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Abstract

The onset and progression of diabetes mellitus type 2 is highly contingent on the amount of

functional beta-cell mass. An underlying cause of beta-cell decay in diabetes is oxidative

stress, which markedly affects the insulin producing pancreatic cells due to their poor antiox-

idant defence capacity. Consequently, disturbances of cellular redox signaling have been

implicated to play a major role in beta-cell loss in diabetes mellitus type 2. There is evidence

suggesting that the glutaredoxin (Grx) system exerts a protective role for pancreatic islets,

but the exact mechanisms have not yet been elucidated. In this study, a mouse model for

diabetes mellitus type 2 was used to gain further insight into the significance of Grx for the

islets of Langerhans in the diabetic metabolism. We have observed distinct differences in

the expression levels of Grx in pancreatic islets between obese, diabetic db mice and lean,

non-diabetic controls. This finding is the first report about a decrease of Grx expression lev-

els in pancreatic islets of diabetic mice which was accompanied by declining insulin secre-

tion, increase of reactive oxygen species (ROS) production level, and cell cycle alterations.

These data demonstrate the essential role of the Grx system for the beta-cell during meta-

bolic stress which may provide a new target for diabetes mellitus type 2 treatment.

Introduction

Diabetes mellitus type 2 is hallmarked by a progressive loss of functional beta-cell mass. As

from the early prediabetic stages of the disease onwards, the Islets of Langerhans suffer the det-

rimental effects of hyperglycaemia, free fatty acids, and inflammation [1]. As stress levels

exceed the beta-cell’s coping capacity, insulin secretion fades [2, 3]. Furthermore, oxidative

stress and impaired redox signaling play a pivotal role in beta-cell decay [4]. The redox regula-

tion of cellular processes ensures cell viability and function [5]. A major actor in redox signal-

ing and maintenance of redox balance is the glutaredoxin (Grx) system. It consists of NAPDH,

glutathione, glutathione reductase and the oxidoreductase glutaredoxin. Its influence on cellu-

lar processes is based on reversible post-translational de-glutathionylation of their target’s cys-

teine residues. In mammals, there are four glutaredoxins, characterized as mono- or dithiol
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Grx depending on the number of redox-active cysteine-residuals in their active center. The

dithiol Grx1 was originally found to reduce ribonucleotides and thus to ensure DNA synthesis

in E. coli [6, 7]. It is mainly located in the cytoplasm, but was also reported in the intermem-

brane space of mitochondria and the nucleus [8, 9]. It is a major actor in the thiol-disulfide

exchange and thereby involved in keeping cellular structures reduced and functional [10].

Grx1 has influence on cell differentiation [11] and regulates transcription factors, including

NF-kappaB [12, 13]. NF-kappaB exerts an anti-apoptotic function in most cell types, whereas

its role in the beta-cell is dependent on its activators. A protective effect against apoptosis

induced by TNF-alpha is suggested [14]. Furthermore, researchers demonstrated that Grx1

promotes insulin secretion in MIN6 cells and isolated rat islets [15] while Grx1 knockout

resulted in impaired insulin secretion [16]. The second dithiol, Grx2, forms iron-sulfur clusters

which act as a redox sensor [17, 18]. As a regulatory mechanism of the redox state in the mito-

chondria [19] it has protective effects from apoptosis [20]. The monothiol Grx3 can form iron-

sulfur clusters [21] as well and is necessary for haem synthesis [22]. It has protective and

immunomodulatory effects, too [23, 24]. Grx5 was studied in yeast mutants lacking the

enzyme. These featured increased susceptibility to oxidative and osmotic stress. Elevated ROS

production, accumulation of iron and inactivation of enzymes requiring Fe-S clusters were

noted [25, 26]. These affected enzymes are not only required for glucose processing and

thereby insulin secretion, but iron accumulation is also known to induce secondary complica-

tions in diabetes [27]. Due to their diverse functions and their substrate specifity, alterations in

glutaredoxin activity and expression can have massive impact on cellular pathways. Therefore,

a key role in diabetes has been implicated [28]. The metabolically highly active beta-cell suffers

from low antioxidant capacity. Several enzymes, including superoxide dismutase, catalase and

glutathione peroxidase were shown to be expressed less in mouse islets in comparison to other

tissues [29]. Oxidative stress disrupts the physiology of insulin secretion at several stages.

GLUT2 (Glucose transporter 2) expression is reduced in rodent models for diabesity [30, 31]

and mitochondrial dysfunction [32–34] was reported. Furthermore, oxidative modifications of

ATP-sensitive potassium channels as well as hyperpolarization of the cell membrane con-

ducted by ROS can both take influence on insulin secretion [35, 36]. Surprisingly, there are

few data regarding glutaredoxins in the islets of diabetic mice. We hypothesized that they play

a role in the challenged beta-cell during the onset and progression of diabetes mellitus type 2.

Therefore, we screened islets of diabetic db/db mice in comparison to lean db/+ littermates.

Homozygote db mice are marked by total leptin resistance due to a receptor mutation [37]

and thus develop obesity and diabetes (“diabesity”) [38]. We found lower expression of all

four glutaredoxins in diabetic mice in comparison to lean controls. The effect was most pro-

nounced for Grx1 and 5, which lead us to further investigate both redoxins. For the first time

we detected distinguished differences in Grx expression in the islets of Langerhans in a mouse

model for diabetes mellitus type 2 which could be correlated to insulin expression, cell cycle,

and ROS production.

Materials and methods

Ethics statement

Animal research was approved by and conducted in accordance with institutional animal wel-

fare officer, Chair of Animal Welfare of the Justus Liebig University Giessen, and Regional

Administrative Council Giessen, Veterinary Department, under the code GI20/11-Nr.A18/

2010. 3Rs were applied for reducing the number of required mice and reduce potential suffer-

ing, enrichment was applied to the IVC. Scoring was done daily. Mice were anaesthetized with

ketamin / xylazin i.p. and bled to death by incision of the abdominal aorta before removing the
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pancreas and other organs. The ARRIVE Guidelines Checklist (Animal Research: Reporting

In Vivo Experiments) is available in the Supporting information section (S1 File).

Animal model

40 male BKS(D)-Leprdb/JOrlRj (db/db) mice and 40 BKS(D)-Leprdb/JOrlRj Témoin (db/+)

control mice aged 5 weeks were bought from Charles River (Sulzfeld, Germany) and given one

week to adapt to the animal facility. Number of required mice was calculated regarding mani-

festation rate of diabetes according to literature with type I error of 0.05 and type II error of

0.2. Animals were housed according to institutional guidelines (room temperature 22 ± 0.5˚C,

12 hours light / dark cycle, 60% humidity) with tap water and standard diet pellet food (Altro-

min, Lage, Germany) ad libitum in individually ventilated cages in groups of five mice. Mice

were observed from 6 to 18 weeks of age. Blood glucose (Glucometer OneTouch Ultra 2, Life-

Scan, Neckargemünd, Germany) and body weight were measured weekly. Blood for glucose

measurement was collected by puncturing the tip of the tail on conscious animals after over-

night fasting. Pancreatectomy for IHC and islet isolation for qRT-PCR were done at 6, 12 and

18 weeks of age. In order to harvest pancreata mice were sedated by narcotic agent (1 ml Keta-

mine 10%, 0.8 ml Xylazine 2%, 8.2 ml NaCl 0.9%; 0.1 ml / 10 g body weight). Next, the abdom-

inal wall was excised to expose the aorta which was cut to drain the blood before the organ was

removed.

Islet isolation

Islets were isolated as described before by our department [39]. Briefly, the extracted pancreas

was perfused with 4 mg / ml collagenase B (Roche, Mannheim, Germany) dissolved in 1%

Hank’s solution (Biochrom, Berlin, Germany) supplemented with 35 ml Hepes buffer (Bio-

chrom, Berlin, Germany), 10 ml Ciprofloxacin, 10 ml Penicillin-Streptomycin, and 1 ml Gen-

tamycin through the ductus pancreaticus. The perfused pancreas was mechanically chopped

with scissors before 10 minutes of incubation in collagenase solution at 37˚C in a shaking

water bath. After every 3 minutes of collagenase digestion the sample was vortexed for 10 sec-

onds. The digested tissue was shaken by hand for two more minutes and the digestion process

was eventually stopped by placing the tube containing the tissue on ice and adding cold

Hank’s solution. Following 3 minutes of centrifugation at 1500 rpm, the supernatant was dis-

carded and the pellet was dissolved in 15% P/FCS dissolved in Medium 199 (Gibco, Karlsruhe,

Germany) and fetal bovine serum (biowest, Nuaillé, France) at room temperature. The islets

were hand-picked under stereomicroscope and incubated overnight at 37˚C to overcome the

isolation stress.

Immunohistochemistry

IHC was used for detection of insulin (Dako, Hamburg, Germany), Grx1 (Santa Cruz Biotech-

nology, USA) and 5 (kindy provided by Prof. Lillig / Dr. Hanschmann as described in [40]),

Ki-67 (Dako, Hamburg, Germany) as a marker for proliferation and activated caspase-3 (Cell

Signaling, Frankfurt, Germany) as a marker for apoptosis. Pancreata were fixed with Zamboni

(paraformaldehyde in picric acid and PBS as described in [41]) for four hours, then washed

and stored in PBS supplemented with 18% sucrose solution overnight. Organs were embedded

in cryoblock embedding medium (Biosystems, Nunningen, Switzerland) and frozen at -80˚C.

Sectioning was done using Leica Crysostat CM1850 (Leica, Wetzlar, Germany). Slides were

washed with PBS and blocked with 1% donkey serum dissolved in PBS containing 0.3% Triton

X-100 (0.3% PBST) for 20 minutes. For Ki-67 staining, antigen retrieval was performed with

NaOH 0.09 M for three minutes followed by another wash cycle. Sections were incubated with
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primary antibodies diluted in 1% donkey serum dissolved in 0.3% PBST overnight at 4˚C. Sec-

ondary antibodies in 5% mouse serum were applied for one hour at room temperature. Nuclei

were stained with Hoechst (Calbiochem, Darmstadt, Germany) in 0.1% TRIS buffer pH 7.6

and samples were preserved with ProLong Gold (Invitrogen, Karlsruhe, Germany). Pancreata

were entirely sectioned. Sections were assessed for their quality, i.e. structurally damaged ones

were not used. Two consecutive sections were regarded as one (results were divided by two for

analysis). An interval of 140 μm was maintained between these pairs of slides which were

included in the analysis in order to avoid multiple inclusion of islets. When islet area exceeded

140 μm in 12 weeks old db/db mice, double inclusion was carefully avoided by manual com-

parison of slides. 12 slides per pancreas, including 24 to 384 islets per organ, were observed.

Total islet count included in the study was 2221 with 123 islets per mouse on average. Islet

count was consistent with the number of islets isolated during islet isolation. Slides were pre-

pared simultaneously in batches during immunohistology for appropriate comparability. For

qualitative assessment of redoxin staining patterns in islets, immunostained slides were

screened for islets. Images were taken, background staining was removed, and images were

converted to gray scale for more effective and accurate comparison. Representative images

were then selected manually.

Measurement of islet area and protein expression level

Size of islet area as well as protein expression level of Grx1, Grx5 and insulin were measured

by using custom scripts for ImageJ (Wayne Rasband, National Institutes of Health, USA).

Images were taken with Leica Application Suite v 3.8.0 using digital microscope camera DFC

420 C (Leica, Wetzlar, Germany) as described before [42]. Software was calibrated to match

the images’ scale and mean islet area was obtained. For analysis of protein expression level of

insulin, Grx1 and 5, gray scaled pictures taken from a batch of simultaneously prepared stain-

ings were normalized by removing background using slides without primary antibodies and

calculating mean fluorescent intensity in islets. This resulted in mean grey values ranging from

0 (0%) to 255 (100%). In order to quantify redoxin staining area, the area stained by the anti-

body against the respective redoxin was set into relation with the area stained by insulin.

RNA isolation, cDNA synthesis and qRT-PCR

Extraction of RNA from harvested islets was done using RNeasy Plus Micro Kit (Qiagen, Düs-

seldorf, Germany). Total RNA concentration was determined by OD260 nm method using

NanoDrop 1000 spectrophotometer (Thermo Scientific, Schwerte, Germany). cDNA was

synthesised with SuperScript III Reverse Transcriptase kit (Invitrogen, Darmstadt, Germany).

qRT-PR was carried out on Real-Time PCR System StepOnePlus (Applied Biosystems). Each

PCR consisted of 10 min denaturation at 95˚C, followed by 40 cycles of denaturation (95˚C,

10 s) and annealing / extension (60˚C, 1 min). Primer concentration for qRT-PCR was 20 pM.

Primer (Invitrogen, Darmstadt, Germany) sequences were as follows:

beta-actin (housekeeping):

fwd GTG GGA ATG GGT CAG AAG G, rev GAG GCA TAC AGG GAC AGC A;

INS1:

fwd TAT AAA GCT GGT GGG CAT CC, rev GGG ACC ACA AAG ATG CTG TT;

Grx1:

fwd GAG CAG TTG GAC GCG CTG G, rev CTC GCC ATT GAG GTA CAC TTG C;

Grx5:

fwd GAA GAA GGA CAA GGT GGT GGT CTT C, rev GCA TCT GCA GAA GAA TGT

CAC AGC

Glutaredoxin 1 and 5 in islets of diabetic mice
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Relative mRNA expression values were obtained by normalizing CT values of the target

genes in comparison with CT values of the housekeeping gene using the delta-CT method.

Measurement of ROS production

Intracellular reactive oxygen species (ROS) production level in isolated islets were detected

using 2’,7’-dichlorofluorescein diacetate (DCFH-DA) indicator dye (Sigma, Munich, Ger-

many). DCFH-DA is a non-fluorescent, cell-permeable compound which is cleaved by intra-

cellular esterases to 2’,7’-dichlorofluorescein (DCFH) and thereby trapped within cells. DCFH

is membrane impermeable and a variety of intracellular ROS rapidly oxidize it to the highly

fluorescent DCF (2’,7’-dichloro-fluorescein) [43, 44]. Isolated islet cells of 24 weeks old ani-

mals were categorized in three different groups as untreated control, high glucose treated (20

mM for 2 hours) and TNF-alpha treated (1μM for 15 minutes). The above mentioned samples

were incubated in serum-free medium containing 10μM DCFH-DA indicator dye dissolved in

dimethylsulfoxide (DMSO) (Sigma, Munich, Germany). After 30 min incubation at 37˚C in

the dark, samples were rinsed with pre-warmed serum-free medium and immediately analyzed

with confocal laser scanning microscope. Intracellular DCF fluorescence (corrected for back-

ground fluorescence) was evaluated in 3600 μm2 regions of interest using an overlay mask

unless otherwise indicated. For fluorescence excitation, the 488 nm band of the argon ion laser

of a confocal laser scanning microscope (Leica SP2 AOBS, Bensheim, Germany) was used.

Emission was recorded using a longpass LP515 nm filter set. All islet cells per condition were

photographed and fluorescence intensities were quantified with Leica Simulator software.

Statistical analysis

Statistical analysis was performed using Graph Pad Prism 5 (GraphPad Software, San Diego,

USA) using Mann Whitney test and two-way Anova as appropriate. Data are given as mean

values ± SEM, with n denoting the number of experiments unless otherwise indicated. A p-

value < 0.05 was considered significant.

Results

A phenotype of diabesity in rodents

The leptin-resistant db mouse was employed for investigation of glutaredoxins in diabetes. It

is known that homozygous db mice exhibit a distinct aspect of diabesity. Consecutively, a

strong obese and diabetic phenotype was developed during the 12 weeks study period. Homo-

zygous animals constantly showed a significantly higher body weight as well as fasting blood

glucose during the observation period from 6 to 18 weeks of age (p< 0.0001). At the end of

the observation period, homozygotes with 57 g on average were twice as heavy as heterozy-

gotes with 26 g (Fig 1a). Their fasting blood glucose exceeded 200 mg/dl from 13 weeks of age

onwards while heterozygotes showed no significant increase from 12 to 18 weeks of age (Fig

1b).

Pathohistomorphic changes with distinct morphology and high cell

turnover

After having ensured a strong phenotype in the selected strain of db mice as well as the suit-

ability of heterozygous animals as controls, the histology of their pancreatic islets was exam-

ined. Assessment of islet count during islet isolation revealed more islets in db/db animals at

all time points (p< 0.001 at 6 weeks of age, p< 0.05 on average, data not shown). In both

groups, lowest pancreatic islet count was observed at the age of 12 weeks. Morphological

Glutaredoxin 1 and 5 in islets of diabetic mice
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studies by immunohistology exposed larger islets occuring together with fragmented small

ones in homozygotes (Fig 2). At the age of 6 weeks islets of homozygotes were already enlarged

but shaped normally (Fig 2a). Larger islets in 12 weeks old db/db mice resulted in vast islet for-

mations (Fig 2f). As homozygotes grew older, small abnormally shaped islets increased in

number (Fig 2k). Changes in islets of heterozygotes were more moderate (Fig 2b, 2g and 2l).

Fig 1. Body weight and fasting blood glucose level of db/db and db/+ mice. (a) Body weight of db/db and db/+ mice. (b)

Fasting blood glucose levels of db/db and db/+ mice. Data depicted from 6, 12, and 18 weeks of age, corresponding to

pancreatectomy. Values are mean ± SEM (n = 11-40 mice), black bars represent db/db mice, white bars represent db/+ mice,

*** denotes p < 0.0001.

https://doi.org/10.1371/journal.pone.0176267.g001

Fig 2. Morphology and quantification of area, proliferation rate, and fluorescent intensity of db/db and db/+ islets. (a, b, f, g, k,

l) Representative images taken of immunostained islets at 6, 12 and 18 weeks are shown in comparison (green: insulin, blue: nuclei;

bars indicate 100 μm2). (c, h, m) Quantification of mean islet area as measured with ImageJ corresponding to insulin staining area. (d,

i, n) Proliferation of islet cells analyzed by Ki-67 positive cells per islet. (e, j, o) Semiquantitative analysis of insulin staining. Black bars

represent db/db mice, white bars represent db/+ mice, n = 3 mice, *** denotes p < 0.001, ** denotes p < 0.005.

https://doi.org/10.1371/journal.pone.0176267.g002
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These findings were quantified by measuring islet area in immunostained slides. We found

larger mean islet area in db/db animals at all time points with a maximum at 12 weeks

(p< 0.001 at 12 weeks and p< 0.005 on average) (Fig 2c, 2h and 2m). On average, db/db mice

had 2.5-fold larger islets. Respectively, islet proliferation was measured by counting of cells

positive for Ki-67 staining. We found higher proliferation of db/db islets (p< 0.005 at 12

weeks and on average) (Fig 2d, 2i and 2n). Again, a peak was found at 12 weeks in homozy-

gotes, while proliferation decreased in ageing animals of both groups. On average, homozy-

gotes featured a four-fold higher proliferation rate. Slides were also stained against activated

caspase-3 and analysed qualitatively. Apoptosis was higher in 6 and 12 weeks old homozygotes

in comparison to heterozygotes (data not shown).

Receding insulin content in the islets of Langerhans

Both the phenotype of diabesity as well as the marked histological alterations in db/db mice

were accompanied by a depletion of insulin content in islets, as our respective analysis

revealed. This loss correlated to the extent of body weight and blood glucose levels of db/db

animals. Quantification of insulin staining of immunohistology confirmed the impression of

lower insulin content in db/db islets when compared to db/+ specimen (p< 0.0001) (Fig 2e, 2j

and 2o). Regarding the genetic level, homozygotes showed a 70-fold drop in INS1 expression

from 6 to 18 weeks of age (p< 0.0001) (Fig 3a). In comparison to heterozygotes, INS1 expres-

sion was twice as low at 6 and 12 weeks of age (p< 0.05) and 45-fold lower at 18 weeks

(p< 0.0001). Heterozygote expression was declining less markedly.

Marked differences in islet redoxin expression

Our aim was to correlate the witnessed differences between obese, diabetic and lean, non-dia-

betic mice with changes in glutaredoxin expression. For screening, we assessed the pattern as

well as fluorescent intensity of immunohistologically stained islets from 12 weeks old mice of

both groups. This timepoint appeared most promising for the observed marked differences in

shape, insulin content and proliferation detected in our previous analysis. We discovered visi-

ble differences with more dense and extense staining in db/+ animals for all four glutaredox-

ins, which were most pronounced for Grx1 and 5 (Fig 4).

Reduced glutaredoxin 1 and 5 levels in islets during diabesity

Based on the screening of glutaredoxins in islets, we carried out further analysis for Grx 1 and

5. Staining in db/db islets was more scarce and extended over a smaller area when compared

to control islets. Furthermore, Grx5 staining patterns were more intense and more extensive

than Grx1 patterns. Findings were confirmed by semiquantitative analysis of Grx fluorescent

intensity as well as quantification of Grx to insulin staining ratio (Fig 5). Control islets featured

higher Grx fluorescent intensity and Grx to insulin ratio for both redoxins and all time points.

Grx5 was the redoxin with higher expression. To confirm the findings on the genome level,

gene expression of Grx1 and 5 was analysed by qRT-PCR in isolated islets. Corresponding

to higher fluorescent intensity and area, heterozygotes showed higher gene expression

(p< 0.0001 at 6 and 12 weeks) for Grx1 at all time points (Fig 3b). In homozygote islets, a

nadir was found at 12 weeks, while expression im heterozygote islets was stable. Analysis of

Grx5 expression revealed a significant decrease (p< 0.0001) in both db/db and db/+ animals

with controls exhibiting higher expression at all time points (p< 0.0001 at 6 and 12 weeks)

(Fig 3c). qRT-PCR revealed a markedly higher expression of Grx5 when compared to Grx1.
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Fig 3. Gene expression of INS1, Grx1, and Grx5 in db/db and db/+ islets. Gene expression was

evaluated by qRT-PCR. (a) INS1 expression declined in both groups of mice in relation to their age, but

controls exhibited significantly higher expression levels at all time points. (b) Grx1 expression was higher in

db/+ mice at all time points. A slight decrease in controls was observed, while db/db animals featured a gap at

12 weeks of age. (c) Grx5 expression decreased in both groups with age with higher levels in db/+ islets.

Glutaredoxin 1 and 5 in islets of diabetic mice
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Enhanced ROS production in Grx-deficient islets

In order to further evaluate the significance of Grx-deficiency in mouse islets in diabetes, we

analyzed ROS production level in isolated pancreatic islets using DCF staining. It was evalu-

ated in untreated islets as well as islets pretreated with high glucose and TNF-alpha in order to

stimulate hyperglycaemic and inflammatory stress as apparent during diabetes mellitus type 2.

Isolated pancreatic islets from homozygous mice indicated higher ROS production level with-

out any stimulation as well as upon treatment with either glucose or TNF-alpha compared to

heterozygotes (p< 0.0001). Both groups showed an elevation in ROS content upon treatment

with either glucose or TNF-alpha, but with a markedly higher level in db/db islets (Fig 6).

Discussion

The course of diabetes mellitus type 2 is highly dependent on the preservation of a healthy

beta-cell mass and insulin secretion capacity, which both are notably impaired by oxidative

stress and disturbed redox signaling [45]. It was previously shown that the Grx system has pos-

itive impact on insulin secretion [16, 46, 47]. Furthermore, tissue-specific expression of Grx

was reported [48]. Plasmatic Grx activity differs between healthy subjects and patients suffer-

ing from diabetes mellitus type 2 [49]. Evidence for a protective role of the Grx system in the

diabetic metabolism has arisen [50–54], but its exact significance for the beta-cell is still

unknown. Thus, the aim of this study was to evaluate the relevance of the glutathione-depen-

dent oxidoreductase system as a potential protection machinery in an in vitro model for

diabetes mellitus type 2. A high level of oxidative phosphorylation is mandatory for the meta-

bolically active beta-cell, especially when challenged by metabolic stress. As a result, mitochon-

drial ROS are considered a requirement for unimpaired insulin secretion [55, 56]. However, it

is accepted that an abundance of ROS induces oxidative stress, exerts detrimental effects on

cellular structures and proteins, and disturbs redox signaling. Accordingly, permanent excess

of ROS is seen as noxious to insulin secretion [57]. Elevated ROS production in islets of

Values are mean ± SEM (n = 4—6 mice) and normalized with beta-actin, black bars represent db/db mice,

white bars represent db/+ mice, *** denotes p < 0.0001, ** denotes p < 0.005.

https://doi.org/10.1371/journal.pone.0176267.g003

Fig 4. Qualitative comparison of the Grx system in db/db and db/+ islets. Representative monochrome pictures of Grx

staining pattern captured of islets of 12 weeks old db/db and db/+ mice. (a, e) Grx1, (b, f) Grx2, (c, g) Grx3, (d, h) Grx5.

Staining patterns suggested higher expression in db/+ mice. The difference was most pronounced for Grx1 and 5. 200x,

yellow circles indicate islets, bars indicate 100 μm2.

https://doi.org/10.1371/journal.pone.0176267.g004
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diabetic rodents were confirmed by others [58], and overexpression of radical-scavenging

enzymes resulted in protection of ROS-mediated induction of diabetes [59]. The beta-cell is

especially prone to oxidative damage for its low expression of enzymes such as catalase and

glutathione peroxidase, which are mainly involved in detoxification of H2O2 [29]. The

glutaredoxin system has been proven to be expressed in mice islets [48] and may represent an

Fig 5. Representative images of Grx1 and 5 staining, quantification of Grx to insulin ratio, and

fluorescent intensity of db/db and db/+ islets. (a, b, e, f, i, j, m, n, q, r, u, v) Representative images taken of

immunostained islets at 6, 12 and 18 weeks are shown in comparison (green: Grx1 / 5, red: insulin, bars

indicate 50 μm2). (c, g, k, o, s, w) Semiquantitative analysis of Grx1 / 5 staining. (d, h, l, p, t, x) Quantification of

Grx 1 / 5 to insulin staining ratio. Black bars represent db/db mice, white bars represent db/+ mice, n = 3 mice,

*** denotes p < 0.0001, ** denotes p < 0.005, * denotes p < 0.05.

https://doi.org/10.1371/journal.pone.0176267.g005
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important alternative pathway in detoxification of ROS for the beta-cell. The four mammalian

glutaredoxins are located in the major cellular compartments [8, 21, 26, 60] and are thereby

involved in a broad range of functions. Thus, it is acknowledged that they feature varying

expression patterns and activity when the beta-cell is challenged by metabolic stress. In the

present study, we identified significant differences in Grx expression between diabese mice

and lean controls for all four oxidoreductases, which were most pronounced for the mainly

cytoplasmic Grx1 as well as the mitochondrial Grx5. Our data indicate that Grx1 expression

correlated negatively with average size of pancreatic islets as well as proliferation rate, and pos-

itively with islet count in homozygotes. Grx1 protein and mRNA expression were elevated at 6

and 18 weeks when beta-cell turnover was at its minimum. At these time points homozygous

mice featured high islet count and small islets with low proliferation rate. By contrast, we

found reduced mRNA and protein expression of Grx1 at 12 weeks when islet count was low,

but islets were large and showed elevated proliferation. Furthermore, a correlation was found

between higher and stable expression in heterozygotes and less apoptosis of islet cells, elevated

insulin expression and stable blood glucose levels when compared to homozygotes. These

observations support the anti-apoptotic [61, 62] and pro-proliferative role [11] of Grx1. Grx1

is a major catalyst of post-translational modification of proteins via de-glutathionylation [61,

63], reversing detrimental glutathionylation by ROS. Among its targets are NF-kappaB, a key

regulator of apoptosis [64], and PKC-alpha [65]. Previous studies suggest a positive impact

of PKC-alpha on insulin secretion via maintenance of calcium channels [66, 67]. Further,

Grx1 restores aldose reductase [68], an enzyme which is required for glucose processing if

Fig 6. Representative images of ROS measurements and quantification in islets of db/db and db/

+ mice. (a, b, d, e, g, h) Representative images show DCF stained pancreatic islets without any treatment as

well as upon treatment with either glucose or TNF-alpha (bars represent 75 μm). (c, f, i) Quantification of DCT

fluorescence intensity revealed significantly higher ROS production in db/db islets with a more pronounced

rise after exposure to high glucose and TNF-alpha treatment in comparison to db/+ islets. Values are

mean ± SEM (n = 54—139 islets), black bars represent db/db islets, white bars represent db/+ islets,

*** denotes p < 0.0001.

https://doi.org/10.1371/journal.pone.0176267.g006
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hexokinase is saturated due to glucose overload. A recent study linked Grx to adenosine

monophosphate-activated protein kinase (AMPK) activation and thereby stabilization of insu-

lin secretion [54]. Consequently, Grx1 might support generation of new islets as well as growth

of pre-existing islets, and further sustain islet metabolic activity in attempt to maintain glucose

homeostasis and preserve insulin secretion capacity. In this study, Grx5 featured a significant

reduction in both groups of mice, which was markedly more pronounced in db/db animals

and correlated with fading insulin expression and rising blood glucose levels. The Grx5

enzyme is an important actor in composition of iron-sulfur clusters in the mitochondria [26].

Therefore, it is essential for a broad range of enzymes relying on these clusters, among which

numerous have relevance for the respiratory chain [26]. Thus, the connection between Grx5

and oxidative phosphorylation might explain the co-occurrence of reduced insulin as well as

Grx5 expression in this study. It has been reported that Grx5-deficiency increases the suscepti-

bility to oxidative stress [25]. Furthermore, a lack of Grx5 enzyme was also correlated to

cellular iron overload [69]. Iron is known to catalyze ROS production and thereby mediate

apoptosis [70]. The link between metabolic stress and iron metabolism was shown in an in

vivo model for diabetes mellitus type 2 with defective iron channels which featured stronger

beta-cell viability [71]. Also, iron chelator treatment and dietary iron restriction had beneficial

effects on glucose homeostasis in rodents [72]. Therefore, Grx5 might play a key role in main-

taining mitochondrial functionality and prevent detrimental impact of iron accumulation. At

the present time, the exact significance of reduced Grx1 and 5 levels in diabese db/db mice

remains to be studied. Functional experiments will elucidate whether reduced redoxin levels

are cause or result of impaired insulin secretion in islets of diabese animals. Regulators and

effectors of islet redoxins have to be identified and modulation of redoxin expression should

Fig 7. Summary. Both gluco- and lipotoxicity are extracellular promoters of ROS generation. ROS are harmful to cellular elements as

they catalyze their glutathionylation. When the cell’s antioxidant capacity is depleted, cell death occurs. Regarding the beta-cell, ROS

impair insulin secretion. Grx1 and 5 wield protective properties. Grx1 is a major actor in de-glutathionylation, thereby reversing the

harmful effects of ROS on its targets, exerting anti-apoptotic and pro-proliferative effects, and preserving insulin secretion. Grx5 has

impact on the respiratory chain and cellular iron homeostasis by transferring iron-sulfur clusters to respective apoproteins. Hence, it

supports cell viability and function, allows proliferation and counteracts iron accumulation which would promote ROS formation.

https://doi.org/10.1371/journal.pone.0176267.g007
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be investigated regarding its influence on islet viability and metabolic activity. Further, immu-

nohistological analysis in this study was limited by a low number of mice (n = 3). However,

an appropriate amount of islets per animal was used for analysis and results were consistent

among animals. Moreover, genome analysis via mRNA expression was carried out in 4 to 6

mice per timepoint and results were consistent with protein analysis.

Conclusion

In conclusion, our findings demonstrate a correlation between glutaredoxins and dysfunction

of the islets of Langerhans in a mouse model for diabesity, which has not been described

before. We propose that deficiency of Grx1 and 5 is connected to impaired insulin secretion

and beta-cell decay in diabetes mellitus type 2. A summary of the obeserved correlations in ref-

erence to literature is given in Fig 7.
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