behaviors across a wide range of 

parameters. It also facilitates the quantitative fitting of behavioral data, and formulating 

normative accounts for how adding this opponency is helpful beyond classical algorithmic 

models88. Finally, it should also be noted that Bayesian techniques can be applied to all 

three types of models for fitting, validation and other purposes, that is, non-Bayesian models 

can also be fit using Bayesian techniques.

Biophysically realistic neural-network models

Synthetic, biophysically realistic neural-network models have been used to link biological 

abnormalities in psychiatric disorders to their neurodynamical and behavioral consequences. 

One class of models that has led to important insights in psychiatry includes cortical 

pyramidal neurons, connected recurrently, and GABAergic interneurons; these models can 

form stable ‘bumps’ of activity that maintain information online. Reducing NMDA receptor 

density on inhibitory interneurons as found in schizophrenia89 led to weaker and broader 

attractor states (Fig. 5a) that were more sensitive to disruption by inputs close to the bump, 

suggesting that working memory in schizophrenia should be particularly sensitive to 

distractors similar to the items held in working memory90. A different use of this model to 

integrate across levels has been to relate NMDA receptor density to BOLD signals. 

Ketamine induces symptoms of psychosis91 and abolishes the negative relationship between 

the resting-state default mode and task-related modes92. A model that incorporated two 

populations of neurons representing the default-mode and task-positive networks was only 
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able to capture this disruption when NMDA receptor function on GABAergic interneurons 

(and not on pyramidal neurons) was reduced92.

This class of attractor models has also been used to explore the effects of glutamatergic and 

serotonergic disturbances in obsessive-compulsive disorder (OCD)2. Both decreased 

serotonin and increased glutamate, two suspected abnormalities in OCD, led to the 

development of strong and persistent activity patterns toward which the network tended to 

and from which it had difficulty escaping—a possible neurodynamic substrate for obsessions 

(Fig. 5b). Of note, the model suggested that these neurodynamic disturbances can be 

alleviated by increasing serotonin levels independently of whether the underlying cause is 

low levels of serotonin or high levels of glutamate. The model also included specific 

serotonin receptor types: 5HT2A blockade ameliorated the neurodynamical abnormalities, 

suggesting one explanation for why treatment augmentation with atypical antipsychotics can 

be beneficial.

A similar integration from synaptic properties to high-level function was achieved with 

biologically detailed models of the cortico-striato-thalamic loops93,94. As reviewed 

previously, these models explain various aspects of Parkinson’s disease, Tourette’s 

syndrome, schizophrenia and addiction9,87.

In short, where detailed knowledge of the structure and function of relevant circuits exists, 

synthetic models often allow an understanding of causally complex and even distant 

relations between levels of analysis (for example, from synaptic alterations to behavior). 

Such models represent a critical tool to link biological details to symptoms. Biophysically 

detailed models can also be reduced to extract the core nonlinear dynamical components95 

and make it amenable to detailed mathematical analysis using stability or perturbation 

analyses. It should be noted, however, that even detailed biophysical models typically 

involve substantial simplification, and conclusions are restricted to the levels of analysis 

included in the model. What is, for instance, captured by an alteration in the parameter 

supposed to reflect NMDA receptor density could be a result of other biological and 

emergent factors of the system.

Biophysical models have also been successfully applied to neurological conditions95, such 

as epilepsy, with strong, identifiable neurophysiological correlates that can be modeled in 

their own right. The absence of known strong correlates in psychiatry makes it difficult to 

model them in their own right and instead requires them to be related to symptoms either 

theoretically, as in the examples discussed here, or empirically, as in data-driven approaches.

Algorithmic reinforcement learning models

RL encompasses a set of algorithms to infer policies that optimize long-run returns96 and 

thus has been applied extensively to issues of affect, motivation and emotional decision-

making. Practically, RL models typically consist of two components: an RL algorithm 

putatively capturing the internal learning and evaluation processes, and a link function 

relating the results of the internal evaluations to choice3,97. This allows them to assign a 

probability to each individual participant’s choice in an experiment and give statistically 

detailed accounts of learning and behavior. Although they do not tend to be biophysically 
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detailed, they have characterized multiple aspects of neural activity and behavior98. The 

most prominent example is so-called ‘model-free’ (MF) temporal prediction errors that 

compare expected to obtained reinforcement. These appear to be reported by phasic 

dopaminergic activity99. Here, we describe several uses of these models in psychiatry.

Reward sensitivity is altered in many psychiatric circumstances. However, when analyzing 

behavior, variations in reward sensitivity are often difficult to distinguish from variations in 

other processes, particularly those of MF learning. When RL models were fitted to data to 

disentangle them, anhedonia in depression related specifically to a loss of reward sensitivity 

in a manner distinct from that of dopaminergic manipulations affecting learning22. Similar 

approaches have facilitated more precise measurements of the sensitivity to irrelevant valued 

stimuli, which predicts relapse in alcoholism51 and the naturalistic course of depression100, 

to relate negative symptoms to a shift in learning strategy away from representing expected 

values (Fig. 5c)101. In schizophrenia, RL has been used to examine aberrant learning102 and 

to show that ventral striatal hypofunction persists even when quantitatively controlling for 

differences in reward sensitivity and learning strategy103.

A second important direction has been the examination of two algorithms for choice 

valuation that were initially thought to act in parallel and to compete for behavioral 

expression104,105. Resource-costly prospective ‘model-based’ (MB) systems simulate the 

future on the basis of an internal model of the world, are thought to capture goal-directed 

actions and rely on cognitive and limbic cortico-striato-thalamo-cortical (CSTC) loops. 

Resource-light MF systems conversely learn values by iteratively updating them with 

prediction errors through experience, and are thought to capture habits and rely on 

sensorimotor CSTC loops98,105–108. As most109 addictive substances release dopamine, they 

may boost dopaminergic prediction-error learning110 (but see ref. 111) and speed up the 

establishment of drug-related habits112. Indeed, animals that rely more on prediction-error 

learning are more prone to addiction113–115, with parallel findings of a shift from MB to MF 

choices emerging in humans116–118. A similar argument has been made for a shift toward 

MF actions in OCD based on the idea that compulsions in OCD and compulsive drug use 

share some features117,119,120. However, tonic dopamine promotes MB rather than MF 

decisions121,122, questioning its role in shifting competition from MB to MF valuation in 

addiction. An alternative to a competitive account between MB and MF is a more integrated 

one where the goals driving MB evaluations are provided by MF processes123, for instance 

by more abstract plans in anterior CSTC circuits being reinforced by dopaminergic 

signals124. This would account for the prominent goal-seeking features of drug addiction125. 

Finally, the shifts from MB to MF across disorders have often been a result of reductions in 

the MB component, rather than more prominent MF components, both neurally117,120 and 

behaviorally117,116 (but see ref. 116), raising the possibility that the MB to MF shift is a 

result of nonspecific impairments in executive function126,127 or stress128 affecting resources 

for MB computations.

Indeed, a re-emerging RL direction explicitly addresses the effect of resource constraints and 

bounded rationality15,129. These may provide paths toward normative accounts of how MB 

and MF systems interact, with the MB system only being engaged when the resource costs 

are outweighed by the potential additional gains130. Furthermore, given that full MB 
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evaluation is prohibitively costly, they have to be partial, with profound consequences for the 

resulting valuations: if important potential outcomes are not included in the evaluation, the 

results can differ vastly and the glass will go from half full to half empty. The regulation of 

internal valuation strategies may be related to cognitive aspects of emotion regulation15,131. 

RL modeling has started to identified specific aspects of these processes, such as a role for 

aversive outcomes in guiding resource allocation process132,133 (Fig. 5d,e).

Bayesian models

Bayes-optimal modeling approaches can be used to better understand the nature of problems 

and their solutions. For example, conditioning models that use gradual acquisition of 

associations fail to capture standard extinction phenomena that result from the fact that 

extinction generally involves new learning rather than unlearning. The correct statistical 

description of extinction procedures is that there is a latent variable, the experiment phase, 

that causes sudden switches in the association between stimulus and outcome. Using models 

that allow for the learning of such latent variables provides a better account of standard 

extinction phenomena134 and predicts that stable unlearning can in fact occur as long as 

there is no obvious sudden switch, which was verified experimentally135. One important 

aspect of Bayesian models more generally is their emphasis on the representation and use of 

uncertainty. These have been used to show that the statistics of aversive experiences have 

important, but sometimes neglected, roles in several other processes, from familiarity in fear 

conditioning136 to learned helplessness and depression76.

Optimal models can also be used to ask whether a given symptom relates to suboptimal 

inference. For example, individuals with high trait anxiety are unable to optimally update 

how volatile an aversive environment is, whereas low-anxiety controls exhibit close to 

Bayes-optimum behavior137. Finally, Bayesian models can also be used for applied 

purposes. For example, a Bayesian model of stop-signal task performance138 differentiated 

occasional stimulant users with good and poor long-term outcomes and provided regressors 

for fMRI analyses that allowed longitudinal prediction25; classical analyses failed to achieve 

either.

Combining theory- and data-driven approaches

Studies aimed at developing clinically useful applications have tended to use theoretically 

agnostic ML approaches, whereas studies aimed at increasing understanding of disorders 

have tended to use theory-driven mechanistic approaches. Theory-driven approaches depend, 

of course, on the extent to which prior knowledge, mechanistic understanding, and 

appropriate assessments of such mechanisms (for example, via suitable tasks or 

physiological measurements) are available. When such enabling factors are present, 

however, some preliminary studies suggest that the combined use of theory-driven and ML 

approaches can be advantageous even from an applied viewpoint. If the mechanistic theory 

is sufficiently accurate, theory-driven approaches allow the estimation of features 

specifically relevant to the disorder. In other words, theory-driven approaches use prior 

knowledge to massively reduce the dimensionality of the data set by ‘projecting’ it to the 

space of a few relevant parameters. ML approaches can then work on this lower-dimensional 
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data set with increased efficiency and reliability (Fig. 2). Figure 6 shows a simulation of this 

intuitive effect: applying a classifier to data produced by a generative model performs worse 

than applying it to the model parameters recovered from that data.

A proof-of-concept study illustrating this approach built on prior work showing that the 

drift-diffusion model’s (DDM’s) decision threshold—the amount of evidence required in 

favor of one option over another before committing to a choice—is partly controlled by 

communication between frontal cortex and the subthalamic nucleus (STN)139. Impulsive 

behaviors that result from reduced decision thresholds are observed in patients with 

Parkinson’s disease treated with STN deep brain stimulation (DBS) and are linked to 

disruption of normal communication between frontal cortex and STN140. One study used 

ML methods applied to EEG and behavioral data to classify patients into those on versus off 

DBS12. Classification was better when using fitted DDM parameters than when using the 

raw data; moreover, as suggested by the prior mechanistic work, the most informative 

parameters for classification were the decision threshold and its modulation by frontal 

cortical activity. Similar improvements were found using model parameters for classifying 

presymptomatic Huntington’s patients versus controls and separating patients that were 

closer versus further from exhibiting symptoms141. Using model-based assessments has also 

enhanced classification and subtyping of schizophrenia patients24 and the aforementioned 

prospective prediction of stimulant abuse25.

Conclusion

We have outlined multiple fronts on which computational psychiatry is likely to 

substantially advance psychiatry. Data-driven approaches have started to bear some fruit for 

clinically relevant problems, such as improving classification, predicting treatment response 

and aiding treatment selection. These approaches, however, are limited in their ability to 

capture the complexities of interacting variables in and across multiple levels. Theory-driven 

modeling efforts, on the other hand, have yielded key insights at many levels of analysis 

concerning the processes underlying specific disorders, but for the most part have yet to be 

applied to clinical problems. We have highlighted why and how the combination of theory- 

and data-driven approaches can be especially powerful and have described some initial, but 

promising, attempts at such integration. A shift in focus across both approaches from 

understanding or predicting current disease categories toward transdiagnostic approaches 

and the prediction of imminently practical and valid variables, such as treatment outcomes, 

appears to be very promising.

Computational tools have a number of limitations. Most obviously, they require substantial 

expertise and are frequently opaque to the non-expert. One challenge for the field is hence 

how to stimulate fruitful exchange between clinicians, experimentalists, trialists and 

theorists. This might be helped by a stronger focus on establishing utility by actively 

pursuing computational approaches in clinical trials. In addition, computational tools are not 

a panacea and are not released from the requirements of independent replication. However, 

the increasing popularity of open-source code and databases will facilitate such replications 

and the establishment and extension of (clinically) robust methods. Overall, the interaction 
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between theorists and clinicians promises many opportunities and ultimately better 

outcomes for patients.
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Box 1

Dealing with overfitting

Unsupervised dimensionality reduction

Overfitting tends to occur when the dimensionality of the data set (which is usually 

proportional to the number of variables) is excessively high relative to the size of the 

training set. A first approach to overfitting therefore focuses on reducing the number of 

variables: dimensionality reduction. This reduction can be done as a preprocessing step: 

variables that are highly related provide little independent information, and such 

redundancies can be identified and removed using general-purpose unsupervised 

methods, such as principal or independent component analysis, factor analysis or k-

nearest neighbor143,144, or approaches specific to the data at hand145. Other ML 

techniques can subsequently be applied to the reduced data (Fig. 2).

Regularization

Performing dimensionality reduction as a preprocessing step has an important limitation: 

it is not tailored to the specific problem being solved (for example, prediction of a given 

outcome). Another approach is therefore to limit the number of variables selected by 

using regularization—for instance, by including a penalization term for too many 

predictors—in the prediction and classification algorithms themselves (Fig. 2). This 

approach is inherent in support vector machines, LASSO, elastic nets, stochastic 

discrimination approaches such as random forests146 and other variable-selection 

methods in multiple regression.

Bayesian model evidence

Bayesian approaches automatically penalize excessively complex models and are 

therefore an alternative to regularization. These approaches evaluate how well a model 

fits the data by using the model evidence, which averages the likelihood over all possible 

parameter settings, instead of using just the maximum-likelihood parameter set. The 

model evidence inherently penalizes excessively complex models; the intuition is that 

even though for the maximum-likelihood parameter set these models may have a very 

high likelihood (as a result of overfitting), they also allow a very wide range of other 

parameter settings that would produce very low likelihood. Appropriately complex 

models fare better, as they predict the data with higher probability across parameter 

settings147. For example, in Figure 1d, data was generated from a straight line with some 

noise added. Even though the model including higher order polynomials fits the data 

perfectly with a specific setting of parameters, the data would have very low likelihood 

under other parameter settings, making the model evidence low. A linear model will have 

somewhat lower likelihood for the maximum-likelihood parameter set (as it cannot 

overfit), but its model evidence will be larger because the likelihood of the data integrated 

across all parameter settings will be higher. The model evidence will therefore select the 

model with the appropriate complexity, preventing overfitting. The downsides of the 

Bayesian approach are that it does not provide absolute, but only relative, measures of 

model quality and that it is computationally demanding.
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Cross-validation

The fundamental problem with overfitting is that it leads to poor predictions on new data. 

Cross-validation is a technique that estimates and minimizes this problem by splitting the 

data set into two subsets: a training data set, which is used to estimate the prediction 

parameters, and a validation data set, which is used to test how well those parameters 

predict ‘new’ data (Fig. 1). This procedure can provide an unbiased estimate of the 

expected error on new data148, but the variance of the estimator depends on the size of 

the data set. Splitting the data set into two subsets decreases the size of the training data 

set, which leads to loss of valuable examples that could be used to improve prediction. 

Note that cross-validation (for example, leave-one-out cross-validation) is often used in 

the training data to optimize aspects of the algorithm, and then the final held-out part of 

the data is referred to as validation set. It is critical to keep these apart.
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Figure 1. 
The blessing and curse of dimensionality. In rich data sets in psychiatry, the number of 

measured variables d per subject can substantially exceed the number of subjects. (a) When 

this occurs, subjects can always be separated linearly: up to d + 1 subjects can always be 

separated linearly into two classes if the data span a d-dimensional space. Three subjects can 

always be separated into two groups using a combination of two features. (b) For d + 2 (or 

more) subjects, linear separation is not always possible. (The subjects indicated by black 

points are not linearly separable from those indicated by red points.) (c) Such data can, 

however, be separated linearly if projected into a higher-dimensional space. Here, a third 

dimension was added to the two-dimensional data in b by calculating the absolute distance 

from the line through the black points, thereby making the two classes linearly separable, as 

shown by the gray two-dimensional plane. (d) A similar fact can be illustrated in regression: 

a d-order polynomial can always fit d + 1 points perfectly (red line), but it makes extreme 

predictions outside the range of observations and is extremely sensitive to noise, overfitting 

the training data. (e) Even when the features and classes are just random noise, performing 

regression in a high-dimensional space leads to misleadingly high performance142. The 

panel shows receiver operating characteristic (ROC)—the false positive against the true 

positive rate—for logistic regression applied to such random data. The red curve shows that 

logistic regression performs misleadingly well on the training data, with a high area under 

the ROC curve (AUC) (regression training data, g). Obviously, however, this is overfitting, 

as the data are random. Indeed, applying the resulting regression coefficients to unseen 

validation data not included in the training set, the predictions are random as they should be 

(blue line; regression validation data, g). (f) Using LASSO, a form of cross-validated 

regularized regression (Box 1), partially prevents overfitting (red line; LASSO training data, 

g). However, because the regularization parameter is fitted to the training data, even LASSO 

does not fully prevent overfitting: it is only when the LASSO parameters are tested on the 

validation data set that performance is correctly revealed to be at chance level (blue line; 

LASSO validation data, g).
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Figure 2. 
Exploiting and coping with high dimensionality in psychiatric data sets. Purely data-driven 

approaches (left and middle branches) and combinations of theory- and data-driven 

approaches (right branch) can be used to analyze large data sets to arrive at clinically useful 

applications. Dimensionality reduction is a key step to avoid overfitting. It can be performed 

as a preprocessing step using unsupervised methods before application of other ML 

techniques with or without further dimensionality reduction (left branch; Box 1); using ML 

techniques that automatically limit the number of variables for prediction; using 

regularization or Bayesian model selection (middle branch; Box 1); or using theory-driven 

models that in essence project the original high-dimensional data into a low-dimensional 

space of theoretically meaningful parameters, which can then be fed into ML algorithms that 

may or not further reduce dimensionality (right branch).
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Figure 3. 
Using EEG measures for treatment selection in depression improves treatment response. 

Left, reference EEG (rEEG) procedure. After withdrawing all medications, a rEEG was 

performed. This was submitted for online automated analysis involving 74 biomarkers and a 

comparison to a large reference database of EEG measures linked to longitudinal treatment 

outcomes. Finally, a medication ranking was returned. Right, in a 12-site trial, patients were 

randomized to treatment selection via an optimized clinical protocol (based on STAR*D) or 

rEEG. The rEEG-based selection led to improved treatment response relative to the 

optimized clinical protocol after 2 weeks (red dots), and this effect grew stronger over 12 

weeks. These results suggest that biological measures can improve treatment selection in 

depression. Adapted with permission from ref. 71.
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Figure 4. 
Networks of symptoms. (a) Network of symptoms in DSM-IV. Two symptoms have a link if 

they belong to a common diagnostic category. There is a large, strongly connected cluster 

containing 48% of the symptoms. Overall, the network has small-world characteristics, with 

the average path length between two symptoms being only 2.6. Adapted with permission 

from ref. 28. (b) Autocorrelations and variance, two signs of critical slowing down, increase 

before a phase transition in dynamic networks. Prior to a transition from a healthy state to 

depression, negative emotions such as sadness show increasing variance and temporal 

autocorrelation. Prior to a transition from depression to a remitted state, this is observed in 

positive emotions, such as contentedness. Adapted with permission from ref. 81.
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Figure 5. 
Theory-driven biophysical and RL approaches. (a) Insights into working-memory 

disturbances in schizophrenia. Reducing NMDA currents on inhibitory interneurons leads to 

overall disinhibition and broadens the bump representation of a stimulus in working memory 

(compare top versus bottom), making it more susceptible to distractors, especially those that 

activate neighboring neurons. Adapted with permission from ref. 90. (b) Insights into 

obsessive-compulsive disorder. Both lowering serotonin levels and increasing glutamatergic 

levels renders activity patterns excessively stable, such that when a new cluster of neurons is 

stimulated, activity does not shift to the new location, as would be expected (top, normal 

response), but rather remains ‘stuck’ in the previous location (bottom). Adapted with 

permission from ref. 2. (c) Negative symptoms in schizophrenia are related to a failure to 

represent expected values. In an instrumental-learning task, healthy controls and patients 

with schizophrenia with low levels of negative symptoms learned according to a 

reinforcement-learning algorithm that explicitly represents the expected value of each state-

action pair (Q-learning), whereas patients with schizophrenia with high levels of negative 

symptoms learned according to an algorithm that learns preferences without such explicit 

representations (actor-critic). Adapted with permission from ref. 101. (d) Examining the 

processes that guide goal-directed evaluations. Shown is a decision tree corresponding to a 

sequence of three binary choices, where each choice leads to a gain or loss indicated by the 

numbers. A RL model was fitted to choices and contained two key parameters, representing 

the probability of continuing thinking when encountering a large salient loss (red arrow, −X) 

or when encountering other outcomes (blue arrows). (e) Subjects were far less likely to 

continue evaluating a branch after encountering a salient loss (red bars) than after other 

outcomes, for a variety of salient loss sizes. Adapted with permission from ref. 132.
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Figure 6. 
Mechanistic models yield parameters that can be used as features to improve ML 

performance. A classifier trained on estimated parameters of a model fitted to simulated 

behavioral data (light blue curve, AUC 0.87) performed better than when trained on the raw 

data directly (purple curve, AUC 0.74). Data for 200 subjects with Gaussian distributed 

parameters were simulated from a simple MF RL model with time-varying action 

reinforcements. Subjects were separated into two groups based on only one parameter (the 

learning rate). The data set was split into two, with half of the subjects used for training a 

classifier and the other half for validation. Two classifiers were trained, with one trained on 

the raw behavioral data, and the other on the parameters estimated by fitting a RL model. 

The ROC curve is shown for performance on the validation set.
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