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Abstract

Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been

on developing novel heat-generating nanoparticles with the right optical and dimensional

properties. Comparison and evaluation of their performance in tumor-bearing animals are

commonly assessed by changes in tumor volume; however, this is usually a late-occurring

event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomogra-

phy imaging to perform early evaluation of the treatment outcome of photothermal therapy.

Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neu-

roendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The ani-

mals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one

day before and one day after treatment. Using this setup, a significant decrease in tumor

uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the

group receiving NS and laser treatment compared to control animals. At this time point no

change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to

stratify the animals into responders and non-responders, where the responding group

matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-

D-glucose positron emission tomography imaging for preclinical and clinical evaluation and

optimization of photothermal therapy.

Introduction

Nanoparticle-assisted photothermal therapy is a technique that exploits the strong light-to-heat

conversion of plasmonic nanoparticles when irradiated with resonant light[1–3]. The therapy is

particularly well-suited for cancer because tumors in general are known to have leaky vascula-

ture that enables nano-sized drugs and particles to passively accumulate in the tumor tissue

when injected into the bloodstream[4–6]. The leaky vasculature is known as the enhanced
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permeability and retention (EPR) effect and is a consequence of the chaotic vascular growth

during tumor angiogenesis. The photo-induced heating of the nanoparticles is strictly local and

can be triggered by an external light source minimizing adverse effects on surrounding healthy

tissue[7]. Furthermore, using near-infrared (NIR) light as nanoparticle-excitation source

reduces unspecific tissue heating due to the high tissue transparency in this window[8,9].

Since the first implementation of nanoparticle-assisted photothermal therapy[10], researchers

have put much effort into developing novel NIR resonant nanoparticles that provide good heat

generation as well as accumulate efficiently in tumors[1,2,11–13]. One of the most promising can-

didates is silica-gold nanoshells (NS), a class of NIR absorbing nanoparticles that consist of a silica

core surrounded by a thin gold shell. It has been shown extensively in literature that NS accumulate

passively in tumor tissue, as well as have the ability to generate sufficient heat upon NIR irradiation

to inflict severe tumor damage in mice[1,10,14–16]. This combined with the biocompatibility and

inertness of gold, has resulted in their inclusion in FDA approved early clinical trials for photother-

mal treatment of head and neck tumors (NCT00848042)[17], prostate tumors (NCT02680535)

[18], as well as primary and metastatic lung tumors (NCT01679470)[19]. Furthermore, the latest

clinical safety profiles are promising showing no indication of toxicity[20,21]. In fact, despite the

wide range of heat-generating nanoparticles presented in literature, to our knowledge, NS are the

only nanoparticle for photothermal therapy that has progressed to clinical trials.

Although the photothermal performance and tumor uptake of the nanoparticles play a

huge role in the overall treatment efficiency, and rightfully should receive much attention, little

focus has been put on optimizing the treatment protocol for the best therapeutic outcome in a

pre-clinical setup[13]. Treatment response evaluation has commonly been based on monitor-

ing morphological tumor changes that is a slow and late-occurring event, or on optical imag-

ing of bioluminescent cancer cells that is clinically irrelevant. Alternatively, medical imaging

techniques such as positron emission tomography (PET) and magnetic resonance imaging

(MRI) that can reveal functional changes in the tumor shortly after therapy hold great promise,

as they improve the ability to predict outcome and modify the forward going therapy at an

early stage. Furthermore, these imaging techniques can also be used to visualize and track

nanoparticles in real-time, provided they are labeled with radioisotopes or MR contrast agents,

that give valuable information about their path and fate after injection[12,22–26].

In relation to photothermal therapy, PET imaging has mostly been used for real-time tracking

of radiolabeled nanoparticles but there also exist a few pre-clinical studies where the tracer 2-

deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) has been applied to quantify treatment effect after

photothermal therapy[2,12,27]. 18F-FDG is a radioisotope labeled glucose analogue that is taken

up by the cell via the same pathway as glucose but becomes trapped intracellularly, as once phos-

phorylated it cannot be further metabolized. Thus, 18F-FDG is a marker for metabolic activity and

it has been widely used as a PET tracer in clinic for diagnosing and staging cancer[28]. Recently

we showed, using small animal PET imaging, that a reduced uptake of 18F-FDG could be detected

as early as an hour after laser irradiation in human tumor xenografts in mice administered with

NS by intratumoral injection[7]. Although these and previous results show promising applicability

of 18F-FDG PET imaging to visualize and quantify the effect of nanoparticle-assisted photother-

mal therapy, it remains to be investigated whether changes in tumor uptake of 18F-FDG can be

used as a prognostic marker of treatment outcome. Hence, this was the objective of our study.

Materials and methods

Nanoparticles

The NS were commercially obtained from NanoComposix, USA. The supplier reported using

transmission electron microscopy (TEM) that the silica core of the NS was 119.7 nm ± 8.9 nm

18-F-FDG PET imaging for evaluation of photothermal therapy
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and that the total diameter of the complex was 151.3 nm ± 7.7 nm. The NS were functionalized

with 5 kDa poly(ethylene glycol) with a zeta-potential of -27.3 mV; also reported by the supplier.

The absorbance spectrum of the NS was measured in a aqueous solution using a Cary5000

UV-Vis-NIR spectrophotometer (Agilent Technologies) and the TEM image acquired using

CM100 TEM (Phillips).

Animal model

All animal experiments were conducted in accordance with an approval from the Animal

Research Committee of the Danish Ministry of Justice (2012-15-2934-00064). Human neuro-

endocrine lung carcinoid cell line H727 (ECCAC, Salisbury, UK) were cultured in RPMI 1640

+ GlutaMAX medium supplemented with 10% fetal calf serum and 1% penicillin-streptomycin

(all Thermo Fisher Scientific) at 37˚C and in 5% CO2. Cells were harvested by trypsinization at

80% - 90% confluence and resuspended in a 1:1 mixture of growth media and Matrigel (BD-

Biosciences). Subcutaneous tumor xenografts were established in the left flank of 6 weeks old

female NMRI nude mice (Taconic) by inoculation of ~ 106 H727 cells dissolved in 100 μl mix-

ture. The health of the animals was monitored every day and the tumor dimensions were mea-

sured with a caliper three times weekly. The volume was calculated as: volume = ½(length x

width2). Animals had access to water and chow ad libitum at all times during the experiments

(except for before PET scans where they were fasted overnight). When reaching the humane

endpoints, the animals were euthanized by cervical dislocation.

Biodistribution (ICP-MS)

Four animals with an average tumor volume of 103.5 ± 8.1 mm3 were injected intravenously

with NS (280 μL of 5.0 x 1010 NS mL-1) (NanoComposix, USA) via the tail vein. 24 hours after

injection the mice were sacrificed and blood, liver, spleen, kidney, lung, muscle and tumor

were resected and stored at -80˚C until being processed. To measure gold concentration in

whole blood, blood (25 μl) was digested for 1 h at 65˚C in HNO3 (150 μl), HCl (20 μl) and

H2O2 (100 μl). MQ water (5 ml) was added to each tube. Tubes were weighed before and after

addition of blood and digestive acids and water to accurately calculate dilutions. The digested

blood solution was further diluted in HCl (2%) and subjected to ICP-MS measurements

(ICAPq, Thermo Scientific, Hvidovre, Denmark) using 197Au as standard and 193Ir as internal

standard (Sigma Aldrich, Brøndby, Denmark). Biodistribution of gold was assayed similarly to

the blood. Here, tissue (50–100 mg) was dissected and weighed before being digested over

night at 65˚C in HNO3 (500 μl), HCl (50 μl) and H2O2 (300 μl). MQ water (10 ml) was added

and after weighing, the samples were further diluted in HCl (2%) before ICP-MS measure-

ments. The main instrumental operating conditions were as follows: RF power 1550 W and

nebulizer gas flow 1,03 L min-1.

Photothermal therapy

4–5 weeks after inoculation, animals were matched into three treatment groups based on

tumor size: one receiving nanoshells and laser irradiation (NS group, 182 ± 51 mm3, n = 9), a

control group receiving saline and laser irradiation (saline group, 163 ± 49 mm3, n = 9), and a

control group receiving nanoparticles but no laser irradiation (sham group, 190 ± 53 mm3,

n = 5). During all treatment procedures, the animals were anesthetized by breathing sevoflur-

ane and their temperature was kept stable with a heating lamp or heating pad. The animals

were injected intravenously with either 5.8 x 1010 NS mL-1 (240 μl) or saline (240 μl) via the tail

vein. Approximately 24 hours after injection the animals were placed on a laser treatment plat-

form and the tumors were irradiated with an 807 nm diode laser for 5 minutes using a laser

18-F-FDG PET imaging for evaluation of photothermal therapy
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intensity of 1.8 W cm-2 (beam diameter ~ 1 cm). Two animals injected with NS were eutha-

nized immediately after laser irradiation because of burn blisters on the tumor and distress.

However, they were still included in the thermographic assessment. After the treatment, the

change in tumor volume (= ½(length x width2)) was followed by caliper measurements three

times weekly with the humane endpoint defined as a tumor volume� 1,000 mm3.

PET/CT imaging

Animals were 18F-FDG PET/CT scanned immediately before they were injected with either

NS or saline the day before treatment (baseline), and at day 1 after therapy. 18F-FDG was

obtained from the daily productions for clinical use at Department of Nuclear Medicine &

PET, Rigshospitalet, Denmark. Before each 18F-FDG PET/CT scan, the animals were fasted

overnight and were anesthetized by breathing sevoflurane in the time from 18F-FDG injection

and until after the PET/CT scan was completed. The animals were injected with 18F-FDG one

hour prior to the PET scan (9.44 ± 0.99 MBq on baseline and 9.06 ± 0.91 MBq on Day 1;

mean ± SD). The body temperature was kept stable using a heating lamp or heating pad. Static

PET images were acquired 60–70 min post injection with an energy window of 350–650 KeV

and a time resolution of 6 ns and CT scans were acquired using 360 projections, 65 kV, 500 μA

and 400 ms (Preclinical PET/CT Inveon, Siemens). Acquired PET datasets were reconstructed

using a 3-dimensional ordered subset expectation maximization (OSEM-3D) with maximum

a posteriori (MAP) algorithm and CT-based attenuation correction (no. of subsets = 16, no. of

OSEM-3D iterations = 2, no. of MAP iterations = 18, beta value = 0.053). Images had a voxel

size of 0.4 x 0.4 x 0.8 mm3 and a resolution of approximately 1.2 mm at the center field of view.

PET and CT images were co-registered and analyzed with Inveon Research Workstation soft-

ware (Siemens PreClinical Solutions). Regions of interests (ROIs) were manually drawn on

whole tumor regions from which the 18F-FDG uptake was quantified as mean percentage of

injected dose per grams of tissue (%ID/g).

Thermographic temperature measurements

During laser irradiation, the temperature at the surface of the tumor area was recorded using

real-time thermographic imaging (FLIR T-440 camera) every 30 s. The images were analyzed

using FLIR tools software to extract the maximum temperature on the tumor surface. All ani-

mals subjected to thermographic imaging in the study (both from treatment evaluation study

and immunohistochemistry/autoradiography study) are included.

Autoradiography and immunohistochemistry

Animals were treated with NS (n = 2) or saline (n = 2) and irradiation according to the above

described treatment protocol. One day after, they were injected with 18F-FDG (~ 10 MBq) via

the tail vein while being anesthetized by breathing sevoflurane. One hour after injection, the

animals were euthanized and the tumors resected. The NS treated tumors were, however, too

porous to separate completely from the skin. Tumors were immediately frozen by immersion

in isopentane and embedded in tissue-tek. When it had solidified, the tumors were sectioned

into ~9 μm slices. The sections were exposed on phosphorous films and imaged on a Cyclone

plus imaging system (model C431200, Perkin Elmer) for visualization of the 18F-FDG intratu-

moral distribution. Thereafter the sections were dried overnight at room temperature and

transferred to -80˚C for further immunohistochemical analysis.

For immunohistochemistry, frozen tissue sections were equilibrated to room temperature

for 30 minutes. Complete removal of tissue-tek was achieved by immersing the slides first in

acetone at 4˚C and then in HistoClear solution. Sections were then rehydrated through a series

18-F-FDG PET imaging for evaluation of photothermal therapy
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of ethanol solutions. Heat-induced epitope retrieval (HIER) was performed by submerging the

slides in citrate buffer (20mM) at pH 6 and steaming at 100˚C for 15 minutes in a microwave.

Once equilibrated to room temperature and rinsed in running water, sections were immersed in

K-PBS+tween20 for 5 minutes. Slides were kept in PBS until staining. The immunohistochemis-

try procedure was performed in a humidified chamber. Tissue sections were blocked first with

peroxidase blocking solution for 10 minutes and then with BSA (2%) for 20 minutes. Primary

antibody, anti-CD68 (1:200, #ab125212; Abcam), was diluted in BSA (2%) and incubated for 1

hour. The slides were then incubated with HRP-labelled polymer conjugated to secondary anti-

body (EnVision + System-HRP Labelled Polymer) anti-rabbit for 40 minutes. Slides were subse-

quently incubated with DAB (Liquid DAB+ Substrate System™, Dako; K3468) for 5 minutes at

room temperature, then rinsed in PBS and later in running water for 5 minutes. Finally, the sec-

tions were counterstained with hematoxylin, dehydrated and mounted using the Coverslipper.

Additionally, H&E staining was performed in some slides to allow observation of necrosis in the

tissue. For this purpose, sections free of tissue-tek and rehydrated were stained with hematoxylin

for 3 minutes, rinsed in tap water for 5 minutes and finally stained with eosin for 1 minute.

Statistical analysis

The temperature elevation measured on the surface of the tumor with FLIR camera was com-

pared with one-way ANOVA with Tukeys post-hoc test. Survival was based on tumor volumes

� 1,000 mm3 (humane endpoint), and curves were analyzed using Log-rank Mantel-Cox test.

The mean 18F-FDG uptake ratios were compared with one-way ANOVA with Tukeys post–hoc

test. Statistical analyses were performed using GraphPad Prism 6.

Results

Biodistribution of NS

As NS have been approved for clinical trials, image-based evaluation of their performance is

highly relevant and hence they were chosen as the photothermal agent for this study. They

exhibit maximum photo-absorption properties around 800 nm (see absorbance spectrum in Fig

1A) which is achieved by having a nanoparticle construct with a silica core of 120 nm in diameter

surrounded by a 15 nm thick gold shell (see illustration and TEM image of NS in Fig 1A). We

also recently published a study where the photothermal capabilities of these NS were character-

ized using both single particle and bulk assays[7]. The nanoparticles were functionalized with

5kDa poly(ethylene glycol) (PEG) to passivate the nanoparticle surface and prolong circulation

time in the bloodstream. To confirm that the NS accumulate in H727 tumor xenografts in mice

upon intravenous injection we first evaluated their biodistribution at the time point correspond-

ing to laser treatment initiation. 24 hours after NS were injected intravenously via the tail vein,

four animals were euthanized and the Au content in the blood, tumor, and different other tissues

was measured using inductively-coupled-plasma mass spectroscopy (ICP-MS), see Fig 1B.

The uptake in the liver and spleen was substantially higher than in any other tissue which is

in line with what is commonly reported in literature for nanoparticles in the size range of

>100 nm[20,29]. Also, the blood showed a very low Au content suggesting that most NS were

cleared 24 hours after injection. The number of NS in each tissue can be estimated from the

measured Au content by considering that a NS of the above mentioned dimensions contains

1.66 x 10−8 μg Au. Based on the result shown in Fig 1C, the percentage of injected dose per

gram tissue (%ID/g) was found to be 2.24 ± 0.8%ID/g (mean ± S.D.) in the tumor, which is

consistent with values reported in literature for NS of similar size[1]. Lung and muscle, which

should not take up nanoparticles from the blood stream, show accordingly relatively low Au

content.

18-F-FDG PET imaging for evaluation of photothermal therapy
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Photothermal treatment of tumors using NS

For photothermal therapy, H727 tumor xenografts were established in the left flank of female

NMRI nude mice. The tumors were allowed to grow for 4–5 weeks, at which point they had

reached a volume of ~ 100–300 mm3, and were matched into 3 treatment groups: one receiv-

ing NS and laser irradiation (NS group; n = 9), a control group receiving saline and laser irra-

diation (saline group, n = 9), and a control group receiving NS but no laser irradiation (sham

group, n = 5). The animals were injected intravenously with 240 μl of either 5.8 x 1010 NS mL-1

or saline via the tail vein. Approximately 24 hours after injection the animals were placed on a

laser treatment platform and the tumors were irradiated with an 807 nm diode laser for 5 min-

utes using a laser intensity of 1.8 W cm-2. During laser irradiation, the temperature at the sur-

face of the tumor area was measured using thermographic imaging.

Fig 2A and 2B show the temperature development in the tumors during the course of

laser irradiation for the three different groups. After 5 min laser irradiation, the temperature

at the tumor surface on average reached 49.2 ± 1.0˚C (mean ± S.E.M.) in the NS group. In

comparison, the average tumor temperatures reached 44.5 ± 0.5˚C in the saline group and

33 ± 0.6˚C in the sham group. Although the NS group experienced a significant larger tem-

perature elevation (p� 0.0001), it is clear that the laser light in itself was also unspecifically

absorbed in the tissue as the temperature increased by ΔT ~10˚C in the saline group over

the course of irradiation.

Fig 1. Photo-absorption properties and biodistribution of 150 nm NS. (a) Absorbance spectrum of NS

measured in water using UV-vis spectrophotometry (insert: TEM image and illustration of a NS). The dotted

line represents the wavelength of the NIR excitation laser (807 nm). (b) The mean Au content measured using

ICP-MS in different tissues and (c) the corresponding number of NS measured 24 hours after intravenous

injection. The biodistribution data is plotted on a log-scale to better resolve the Au content in tissues with very

low uptake. Data shown is the mean ± S.E.M., n = 4.

https://doi.org/10.1371/journal.pone.0177997.g001
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After therapy, the change in tumor volume (= ½(length x width2)) was followed by caliper

measurements until the tumor volume exceeded 1,000 mm3 where the animals were eutha-

nized (see Fig 2C; each growth curve is shown until n = 3). In the NS group, the tumor growth

was overall inhibited compared to the other two groups, although the treatment response

within the group was found to be heterogeneous. In Fig 2D the survival curves of the groups

were compared and were found significantly different (p< 0.01) with median survivals of 17

days for Sham, 22 days for Saline and 27 days for NS. The inhibited growth and improved sur-

vival of the saline group compared to the sham group suggest that the unspecific tissue heating

observed contributes to the treatment effect.

18F-FDG PET imaging for early treatment response evaluation

The animals were scanned with 18F-FDG PET/CT the day before (baseline) and at the day

after treatment (day 1). Fig 3A shows representative transverse and coronal PET/CT images of

Fig 2. Evaluation of photothermal treatment. (a) Representative thermographic images showing the temperature at the surface of the

tumor during 5 min treatment of animals from each group. (b) Mean temperature at the tumor surface as a function of time for all animals

included in the study, i.e., PET and survival evaluation, immunohistochemistry, and autoradiography. (c-d) The tumors that were treated with

NS and laser showed a delayed growth and improved survival compared to the saline and sham groups. In (b-d) data shown in blue circles/

lines; n = 9 represents the NS group, data shown in black squares/lines; n = 9 represents the saline group, and data shown in grey triangles/

lines; n = 5 represents the sham group. Data shown is mean ± S.E.M. Each growth curve in (c) is shown until n = 3.

https://doi.org/10.1371/journal.pone.0177997.g002
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the 18F-FDG uptake in all three groups at baseline and at day 1. By visual inspection it is clearly

seen that the 18F-FDG uptake in the NS-treated tumors was markedly reduced at day 1 com-

pared to baseline. For analysis, PET and CT images were co-registered and regions of interests

(ROIs) were manually drawn on whole tumor regions. The 18F-FDG uptake in tumor was

quantified as mean %ID/g and was found to be high and comparable between groups in the

baseline scans (NS group: 3.9 ± 0.1%ID/g (mean ± S.E.M.), saline group: 3.6 ± 0.2%ID/g, and

sham group: 3.6 ± 0.1%ID/g). The treatment response was evaluated by the reduction in
18F-FDG uptake after treatment. This was calculated as the ratio between the mean 18F-FDG

uptake at day 1 and at baseline, denoted %FDG. Fig 3B shows that %FDG was significantly

reduced in the NS group (= 84 ± 3%; mean ± S.E.M.) compared to the saline (= 108 ± 7%; p<
0.01) and sham (= 110 ± 5%; p< 0.05) groups.

We also plotted %FDG for each individual animal within each group, see Fig 3C. It is clearly

seen that all animals in the NS group had reduced tumor metabolism at day 1 after treatment,

although falling into two groups around ~90% and ~75% of their baseline value. In the saline

group, two animals had a reduced tumor uptake of 18F-FDG at day 1 after treatment, probably

caused by unspecific tissue heating. The rest of the animals in the saline group and all animals

in the sham group had a similar or increased tumor uptake of 18F-FDG at day 1 after treat-

ment. Moreover, to confirm the relationship between treatment-mediated tumor damage and

reduced tracer uptake, we used autoradiography to compare the intratumoral distribution of
18F-FDG to hematoxylin and eosin (H&E) histological staining. Fig 4 shows autoradiography

images of tissue sections of a NS and saline treated tumor, respectively. Compared to the saline

Fig 3. PET-based treatment evaluation. (a) Representative 18F-FDG-PET/CT images showing an animal from each group at baseline and day 1.

Tumors are marked by white arrows. The 18F-FDG uptake is markedly reduced at day 1 compared to baseline for the NS treated animal. (b) The

mean 18F-FDG uptake at day 1 relative to baseline for all three groups. * denotes p value < 0.05, ** denotes p value < 0.01 and data represents

mean ± S.E.M. (c) The individual 18F-FDG uptake at day 1 relative to baseline for the NS group (blue; n = 9), saline group (black; n = 9), and sham

group (grey; n = 5).

https://doi.org/10.1371/journal.pone.0177997.g003
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treated tumor, a large region with very low 18F-FDG uptake was observed in the NS treated

tumor. The corresponding H&E stainings are shown for the same tumors providing clear evi-

dence that the regions with reduced 18F-FDG uptake had a high degree of tissue necrosis as

well. Interestingly, we also observed a high 18F-FDG uptake in the skin of the NS treated

tumor (outside the dashed line in Fig 4). This we speculate could be a consequence of biologi-

cal processes related to wound healing and edema. In the tumor from the saline treated animal,

reduced 18F-FDG uptake was only observed in a smaller central necrotic region, a common

phenomenon in the H727 tumor model.

Also, to investigate the degree of treatment-induced inflammation that potentially can

cause variation in 18F-FDG tumor uptake, we performed immunohistochemical staining for

macrophage marker CD68 (see Fig 4). Overall, a higher level of macrophage infiltration was

observed in the NS treated tumors compared to saline treated tumors, indicating that a NS-

assisted photothermal treatment likely can induce an inflammatory response.

Finally, to see if the change in 18F-FDG uptake could be used to stratify the animals into

groups representing responders and non-responders, all animals were divided into two groups

representing: tumors with a reduction in %FDG and tumors with unchanged or increased %

FDG after treatment. Fig 5 shows that stratification significantly differentiated survival

between the two groups (p< 0.01) with median survival of 18.5 days for animals with %

FDG� 100% and 27 days for animals with %FDG < 100%.

Discussion

Since the first use of nanoparticle-assisted photothermal therapy, it has been established with a

wide range of heat-generating nanoparticles that the treatment can effectively damage or elimi-

nate tumors in animals. It is also well-known that the therapeutic outcome of photothermal

therapy is a combination of many elements.

Fig 4. Autoradiography, H&E histological and immunohistochemical staining of a NS and saline treated tumor. Autoradiography of the
18F-FDG distribution in a NS and saline treated tumor. The dashed line marks the border between tumor and skin tissue. The NS treated tumor had

a lower uptake of 18F-FDG than the saline treated tumor. From H&E staining of sections from the same tumors, the tissue in the NS treated tumor

was found to be highly porous and necrotic whereas the saline treated tumor had a core with central necrosis but otherwise the tissue appeared

normal. Finally, immunohistochemical staining with macrophage marker CD68 showed an increased level of macrophage infiltration in the NS

treated tumor compared to the saline treated tumor.

https://doi.org/10.1371/journal.pone.0177997.g004
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First of all the treatment requires sufficient laser intensity in the tumor combined with

nanoparticles capable of absorbing the light and efficiently convert this energy to reach

hyperthermal temperatures. In literature temperatures of> 65˚C are commonly reported for

nanoparticle-assisted photothermal therapy but recently it was shown using MRI that a tem-

perature of ~50˚C is sufficient to inflict impaired tumor growth and that the effect can be

enhanced by longer exposure times[11]. In our study it was evident that the NIR laser (oper-

ated with a typical dose compared to literature) in itself induced temperatures of ~45˚C corre-

sponding to a temperature elevation of ΔT ~10˚C. Although this increase is on the same level

as what is commonly reported in laser-treated control animals in literature [1,10,30,31], this

temperature regime is well above physiological temperatures and can cause temporary or even

irreversible cellular damage. Even though the NIR window represents a spectral region with

high biological transparency, water molecules and chromophores such as hemoglobin and

skin pigment melanin, that are abundantly present in the path of the externally applied laser,

still have non-trivial absorption. Hence, to avoid burns and unintended tissue damage that

cause pain and discomfort to the patient, the laser dose should be optimized, e.g. its intensity

and duration, such that the therapy provides effective nanoparticle-mediated focal ablation

while minimizing absorption in surrounding healthy tissue[31].

A second element known to affect the therapeutic outcome is nanoparticle accumulation in

the tumor upon intravenous administration, which is the most relevant delivery route of nano-

medicine in cancer therapy. Tumor uptake is also influenced by several factors, amongst these

are the nanoparticle dimension and surface functionalization that determine how well the

nanoparticles extravasate and circulate, respectively[29]. Many researchers with expertise in

design and synthesis are working towards developing nanoparticles that experience high light-

to-heat conversion at sub-100 nm dimensions, and with coatings that prevent early clearance

from the blood[1,2]. Furthermore, researchers have developed radiolabeled or MR active

Fig 5. Stratification of animals based on their %FDG value. Animals with a %FDG lower than 100%

(n = 11) had a significant (p value < 0.01) improved survival compared to animals with a %FDG equal to or

above 100% (n = 12).

https://doi.org/10.1371/journal.pone.0177997.g005
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theranostic nanoparticles that can be tracked real-time allowing the laser treatment to be tem-

porally optimized based on the pharmacokinetic biodistribution[12,23–26]. A much debated

question in literature is whether active targeting can be used to optimize nanoparticle accumu-

lation in tumors in vivo. Although many studies show that targeting increases the intracellular

uptake of nanoparticles in tumor cells, unfortunately little effect is seen on the overall tumor

accumulation[32–34]. Beyond the physical and pharmacokinetic properties of the nanoparti-

cles, the EPR effect can also vary a lot between tumor type which even further complicates a

general optimization of nanoparticle design[35].

In this study we observed a fairly large variance in generated temperatures and a relative

heterogeneous response (assessed by PET imaging and survival). In addition, the tumor

growth in the treated animals was only partially inhibited and no animals had complete tumor

removal. Intravenously delivered nanoparticles are often found to accumulate mostly in the

periphery of the tumor and little in the center[11,27,36]. This is probably caused by high inter-

stitial pressure and poor perfusion in the tumor core that impede nanoparticle diffusion far

into the tumor microenvironment[37]. Combined with variation in NS uptake in tumors, this

can easily be the source of non-uniform heat generation that can leave some parts of the tumor

untreated and increase the risk of recurrence. Furthermore, in literature the treatment out-

come has been shown to be highly dependent on the size of the tumor when treatment was

initiated. For instance, in a study using ~1000 mm3 tumors only inhibited growth could be

induced[30] whereas studies using tumors of sizes< 100 mm3 report complete resorption

[14,16]. Based on this, photothermal therapy clearly has a higher efficacy in small tumors, how-

ever, the larger tumors are clinically more relevant. One way to improve the efficiency of treat-

ment could be to raise the overall intratumoral temperature well above the threshold of

irreversible damage, by, e.g., increasing the irradiation dose. As discussed above, this would

also imply increasing damage to surrounding healthy tissue and thereby challenges photother-

mal treatment as a specific therapy with minimal adverse effects.

In the context of the discussed issues, there is a need for methods for early evaluation of

treatment response. In this study, we found that 18F-FDG PET imaging was able to stratify

responders from non-responders even though the treatment response in fact was heteroge-

neous and to some degree modest. Hence, we believe that PET imaging can provide valuable

information for treatment evaluation and optimization. Finally, since 18F-FDG is not taken up

by non-viable cells, one might have expected a larger reduction in uptake in NS treated tumors,

considering the rather large volumes with severe tissue damage. Apart from specific uptake of
18F-FDG, the tracer also accumulates in inflammatory tissue and therefore treatment induced

inflammation could contribute to the signal as well. There could be other PET tracers that are

more sensitive to the response of photothermal therapy, however, the availability and clinical

relevance of 18F-FDG, makes it a very strong candidate for future translational applications.

Conclusion

In this study we showed that 18F-FDG PET could be used as a prognostic marker for the thera-

peutic outcome of nanoparticle-assisted photothermal therapy in human tumor xenografts in

mice. Using histological staining and autoradiography, we confirmed that tumor areas with

reduced 18F-FDG uptake coincided with regions of high cellular damage and necrosis. Further-

more, based on the reduced 18F-FDG uptake in tumors one day after treatment, we stratified all

animals into two groups representing responders and non-responders, where the responders

had significant prolonged survival. Early noninvasive imaging of treatment response using PET

is a valuable tool in preclinical and clinical evaluation and optimization of cancer therapies.

Based on the results of this study, we suggest that PET can also be used for guiding treatment
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planning of photothermal therapy and for early identification of non-responders for which the

strategy should be changed.
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