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Abstract

The genetic material of all organisms is susceptible to modification. In some instances, these 

changes are programmed, such as the formation of DNA double strand breaks during meiotic 

recombination to generate gamete variety or class switch recombination to create antibody 

diversity. However, in most cases, genomic damage is potentially harmful to the health of the 

organism, contributing to disease and aging by promoting deleterious cellular outcomes. A 

proportion of DNA modifications are caused by exogenous agents, both physical (namely 

ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, 

platinum compounds and psoralens), which can produce numerous forms of DNA damage, 

including a range of “simple” and helix-distorting base lesions, abasic sites, crosslinks and various 

types of phosphodiester strand breaks. More significant in terms of frequency are endogenous 

mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, 

attack by reactive oxygen species and other byproducts of normal cellular metabolism, or 

incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both 

exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, 

either produced directly or generated as intermediates of DNA repair. This review will focus upon 

the creation, consequences and resolution of single strand breaks, with a particular focus on two 

major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair 

cross-complementing protein 1 (XRCC1).
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The Endogenous DNA Damage Challenge

Since DNA is a chemical existing in an aqueous environment, it can undergo spontaneous 

hydrolysis, leading to the formation of abasic (or apurinic/apyrimidinic, AP) sites or 

inappropriate base entities [1]. It has been estimated that purines are lost at a rate of roughly 

10,000 per human genome per day. AP sites, which are non-coding since they lack the 

instructional information provided by the base, have been shown to be potent blocks to 

replicating DNA polymerases and transcribing RNA polymerases, indicating that they can 

promote genomic instability or the activation of cell death responses. Moreover, spontaneous 

deamination of cytosine or 5-methylcytosine can result in uracil (U:G) or thymine (T:G) 

being present inappropriately in DNA. Based on the numerous deep-sequencing efforts in 

recent years, it has become clear that uracil and thymine arising via deamination are major 

driving forces behind the mutagenic events associated with the process of carcinogenesis [2].

In addition to spontaneous hydrolytic decay, endogenously generated intracellular 

metabolites are an important source of DNA modification [3]. For example, activity of the 

methyl group donor S-adenosylmethionine (SAM) generates ~4000 7-methylguanine 

residues per day in mammalian cells [4]. Although 7-methylguanine does not alter the 

coding specificity of the base and appears to be generally innocuous, it is at risk of 

converting to an AP site via glycosyl bond destabilization or conversion to a replication-

blocking ring-opened derivative, 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine 

(mFaPy-G) [5]. Other base damages generated by SAM, such as 3-methyladenine, 3-

methylthymine and 3-methylcytosine, are also potent blocks of DNA replication. Mutagenic 

O-alkylated adducts (such as O6-methylguanine, O4-methylthymine and O4-ethylthymine), 
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which can cause GC→AT and TA→CG transitions during replication, are generated by N-

nitroso compounds of both exogenous (nitrite/nitrate-containing food, cigarette smoke) and 

endogenous sources.

The intracellular generation of reactive oxygen species (ROS), such as superoxide anion 

radicals (O2
•−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), represents an 

additional, significant source of endogenous DNA damage. During mitochondrial oxidative 

phosphorylation, side reactions between the electron transport chain and molecular oxygen 

produce superoxide at a rate of 1-2% of the total oxygen consumption per day [6, 7]. To 

limit superoxide toxicity, superoxide dismutase (SOD) dismutates O2
•− to H2O2. Another 

source of H2O2 is monoamine oxidase activity at the mitochondrial outer membrane, which 

is required for oxidative deamination of biogenic amines. The activities of catalase or 

glutathione peroxidase function as a detoxification mechanism by reducing H2O2 to water +/

− oxygen. Spontaneous reduction of H2O2 catalyzed by Fe2+ (Fenton reaction) can also 

occur, yielding the highly reactive •OH, which can modify all cellular macromolecules, and 

DNA-bound Fe2+ is thought to be a major driver of oxidatively damaged DNA [8].

Numerous DNA backbone and base modifications generated by •OH (and other free radical) 

attack have been identified (reviewed in [9, 10]). Depending on the site of hydrogen 

abstraction from the 2-deoxyribose phosphate backbone by •OH, an oxidized abasic site, 2-

deoxyribonolactone, or a single-strand break (SSB) harboring a 3′-phosphate or -

phosphoglycolate can be generated [11]. •OH attack at the pi bonds of DNA bases, by •OH 

addition or hydrogen atom abstraction, generates a variety of base lesions. For example, the 

common base damage product 5,6-dihydroxy-5,6-dihydrothymine (thymine glycol) is 

generated when hydroxyl radical addition to the C5-position of thymine reacts with 

molecular oxygen to form a peroxyl radical that subsequently undergoes thiol-mediated 

reduction. Also common is hydroxyl addition to the C8-position of guanine, which can 

further undergo reduction to a ring-opened FaPy-G or oxidation to 8-oxo-7,8-

dihydroguanine (8-oxo-G), a mutagenic base lesion often used as a marker of oxidative 

stress. Common forms of endogenous DNA damage and their consequences are summarized 

in Table 1 [4, 12-20].

Genomic damage may also be a consequence of necessary or failed enzymatic reactions. As 

will be discussed in greater detail later, a DNA SSB is an obligate intermediate of apurinic/

apyrimidinic endonuclease 1 (APE1) activity during base excision repair (BER) of damaged 

bases [21]. Similarly, strand incision by RNase H2 is a critical step in the ribonucleotide 

excision repair (RER) pathway that resolves erroneous ribonucleotide incorporation into 

DNA [22]. DNA topoisomerase 1 (TOP1) creates a transient nicked DNA intermediate 

(‘cleavage complex’) to relax supercoiled DNA during transcription or replication. 

Nucleophilic attack from a tyrosine residue within the catalytic active site of TOP1 mediates 

a transesterification reaction that breaks the DNA phosphodiester bond, while forming a 

covalent enzyme-DNA intermediate. Religation occurs by reversal of this reaction, utilizing 

the DNA 5′-OH end as the leaving group [23]. Proximity of TOP1 cleavage complexes to 

transcription machinery, replication forks, or various DNA lesions (including strand breaks, 

abasic sites, and oxidized bases) can displace the cleaved 5′-OH, irreversibly preventing 

religation and leaving behind a covalent protein-DNA strand break intermediate [24]. 
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Finally, members of the APOBEC (apolipoprotein B mRNA-editing enzyme, catalytic 

polypeptide) family, which play a role in innate immunity via cytidine deamination in 

DNA/RNA viruses, have recently been demonstrated to deaminate cytosine and 5-

methylcytosine in genomic DNA, potentially resulting in GC→AT transitions upon cell 

division at a rate of 4-6 per 1000 base pairs [25].

The Consequences of Persistent DNA Damage

Persistent, unrepaired DNA modifications are associated with a variety of cellular 

consequences. Replication is a particularly important mechanism by which a cell detects 

DNA damage [26]. On encountering a lesion, DNA polymerase progression can become 

stalled, resulting in an accumulation of exposed single-stranded DNA (ssDNA). This ssDNA 

becomes coated with the ssDNA binding protein replication protein A (RPA), which recruits 

and activates the ATR/CHK1 replication checkpoint [27]. Checkpoint activation promotes 

damage repair or bypass, maintains the stalled replisome, and suppresses firing of later 

origins until the blocking lesion is resolved.

One response to a stalled replication fork is a damage tolerance mechanism known as 

translesion synthesis (TLS), wherein the replicative polymerase is replaced with a 

specialized polymerase that is capable of replicating past the obstructive lesion. Compared 

to replicative polymerases, TLS polymerases exhibit low fidelity and are generally error-

prone, representing a significant source of mutagenesis. However, the precise consequences 

of TLS are dependent upon the DNA lesion and polymerase choice; for example, POLζ can 

bypass and extend a variety of lesions (particularly bulky adducts or base distortions) with a 

high rate of mispairing and subsequent mutation, whereas POLη primarily inserts two 

adenines opposite UV-induced thymine dimers with an error-free result (reviewed in Lange 

[28] and Sale [29]). Whatever the replicative outcome, TLS is designed to permit bypass of 

the damage and restoration of normal chromosome duplication.

Alternatively, replisome stalling can persist, resulting in strand breakage, possibly due to 

topoisomerase cleavage [30, 31], and activation of the double strand break (DSB) repair 

(DSBR) endonuclease Artemis [32], or replication fork collapse following exhaustion of the 

RPA pool [33]. When the damage lesion is an SSB, fork collapse and one-ended DSB 

formation may occur directly upon interaction with the replisome [17, 34]. In most situations 

of persistent replicative polymerase arrest and failed resolution, the cell resorts to 

chromosome instability mechanisms (typically recombination) to permit survival or activates 

cell death outcomes. In addition, certain lesions (particularly crosslinks or bulky adducts) 

can stall RNA polymerase, blocking transcription. Prolonged transcriptional stress results in 

RPA- and ATR-mediated checkpoint activation, strand breakage, and cell death if 

transcription-coupled repair fails to remove the damage lesion [35, 36].

The Base Excision Repair Pathway

In light of the deleterious consequences of persistent, unrepaired DNA damage, organisms 

have developed a set of responses to: (i) remove lesions and restore the genome integrity to 

preserve normal functionality; (ii) “ignore” (TLS bypass) DNA modifications to permit 
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survival at the cost of increased genomic instability; (iii) halt cell cycle progression to 

provide time for adequate clearance of DNA lesions; or (iv) induce permanent cellular arrest 

(senescence) or execution (apoptosis) [37]. Of the pathways that fall into category (i) and 

carry out DNA repair, BER is considered the most critical for coping with many of the forms 

of DNA damage covered in the previous section. BER (Figure 1) is typically initiated by a 

DNA glycosylase, which recognizes specific types of base damage and excises them from 

the DNA backbone, leaving behind an AP site [38, 39]. Subsequent cleavage of the 

phosphodiester backbone by an AP site-specific endonuclease, such as APE1 in mammals, 

creates a SSB intermediate with a priming 3′-OH group and an abnormal 5′-deoxyribose 

phosphate (dRP) end [40, 41]. Following APE1 incision at a natural AP site, BER proceeds 

most commonly through removal of the 5′-dRP group and insertion of the missing 

nucleotide by DNA polymerase β (POLβ), in a process termed short-patch or single-

nucleotide BER (Figure 1, left) [42]. The remaining nick would then be sealed by a DNA 

ligase, either DNA ligase 1 (LIG1) or ligase 3 (LIG3) in humans [43, 44].

Besides via the short-patch mechanism above, BER can be executed in an alternative 

procedure, termed long-patch BER (Figure 1, right). In this process, repair synthesis 

involves the incorporation of more than one nucleotide (possibly up to 13) in a strand-

displacement reaction and the formation of a 5′-flap intermediate. The long-patch pathway 

is carried out through the coordinated activities of several replication-associated factors, 

such as replication factor C (RFC), proliferating cell nuclear antigen (PCNA), polymerases ε 
(POLε) and δ (POLδ), flap endonuclease 1 (FEN1), and LIG1 [45, 46]. While the factors 

that determine sub-pathway choice are still being resolved, studies have indicated that the 

initiating glycosylase, the nature of the 5′-terminus (i.e., whether it is a substrate for POLβ 
AP lyase activity), the cell cycle phase or replicative status of the cell, and the intracellular 

concentration of ATP can play a role in dictating the molecular steps of BER.

SSB repair (SSBR) is generally considered a specialized, sub-pathway of BER, since it often 

engages proteins dedicated to BER. As the name implies, SSBR copes with normal and 

abnormal strand breaks that arise either from reactions with DNA-damaging agents 

(endogenous or exogenous) or as intermediates in certain enzymatic events, as detailed 

earlier. In brief, SSBR consists of 1) strand break detection; 2) removal of 5′- or 3′-terminal 

blocking group; 3) gap-filling repair synthesis; and 4) nick-sealing by a DNA ligase [47]. As 

reviewed herein, two proteins key to orchestrating SSBR are poly(ADP-ribose) polymerase 

1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). These factors serve critical 

roles as scaffolds for the assembly of many of the enzymatic components required to process 

abnormal strand break ends and ultimately restore the continuity of the phosphodiester 

backbone.

PARP1

Discovery

In 1963, Chambon et al. described the DNA-dependent synthesis of a polyadenylic acid-like 

compound [48], later identified as an ADP-ribose moiety generated from nicotinamide 

adenine dinucleotide (NAD+) [49]. Nuclear fractions from a variety of eukaryotic cell types 

suggested the presence of a chromatin-bound enzyme capable of covalently linking 
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polymers of poly(ADP-ribose) (PAR) to histones and other nuclear proteins [[50, 51] and 

references therein]. Further studies indicated that this enzymatic activity was stimulated 

most effectively by the presence of duplex DNA containing a SSB or DSB [52]. In vitro 

observations of PARylation at sites of X-ray irradiation, followed by subsequent repair of 

associated DNA damage, established a role for this modification in the strand break repair 

response [53]. Initially named poly(ADP-ribose) synthetase, and now PARP1, the enzyme 

was purified and the encoding gene cloned by several independent groups in 1987 [54-57]. 

An additional sixteen members of the human PARP family have since been discovered, 

although PARP1 appears to be the major nuclear enzyme responsible for total cellular 

PARylation activity (reviewed in [58]). The PARP family has been implicated in performing 

specialized functions during numerous cellular processes, including DNA repair, translation, 

transcription, telomere maintenance, and chromatin remodeling.

Structure & biochemistry

The 23-exon, 43-kb human PARP1 gene is located on chromosome 1q41-42 [56, 59, 60]. 

Two pseudogenes have been identified on chromosomes 13 and 14 [56]. The human 

promoter region, in common with all cloned mammalian PARP1 promoters [61, 62], lacks 

typical regulatory elements, such as TATA or CAAT boxes [63]. A ~40-base-pair region 

surrounding the transcription start site contains a near-consensus initiator element that is 

capable of initiating RNA polymerase II transcription [64, 65]. Regulation of transcription 

has been shown to be mediated through binding sites for Sp1 [66], AP-2 [63], YY1 [67], Ets 

[68], and members of the nuclear factor I (NFI) family [69]. The human PARP1 transcript is 

3042 nucleotides in length, harboring an open reading frame that encodes a 1014 amino acid 

protein of 113 kDa (Figure 2A) [54].

PARP1 catalytic activity involves the transfer of an ADP-ribose subunit from an NAD+ 

molecule onto specific amino acid side chains of acceptor proteins, releasing one 

nicotinamide molecule. Three functional domains are involved in this process: an N-terminal 

DNA binding domain (DBD; residues 1-374); a central automodification domain (AD; 

residues 375-525), which accepts auto-poly(ADP-ribosyl)ation and permits the dimerization 

required for activity; and a highly-conserved ADP-ribosyl transferase catalytic domain 

located at the C-terminus (ART; residues 526-1014) that is required for ADP-ribose polymer 

generation [70].

Two homologous zinc finger motifs within the DBD are capable of recognizing and binding 

to a variety of damaged DNA structures (including SSBs and DSBs, cruciforms, crossovers 

and supercoils [71]) in a sequence-independent manner. Crystal structures of the DNA-

bound zinc fingers indicates that a ‘phosphate backbone grip’ of each zinc finger domain 

binds in the DNA minor groove toward the 3′-end of the DNA strand without contacting the 

strand break terminus (Figure 2B). Concurrently, a base stacking loop contacts the exposed 

terminal base at the 3′-end of the break [72]. Deletion analysis suggests that the second zinc 

finger (ZnF2) is indispensable for strand break recognition [73], whereas the first (ZnF1) 

exhibits weaker DNA binding affinity, but is critical for DNA-dependent PARP1 activation 

[74, 75].
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Subsequent to DNA binding, the enzymatic activity of PARP1 is stimulated 500 times above 

basal level [76, 77]. As part of the process, the ZnF1 base stacking loop undergoes a 

conformational shift that modulates a chain of interdomain interactions to permit 

transmission of the activation signal to the catalytic domain [72]. The first step in this chain 

of interactions is extensive contacts between ZnF1 and a third zinc-binding domain (ZnF3) 

in the DBD, which also has weak affinity for DNA [78]. X-ray crystallography indicates that 

extended loops of ZnF3 contact an 80-90 amino acid tryptophan-, glycine-, arginine-rich 

(WGR) domain distal to the AD. The WGR domain is also in contact with the DNA at the 

major groove, stacking a conserved tryptophan residue onto the terminal 5′-ribose, as well 

as bridging connections between ZnF1 and a PARP regulatory domain (PRD) in the C-

terminal region of the protein [79]. The resultant conformational changes distort the PRD 

and destabilize the catalytic domain, enhancing NAD+ binding within the catalytic fold [80]. 

A glutamate residue within the catalytic domain (Glu988) forms hydrogen bonds to the 

acceptor nucleophile and the nicotinamide ribose of the donor NAD+, polarizing both 

molecules to favor ADP-ribose transfer. Furthermore, internal strain within the bound NAD+ 

is relieved by breaking the N-glycosidic bond, driving the reaction forward [78, 81].

PARP1 is recognized to perform three distinct catalytic reactions. The initiating reaction 

attaches the first ADP-ribose unit to one of a group of acceptor proteins that includes 

histones, DNA repair proteins, transcription factors and chromatin modulators (Figure 2C). 

Most commonly, the initiation reaction targets the γ-carboxyl group of a glutamate residue, 

creating a labile glycosidic bond in keeping with the transient nature of the modification 

[82]. In PARP1 automodification, lysine and aspartate residues within the AD have also 

been implicated as targets for initiation of ADP-ribosylation [75, 83]. Following initiation, a 

second distinct elongation reaction is required to extend the ADP-ribose chain. During the 

elongation step, the acceptor nucleophile is the 2′-hydroxyl group of the existing adenine 

ribose, which is oriented for reaction by interactions with the catalytic Glu988 and Tyr907. 

As in initiation, Glu988 also polarizes the donor 2′-hydroxyl of the NAD+ ribose to 

facilitate the reaction. The resulting polymer subunits are therefore linked by 1′′ → 2′ 
ribose-ribose glycosidic (A-ribose) bonds. Thirdly, and lastly, PARP1 is capable of creating 

branched polymers that occur at a branching:elongation ratio of ~2% [84]. The active site 

cleft of PARP1 is sufficiently large to allow 180° rotation of the bound polymer, shifting the 

nicotinamide ribose into the acceptor position. ADP-ribose transfer utilizes the NAD+ ribose 

as donor, creating a 1′′′ → 2′ ribose-ribose glycosidic (N-ribose) bond that places the 

following subunit in the elongation orientation (Figure 2D [85]).

Extensive evidence suggests that PARP1 requires protein dimerization for activation and 

catalytic function at sites of DNA damage [75, 86, 87]. How dimerization is mediated has 

not been fully elucidated, but may involve a leucine zipper motif in the AD [88] and/or 

intermolecular ZnF1-ZnF2 binding at a damage site [79]. In concert with the conformational 

intramolecular changes associated with DNA binding described above, dimerization permits 

access between each monomer’s catalytic domain and PAR-acceptor sites, resulting in trans-

ADP-ribosylation where each PARP1 subunit simultaneously acts as catalyst and acceptor 

molecule [79, 89]. Monomeric PARP1 is also capable of DNA binding (via ZnF2) and 

subsequent activation [77, 90], possibly to enable protein localization to undamaged 

chromatin [79].
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Automodification is a major target of PARP1 activity [76, 91, 92], and plays an important 

role in self-limiting PARP1 catalytic activity. Automodification by negatively-charged PAR 

polymers can promote PARP1 dissociation from DNA, consequently suppressing its 

enzymatic function [93, 94]. Recent discovery of a 60-residue double-stranded DBD 

(DsDB), distinct from the N-terminal DBD (see above) and located in the AD between the 

BRCT and WGR domains, may play an important role in this process. In the basal state, this 

region (along with the WGR domain) may function as a suppressor of PAR synthesis. ZnF1/

ZnF2 binding to a DNA break allows the DsDB to bind to double-stranded DNA, releasing 

this suppression. Automodification, including to the DsDB itself, displaces the bound duplex 

DNA (and ssDNA from ZnF2) resulting in protein dissociation and catalytic inhibition [95]. 

The rate of dissociation following automodification is unclear, but is probably dependent on 

the length of the PAR polymer and/or the affinity of PARP1 to the initial damage substrate 

[92].

In addition to PARylation of acceptor proteins, PARP1 is also able to directly interact with 

protein partners via a BRCT domain located at residues 389-487 within the central AD [96]. 

The PARP1 BRCT domain shares sequence homology with the highly conserved BRCA1 

carboxyl-terminal (BRCT) domain superfamily that mediates protein interactions with a 

large number of DNA repair factors [97]. The best-characterized interaction of the PARP1 

BRCT is with XRCC1, which constitutes a critical step in recruitment and coordination of 

repair factors to sites of DNA damage (see later). Other major SSBR factors have also been 

observed to interact with the PARP1 BRCT domain. A PARylation-independent interaction 

with the C-terminal region of POLβ does not seem to impact enzymatic activity, but may 

have an important role in POLβ recruitment, particularly within the long-patch BER 

pathway [98]. A direct interaction has been observed between automodified PARP1 and the 

N-terminal region of LIG3α as well, resulting in stimulation of ligase activity and 

recruitment to DNA damage sites [99]. Additionally, PARP1 physically interacts with the 

end-processing enzymes tyrosyl-DNA phosphodiesterase 1 (TDP1) and aprataxin (see later), 

mediating recruitment to damage sites, although not affecting functional activity [100, 101].

Interactions between specific BER/SSBR proteins and the PARP1 BRCT domain have 

recently been confirmed quantitatively by fluorescence-based approaches, which indicated 

similar binding affinities for PARP1 with XRCC1, POLβ and TDP1 [102, 103]. Of note, 

PARP1-XRCC1 and PARP1-POLβ binding affinities were not modulated by various BER 

intermediates, in contrast to the variable strength seen for the PARP1-APE1 interaction in 

the presence of different DNA substrates. Given that PARP1 concentration has been shown 

to regulate APE1 3′-exonuclease activity, this substrate-dependent modulation of the 

PARP1-APE1 interaction may reflect functional regulation dependent upon the damage 

lesion present [104]. The PARP1 BRCT domain has also been implicated in interactions 

with 8-oxo-G DNA glycosylase 1 (OGG1) [105] and endonuclease eight-like protein 1 

(NEIL1) [106], leading to PARP1 stimulation (and subsequent PARylation of cellular 

proteins) and repression of glycosylase activity, suggesting a mechanism for coordination of 

the damage recognition and base excision step of BER. The physical association of PARP1 

with these DNA glycosylases has been proposed to play a role in aging, given that the 

NEIL1-PARP1 interaction declines with age in a murine model [106]. Taken together, the 

data indicate an important role for PARP1 in initial DNA damage recognition and 

Abbotts and Wilson Page 8

Free Radic Biol Med. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent coordination of the repair response, possibly in concert with XRCC1 (expanded 

upon in ‘XRCC1 Interactions in SSBR’, below).

Cell biology

First characterized for its role in the repair of DNA strand breaks, post-translational 

modification by PARylation is now recognized as a regulator of a broad range of biological 

functions, including cell death, transcriptional regulation, intracellular trafficking, 

coordination of cell division and energy metabolism [107, 108]. Although the precise 

contribution of individual PARP family members has yet to be fully elucidated, the various 

roles of the ubiquitously-expressed, nuclear PARP1 enzyme have been extensively studied.

Activation of PARP1 following the recognition of a DNA backbone interruption is a key 

mechanism for coordination of SSBR. Its primary role is likely in the autoribosylation-

dependent recruitment of XRCC1, which functions as a scaffold protein to recruit and 

stimulate other SSBR proteins. Additionally, proteins involved in a wide range of DNA 

repair and damage response processes have been shown to either directly interact with 

PARP1, or possess ADP-ribose binding motifs that mediate their recruitment to sites of 

DNA damage following activation of PARP1 [109]. These include XRCC1, POLβ, LIG3, 

and the end-processing enzyme aprataxin (BER/SSBR); xeroderma pigmentosum 

complementing protein A (XPA; nucleotide excision repair [NER]); MSH6 (mismatch 

repair); DNA-PKcs and Ku70 (non-homologous end-joining [NHEJ]); DNA POLε 
(replication, long-patch BER, and NER) and its processivity factor PCNA; the replication-

associated helicase/endonuclease WRN; the telomere maintenance protein telomerase; and 

several proteins involved in the DNA damage response and cell cycle progression (ataxia 

telangiectasia mutated kinase [ATM], p53 and its downstream checkpoint mediator p21), 

inflammatory and immune responses (NFκB and its downstream target inducible nitric 

oxide synthetase [iNOS]), and apoptosis (caspase-activated DNase) [98, 109-114].

PARP1 is often described as a BER enzyme, because of its many interactions with single-

nucleotide and long-patch pathway members. Consistent with a role in SSBR, mouse 

embryonic fibroblasts (MEFs) derived from PARP1−/− mice exhibit delayed strand break 

resealing following alkylating agent exposure or gamma irradiation, accompanied with 

G2/M accumulation, chromosomal instability and cell death [115]. Similar results have been 

observed following siRNA downregulation of PARP1 [116], expression of a catalytically 

inactive mutant [117], or exposure to small molecule PARP inhibitors [118]. However, while 

the repair of strand interruptions (and hence SSBR) indisputably involves PARP1 activity 

[119], PARP1 appears to be dispensable for the repair of single strand damage initiated by 

DNA glycosylases [120, 121]. More recent studies using sparsely ionizing ultrasoft X-ray 

irradiation, however, suggest that SSBs and purine base damage are repaired via a PARP1-

dependent mechanism, whereas pyrimidine base damage is not [122, 123]. Given these 

findings, PARP1 involvement in BER is seemingly dependent on the damage substrate and 

pathway choice.

In reconstituted BER assays and in vitro studies, functional PARP1 activity reduces repair 

kinetics, possibly by binding the nicked strand intermediate and delaying hand-off to 

downstream repair enzymes [124, 125]. The results to date have led to the hypothesis that 
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PARP1 is involved in BER primarily when an abasic site or nicked intermediate becomes 

uncoupled from the pathway, resulting in a substrate that both binds PARP1 [76] and 

ultimately activates PARylation for repair [125]. Notably, reconstituted BER studies have 

indicated that PARP1 binding may be particularly important in coordinating an APE1-

independent repair response for AP sites that involves a complex of XRCC1, POLβ, LIG3α, 

polynucleotide kinase 3′-phosphatase (PNKP) and TDP1 [126]. Specifically, PARP1 has 

been shown to possess AP and 5′-dRP lyase activities, allowing it to cleave the abasic site in 

the absence of APE1, such that the presence of PNKP and TDP1 provide the end-processing 

capabilities required for completion of repair by POLβ and LIG3α [76, 127].

PARP1 also plays an important role in regulating chromatin structure during DNA repair. 

PARylation of histones (particularly H1 and H2B), protamines and high mobility group 

(HMG) proteins triggers chromatin decondensation to allow access to proteins involved in 

DNA synthesis, transcription or repair (reviewed in D’Amours et al. [107]). Following 

alkylation damage, 2-3% of histones are modified [128], opening the chromatin structure 

and rendering the DNA susceptible to nuclease attack [129]. This modulation is reversible 

following hydrolytic dissociation of the PAR polymers (mediated by poly(ADP-ribose) 

glycohydrase [PARG]; see below) [129]. Indeed, the kinetics of histone PAR modification 

and dissociation may play an important role in the coordination of repair. Following initial 

activation by a strand break, PARP1 modifies both itself and the localized histones, with a 

preference for automodification. In vitro turnover assays suggest that automodification soon 

reaches a steady state between PARylation and dissociation, at which point histone 

modification is favored, maintaining an open chromatin structure while repair occurs [130, 

131]. Following completion of repair, PARP1 dissociates from the DNA and PARG activity 

hydrolyzes histone polymers to return the chromatin to its original state [107, 132]. 

Interestingly, a recent study indicates that PARP1 is recruited more efficiently to 

heterochromatin than euchromatin, which is instead highly enriched for FEN1 and PCNA, 

suggesting that transcriptional activity is an important determinant of BER pathway choice 

[133]. Damage-induced PARylation also co-localizes at foci containing XRCC1 complexed 

with SNF2H, a chromatin remodeling factor, suggesting a previously unrecognized role for 

XRCC1 in chromatin regulation possibly through PARP1 activity [134].

Tight control of cellular PAR is critical to prevent the detrimental effects of persistent PAR 

signaling, which include depletion of cellular NAD+ levels and subsequent necrosis [135], 

and the PAR-specific parthanatos pathway, wherein excessive PAR levels induce 

translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus where 

it induces DNA fragmentation and cell death [136]. The major enzyme for removal of 

cellular PAR is PARG, which cleaves the O-glycosidic ribose-ribose bond between PAR 

molecules, releasing free ADP-ribose [137, 138]. A second enzyme, ADP-ribosylhydrolase 

3 (ARH3), may also possess this activity [139]. The absence of a suitable O-glycosidic 

ribose-ribose bond means that neither enzyme is capable of cleaving the proximal PAR 

molecule from the modified protein. This role is instead performed by three enzymes 

possessing the ability to cleave mono(ADP-ribosyl)ated substrates (terminal ADP-ribose 

protein glycohydrase [TARG1], MacroD1, and MacroD2) [140-142]. This close control of 

PAR modification and catabolism results in high turnover of both enzyme and product 

(cellular PAR exhibits a half-life of 1 to 6 minutes [143]), and is likely critical in the 
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sequential handover of the damage site to downstream repair enzymes (reviewed in [144]). 

Accordingly, a murine PARG1−/− model exhibits early embryonic lethality [145], while 

cellular deficiency of the PAR-hydrolyzing enzymes results in an impairment of SSBR and 

DSBR that echoes the defect observed in PARP1 inhibition or depletion, suggesting the 

importance of PAR regulation in genomic stability [140, 145].

Animal model

Phenotypic characterization of PARP1−/− mouse models has been described by several 

groups. Homozygous animals are fertile with a normal lifespan. No overt phenotype has 

been described, although small litter size, reduced adult bodyweight (secondary to a 

reduction in cellular NAD+ consumption that subsequently stimulates mitochondrial 

metabolism) [146, 147], and epidermal hyperplasia [148] have been reported. Animal-

derived cells show an absence of basal ADP-ribose formation [148], but retain the capacity 

to synthesize ADP-ribose polymers following alkylating agent exposure [149]. This finding 

led to both the discovery of PARP2 and, given the embryonic lethality observed in a 

PARP1−/− PARP2−/− double mutant, established the essential role of PARylation in early 

development [150]. Splenocytes isolated from PARP1 knockout animals exhibit an elevated 

rate of spontaneous sister chromatid exchange (SCE), suggestive of genomic instability 

[151]. In keeping with this finding, PARP1−/− animals are hypersensitive to alkylating agents 

and to γ-irradiation (the latter manifested as acute small intestinal radiation toxicity [152]), 

associated with G2/M cell cycle arrest and severe genomic instability [146]. Animal-derived 

PARP1−/− cells also exhibit a dramatic increase in p53-Bax-mediated apoptosis in response 

to alkylation damage [153]. However, there is no evidence of an increased malignancy risk 

in these animals [151]. Taken together, these results demonstrate the important role that 

PARP1 plays in the repair of alkylation and radiation damage, and the maintenance of 

genomic stability, but also indicate the likelihood that additional PARPs (namely PARP2; see 

below) have the capacity to serve as compensatory enzymes.

XRCC1

Discovery

In the early 1980s, a number of Chinese hamster ovary (CHO) mutant cell lines were 

isolated on the basis of extreme hypersensitivity to various mutagens [154, 155]. A UV-

sensitive subset was identified to be deficient in NER, the DNA repair pathway that resolves 

bulky adducts, such as UV photoproducts [156]. Also isolated was EM9, a mutant typified 

by sensitivity to alkylating agents, such as ethyl methanesulphonate (EMS), defective 

rejoining of DNA strand breaks after mutagen exposure, and an elevated baseline frequency 

of SCE [157, 158]. Correction of the EM9 defect was achieved by fusion hybridization with 

normal human fibroblasts or lymphocytes, producing clonal populations with SCE 

frequencies close to the parental cell baseline [159]. Complementation was confirmed via 

transfection of hybrid DNA, allowing localization of the EM9 defect (now designated as 

XRCC1) to chromosome 19q13.2 [160-162]. Subsequently, the complete XRCC1 sequence 

was isolated and determined [158].
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Structure & biochemistry

The human XRCC1 gene is composed of 17 exons that span 32 kb on chromosome 19q13.2, 

in a region that also contains ERCC1 [163], ERCC2 [161] and LIG1 [164]. A likely 

transcription initiation site exists 105 bp upstream from the translation start site, preceded by 

a consensus TATA box sequence located at position −136 from the start codon. At the 3′ 
end, a prototypical polyadenylation consensus sequence has been described [158]. The 

human XRCC1 transcript is 2802 nucleotides in length. Translation of the 1899-nucleotide 

open reading frame from the ATG start codon produces a 633 amino acid protein of 69.5 

kDa (Figure 3) [165-167].

The N-terminal domain (NTD), which spans residues 1-183 [122], is formed around a core 

β-sandwich consisting of a 5-stranded and a 3-stranded β-sheet connected by loops, three 

helices, and two short 2-stranded β-sheets, with disordered regions at residues 1-2 and 

152-183 [166]. This region is critical for POLβ binding, both independently and in a ternary 

complex with a single-nucleotide gapped DNA substrate [168, 169]. The NTD may also be 

able to complex directly with DNA substrates, including gapped and nicked structures [166].

A central domain (BRCT-I), comprising residues 315-403, shares sequence homology with 

the highly conserved BRCT domain [97]. An essential role in XRCC1-PARP1 binding has 

been assigned to the BRCT-I domain [170]. A second BRCT domain at the C-terminus of 

the protein (BRCT-II; residues 538-633) is critical for interaction with DNA LIG3α [171, 

172]. The intermediate linker regions between the various domains also mediate XRCC1-

protein interactions. For example, deletion analyses suggest that the region between the 

NTD and the BRCT-I domain is required for APE1 [173], OGG1 [174] and PCNA [175] 

binding. This region also contains a NLS [158, 170]. Similarly, the area between the two 

BRCT domains is essential for binding to PNKP [176, 177], as well as housing a cluster of 

CK2 phosphorylation sites immediately downstream from the BRCT-I domain [178].

Unlike other members of the SSBR pathway, XRCC1 has no known enzymatic activity. Its 

cellular role is instead contingent upon its ability to interact with DNA and even more so a 

number of DNA repair proteins, with XRCC1-protein interactions having been described 

during each step of the BER process. While physical associations have been reported with a 

number of DNA glycosylases, the review here will focus on its interactions with enzymatic 

components that carry out SSB “clean-up”. Nevertheless, in brief, specific functional 

interactions of XRCC1 with OGG1 [179], NEIL1, NEIL2, endonuclease three-like homolog 

1 (NTH1), methylpurine glycosylase (MPG) [180] and uracil N-glycosylase (UNG) [181, 

182] have been argued to help promote base damage repair, although the major defect 

resulting from XRCC1-deficiency appears to be inefficient SSB processing and a consequent 

accumulation of SSBs. A more detailed overview of the interactome of XRCC1 is presented 

later.

Cell Biology

A hallmark of XRCC1 deficiency is a 3- to 6-fold elevation in the baseline frequency of SCE 

and chromosomal breakage [183-185]. 5-bromo-2′-deoxyuridine (BrdU) exposure, 

experimentally required in certain SCE assays for chromatid visualisation, enhances the rate 
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of SCE accumulation to 10- to 12-fold higher than wildtype [157, 186]. BrdU can itself 

influence the rate of crossover events, because incorporation is recognized and excised by 

uracil-DNA glycosylase [187, 188]. Impaired downstream repair of the resultant nicked 

intermediate would increase replication fork stalling, which has been observed in XRCC1-

deficient cells [183, 189, 190]. RAD51-mediated homologous recombination (HR) to 

facilitate replication fork restart is a major mechanism of crossover events [191].

XRCC1-deficient EM9 cells are characterized by sensitivity to various genotoxic agents, 

including a 10-fold increase in cytotoxicity following exposure to the monofunctional 

alkylating agents EMS and MMS, moderate sensitivity to H2O2 and the topoisomerase 

inhibitor camptothecin, and weak sensitivity to ionizing and ultraviolet radiation, heavy 

metals and certain other alkylating agents (including ethyl nitrosourea, 1-methyl-3-nitro-1-

nitrosoguanidine and mitomycin C) [157, 186, 192-194]. Following exposure to these 

agents, XRCC1-deficient cells exhibit a 2- to 3-fold reduced rate of rejoining of SSBs 

compared to wildtype cells, in keeping with a role in SSBR [157, 186, 193-195]. 

Accordingly, in biochemical assays, EM9 cell extracts exhibit a reduced rate of repair of 

plasmids containing a nicked abasic site substrate [122, 196]. Similar results have been 

observed following siRNA knockdown in human cancer (HeLa) and fibroblast cells, 

including sensitivity to MMS, hydrogen peroxide and ionizing radiation, and impaired 

strand break rejoining and SCE formation [197, 198].

The mild UV sensitivity of XRCC1-deficient cells may reflect a role for the protein in NER, 

the major mechanism by which cells remove helix-distorting lesions, including UV-induced 

photolesions, from DNA. Global genome NER (GG-NER), the sub-pathway that repairs 

lesions throughout the genome, consists of damage recognition, local DNA unwinding, dual 

3′ and 5′ incision around the lesion, gap-filling and ligation. XRCC1 (in complex with its 

protein partner LIG3α) appears to be recruited to the site of damage following dual incision, 

where it functions in a post-incision complex that includes recognized GG-NER factors, 

such as PCNA, RPA, and POLδ, to carry out repair synthesis and ligation. Initial studies 

have indicated that recruitment to the NER site is mediated through interaction with PCNA, 

although a role for PARP1-mediated recruitment (as in SSBR) has not conclusively been 

excluded, given the evidence for PARP1 activation following UV damage [199-202]. The 

XRCC1-LIG3α-POLδ complex appears to be particularly important in quiescent and 

terminally-differentiated cells as the sole NER synthesis and ligation system, unlike in 

proliferating cells where a LIG1-POLε complex also operates [203].

Interestingly, a reduced rate of DSB rejoining has been observed in XRCC1-deficient cells 

[195, 204], a phenotype proposed to be a reflection of an accumulation of unrepaired SSBs 

being converted to one-ended DSBs on encountering the replication machinery [205, 206]. 

This may reflect a role for the XRCC1-LIG3α heterodimer in alternative NHEJ, a Ku-

independent DSBR pathway wherein PARP1 strand break recognition drives the recruitment 

of repair proteins in a pathway that likely functions as a ‘backup’ to canonical NHEJ 

[207-212].
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Animal model

Homozygous XRCC1 deletion is embryonically lethal in a murine model system, causing 

arrest of embryo development at embryonic day (E) 6.5 associated with morphological 

abnormalities in the visceral endoderm and epiblast cell loss [213]. This endoderm 

abnormality may account for the occasional organ rupture described in young heterozygous 

animals, which express ~50% of the wildtype level of XRCC1, are born at normal 

Mendelian ratios, and otherwise exhibit a normal lifespan without chromosomal instability 

or spontaneous neoplasms, suggesting that haploinsufficiency provides sufficient protein to 

maintain genomic integrity and animal health in the absence of genotoxin exposure [214]. 

Indeed, complementation with a transgene that expresses XRCC1 at <10% of normal 

(designated as XRCC1 hypomorph animals) rescues the embryonic lethality phenotype, 

generating normal litter sizes [215]. Though initially described as fertile and ostensibly 

normal, a later report described a ~25% reduction in body weight at weaning and into later 

life in the XRCC1 hypomorphs compared to wildtype littermates. No association with 

malignancy was observed in the hypomorph animals, suggesting that 10% of wildtype 

XRCC1 protein level is sufficient to maintain genomic stability [216].

Cells isolated from XRCC1−/− embryos exhibit a baseline accumulation of DNA strand 

breaks and are hypersensitive to EMS and X-ray irradiation [213]. When XRCC1 is present 

at a reduced level, observations of cellular sensitivity have been less consistent. Tebbs et al. 

did not observe an increase in MMS sensitivity in fibroblasts isolated from hypomorph 

animals [215]. Conversely, our group has reported increased strand break accumulation and 

cell death following menandione exposure in primary cerebellar granule cells derived from 

haploinsufficient XRCC1+/− animals [217], and liver toxicity and colonic premalignant 

lesions following in vivo exposure to the alkylating agent azoxymethane [214]. 

Haploinsufficient animals also exhibited increased brain damage, mortality and functional 

deficit following oxidative stress induced by ischemic stroke [218], perhaps indicating a cell 

type-specific dependence on XRCC1 function.

The XRCC1-PARP1 Ensemble

XRCC1 has been demonstrated to interact directly with DNA substrates, specifically 

duplexes containing single-nucleotide gaps (alone and in complex with POLβ; see above) 

and nicked duplex DNA [166, 219]. However, this is unlikely to represent a damage-sensing 

function, given that expression of an XRCC1 DNA-binding variant protein (Arg109Ala 

mutant) in XRCC1-deficient EM9 CHO cells fully corrects alkylation sensitivity and SSBR 

kinetics [220]. Recruitment of XRCC1 to DNA damage may instead be mediated mainly via 

interaction with PARP1, or one of its other binding partners.

A possible interaction between PARP1 and XRCC1 was first described by Caldecott et al. in 

1996, following studies involving yeast two-hybrid and co-immunoprecipitation methods 

[221]. A BRCT sequence within the PARP1 AD interacts the XRCC1 BRCT-I domain 

[170]. Interaction is modulated by PARP1 automodification [221]; XRCC1 preferentially 

binds to oligo(ADP-ribosylated) PARP1 [170, 222], while interaction is abolished in the 

presence of the PARP inhibitor 3-aminobenzamide [223]. The physical interaction is 

complemented by PARP1 PARylation of XRCC1, either at a PAR-binding sequence motif 
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present in the BRCT-I domain [109] or at a BRCT-I phosphate binding pocket [224]. 

Temporally, PAR synthesis peaks almost immediately after induction of oxidatively 

damaged DNA, followed by rapid co-localization of XRCC1 foci that peak approximately 

ten minutes after damage. Confirmation that recruitment of XRCC1 to certain forms DNA 

damage involves its interaction with PARP1 was demonstrated by reduced co-localization: a) 

in PARP1-depleted MEFs; b) following PARP inhibitor exposure in human fibroblasts; and 

c) upon expression of an XRCC1 mutant that houses a modified BRCT-I domain that 

abolishes PARP1 complex formation [225, 226]. Functionally, XRCC1 binding negatively 

regulates PARP1 PARylation activity after oxidative stress, limiting the automodification 

that leads to PARP1 dissociation from DNA, thereby protecting the damaged DNA ends 

until repair can take place [170]. PARP1 is also able to interact with other BER proteins, 

including POLβ and LIG3α, probably enhanced by XRCC1-mediated recruitment. 

Accordingly, XRCC1 null cells exhibit elevated PAR levels following exposure to MMS, in 

addition to increased cellular sensitivity associated with impaired DNA repair [227].

PARP2, the second member of the PARP superfamily to be described, was discovered 

following the observation of residual PARylation in PARP1-deficient cells [149, 228]. 

PARP2 shares significant structural homology with the catalytic domain of PARP1, as well 

as possessing an NLS and DBD within its N-terminal region that are absent from PARP1 

[228]. PARP1 and PARP2 share similar tissue expression patterns, although PARP2 

induction is not observed in PARP1-deficient cells, suggestive of overlapping, but not 

redundant functions [229]. As with PARP1, PARP2 is recruited to sites of DNA damage, 

where it can interact with XRCC1, POLβ and LIG3α [223]. However, PARP2 accumulation 

occurs later and persists longer [230], and is associated with avid binding to DNA substrates 

containing gapped or flap structures, rather than the strand breaks observed to activate 

PARP1, suggestive of a role in the later stages of BER/SSBR [228, 231, 232]. As with 

PARP1, XRCC1 binding does exert a negative regulatory effect upon PARP2-mediated PAR 

synthesis activity; however, recruitment of XRCC1 to sites of DNA damage is not dependent 

upon PARP2 [230]. Despite having no significant impact upon SSBR rate, PARP2 depletion 

is associated with sensitivity to ionizing radiation and alkylating agents [233], possibly 

related to a role in DSBR [150, 223]. PARP2 has also been attributed roles in centromeric 

and telomeric stability, and lineage-dependent cellular development (including 

spermiogenesis, adipocyte differentiation and T cell development) (reviewed in [234, 235]).

XRCC1 interactions in SSBR

The primary role of XRCC1 is as a molecular scaffold to assemble SSBR proteins at sites of 

DNA damage to promote efficient repair. Under the control of the PARP1-XRCC1 scaffold, 

repair involves the transient assembly of multi-protein complexes, the composition of which 

depends upon the nature of the initiating lesion, chemistry of the repair intermediates, and 

post-translational modifications of the constituent pathway members (for a review of post-

translational modifications in BER, see Svilar et al. [236])[237]. Accordingly, XRCC1 has 

been demonstrated to physically interact with and stimulate (or stabilize) the activity of a 

number of BER/SSBR factors.
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APE1

APE1 is the major human AP endonuclease, catalyzing hydrolytic cleavage of the 

phosphodiester backbone 5′ to an abasic site during BER. The multifunctional conserved C-

terminal domain of APE1 also contributes end-processing functions, such as 3′-

phosphodiesterase and -phosphatase activities (Figure 4), while a separable redox regulatory 

function is present within its N-terminus (reviewed in [21]). Vidal et al. described a direct 

interaction between XRCC1 and the N-terminal region of APE1 (specifically, amino acids 

1-35) that, although not essential, is able to stimulate its endonuclease or 3′-

phosphodiesterase activity 5-fold. Accordingly, they found that XRCC1-deficient EM9 cells 

display a reduced ability to cleave AP sites, despite constitutively increased APE1 protein 

levels – a defect that could be reversed by re-expression of XRCC1 or exposure to 

recombinant XRCC1 protein in the extracts [173]. However, studies by La Belle et al. [238] 

and our group [239] revealed no difference in AP endonuclease activity in EM9 cells 

compared to a wildtype control line, nor a difference in the steady-state levels of AP sites 

within chromosomal DNA. Taken together, these results (in combination with evidence of 

non-essential interactions with several BER glycosylases, as described earlier) suggest that, 

while a role for XRCC1 in the pre-incision steps of BER cannot be ruled out, particularly in 

the context of chromatin, its predominant functions are performed at the site of DNA strand 

breaks. It would be interesting, therefore, to examine whether XRCC1 plays a role in 

directing the relatively inefficient 3′-repair activities of APE1 in cells.

POLβ

POLβ is an X-family DNA polymerase responsible for gap-filling during single-nucleotide 

BER and the repair of SSBs. The polymerase function is performed by three prototypical 

sub-domains within a 31kDa C-terminal domain: a nucleotidyl transferase sub-domain 

(‘palm’ domain; residues 152-262), flanked by a double-stranded DBD (‘thumb’ domain; 

residues 263-335) and a domain that binds the nascent base pairs (‘fingers’ domain; residues 

88-151) [240]. An 8 kDa N-terminal domain binds ssDNA with high affinity and possesses 

AP- and 5′-dRP-lyase activities that contribute to AP site processing during BER (Figure 4) 

[241].

Two groups independently identified POLβ as a protein partner of XRCC1 [122, 221]. 

Subsequent chemical shift nuclear magnetic resonance (NMR) spectroscopy and site-

directed mutagenesis studies initially mapped the interaction to the POLβ palm-thumb 

domains and the XRCC1 NTD (specifically, β-strands D and E of the five-stranded β-sheet, 

and the α2 helix), possibly forming a protective sandwiched structure around fragile gapped 

DNA intermediates [166, 169, 242, 243]. However, recent analysis has modified this model. 

Detailed structural characterization of the XRCC1-POLβ interface by Cuneo et al. indicated 

that redox modulation of the XRCC1 NTD enhances affinity for POLβ via interaction 

exclusively with the thumb domain [244]. Absence of the DNA-binding thumb domain from 

this interface likely excludes direct binding between the XRCC1 NTD and the DNA 

intermediate, in keeping with in vitro evidence that XRCC1 interaction with damaged DNA 

has limited biological relevance [220].

Abbotts and Wilson Page 16

Free Radic Biol Med. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



XRCC1 and POLβ co-localize at sites of laser-induced DNA damage, suggesting that 

XRCC1-POLβ complex formation facilitates POLβ recruitment and subsequent repair 

synthesis [245]. This hypothesis is supported by evidence that complementation of EM9 

cells with XRCC1 mutants that exhibit a defective POLβ interaction (Glu69Lys or 

Val86Arg) are incomplete at correcting alkylation [220] or oxidative [168] sensitivity of the 

parental cell line. The biological significance of this interaction appears to relate to a role for 

POLβ in promoting full ligation activity of the XRCC1-LIG3α complex. Reconstitution of 

the core BER steps using a non-interacting XRCC1 NTD mutant (Val68Arg) found that 

ligation efficiency of the XRCC1-LIG3α complex is reduced in the absence of the POLβ 
interaction [168]. Efficient ligation in the context of the XRCC1-LIG3α-POLβ interaction 

prevents POLβ strand displacement and the formation of extended synthesis products, 

instead favoring single-nucleotide gap-filling; these results are substantiated by the presence 

of multiple-nucleotide patch synthesis products in XRCC1-deficient EM9 cells [122].

More recently, however, Fang and colleagues have reported that an XRCC1-POLβ 
interaction is not essential for either POLβ recruitment or DNA repair [246, 247]. A 

PARylation-independent physical interaction between the C-terminal region of POLβ and 

the PARP1 BRCT domain may instead provide an alternative mechanism for POLβ 
recruitment [98]. The main role of the interaction may therefore be in maintaining the 

stability of POLβ, since the polymerase is susceptible to C-terminal ubiquitylation and 

subsequent proteasome degradation when XRCC1 association is disrupted. Free XRCC1 is 

also susceptible to degradation, but is stabilized in the absence of POLβ binding by the 

chaperone protein HSP90, which regulates necroptosis by the CHIP (carboxyl terminus of 

Hsp70-interacting protein) pathway. The observation of differential patterns of XRCC1 

partner choice (i.e. XRCC1-POLβ, XRCC1-HSP90 or free XRCC1) following exposure to 

various DNA-damaging agents supports the hypothesis that, in response to different lesions, 

the specific constituents of the repair complexes play an important role in regulating BER 

pathway choice [246]. It is likely that the XRCC1-POLβ interaction plays roles in both 

facilitating efficient SSB recognition and processing, and in regulating protein levels to 

optimize the repair response.

LIG3

The first XRCC1 protein partner to be identified was DNA LIG3 [171]. The LIG3 gene 

encodes multiple isoforms, including nuclear and mitochondrial versions of LIG3α, as well 

as LIG3β. Translation initiation at the first ATG codon of the LIG3 open reading frame 

generates the mitochondrial isoform of LIG3α, a protein that possesses an N-terminal 

mitochondrial leader sequence (MLS) that is cleaved off during entry into the mitochondria. 

An alternate internal start codon produces nuclear LIG3α, which lacks the MLS sequence 

[248]. Both nuclear and mitochondrial LIG3α isoforms contain a C-terminal BRCT domain 

that mediates both homodimer formation and interaction with the XRCC1 BRCT-II domain 

to form a more stable heterodimeric complex [167]. This heterodimer appears to represent 

the constitutive form of LIG3α, with XRCC1-deficient EM9 cells exhibiting reduced LIG3 

levels and activity that can be corrected by transfection of wildtype XRCC1 [171]. 

Furthermore, interaction with XRCC1 is probably critical for cellular localization of the 

nuclear isoform given that LIG3α lacks a consensus NLS [249]. The LIG3β isoform, which 
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has been detected only in primary spermatocytes prior to meiosis I, is produced by alternate 

splicing that replaces the C-terminal BRCT domain with an NLS, and therefore does not 

interact with XRCC1 [250].

LIG3 is an ATP-dependent DNA ligase with roles in the final step of single-nucleotide BER, 

GG-NER, and a DNA-PK-independent alternate NHEJ pathway. Early studies indicated that 

XRCC1 mutation was associated with reduced nuclear LIG3α localization, a 6-fold decrease 

in LIG3α-adenylate intermediates, and impairment of the ligation step of single-nucleotide 

BER [196, 251]. However, despite being constitutively bound to XRCC1, LIG3α does not 

appear to play an essential role in nuclear DNA repair. Reduced expression of XRCC1 

destabilizes LIG3, reducing protein levels 3-fold, without causing cellular hypersensitivity to 

MMS [215]. In a reconstituted BER system, pre-incubation of LIG3α with XRCC1 did not 

increase ligation efficiency compared to LIG3α alone [122]. In a murine model, absence of 

nuclear LIG3α did not replicate the genotoxin sensitivity observed in XRCC1 deficiency 

[252]. Furthermore, expression of an XRCC1 BRCT-II mutant that disrupts LIG3α binding 

was able to complement the repair defect of XRCC1-deficient cells [253], suggesting that 

XRCC1 can function independently of LIG3α. These results are probably accounted for by 

the high degree of functional redundancy between LIG3α and LIG1 in nuclear DNA repair 

(reviewed recently by Tomkinson and Sallmyr [249]). Conditional gene targeting studies 

have indicated that the essentiality of LIG3α is instead related to its mitochondrial function 

[252, 254, 255], while the absence of XRCC1 in mitochondria suggests that the XRCC1-

LIG3α interaction is not involved in this role [252]. In this context, it appears the XRCC1-

LIG3α interaction is primarily important in stabilizing the cellular LIG3α pool prior to its 

translocation to the mitochondria to participate in mitochondrial BER, while its role in 

nuclear repair appears to be less essential.

PNKP

PNKP plays an important role in end-processing at DNA strand breaks, resolving terminal 

3′-phosphate and 5′-hydroxyl obstructive groups induced by ionizing radiation, •OH and the 

β,δ-AP lyase activity of certain DNA glycosylases [256, 257]. The enzyme is comprised of 

an N-terminal forkhead-associated (FHA) domain linked to a C-terminal domain that 

contains dual 5′-kinase and 3′-phosphatase active sites, as well as DNA and ATP binding 

sites that facilitate catalytic activity [258]. The PNK-FHA region has been demonstrated to 

bind to the ~150 base pair region linking the XRCC1 BRCT-I and -II domains. This 

interaction requires a bis-phosphorylated motif (pSer518/pThr519) that has previously been 

described as a consensus sequence for CK2 phosphorylation [178]. Presence of a third 

phosphorylated residue at an adjacent consensus sequence (Thr523) may recruit hierarchical 

binding of a second PNKP protein to form a 2:1 PNKP:XRCC1 complex [178, 259], 

although this has been disputed [260]. Additionally, nonphosphorylated XRCC1 may also 

bind to and stimulate PNKP, via a separate interaction involving the region surrounding 

XRCC1-Ala482 and the PNKP kinase/phosphatase catalytic portion [260].

PNKP may be able to independently initiate SSBR of damage substrates possessing 3′-

phosphate and/or 5′-hydroxyl terminal groups (Figure 4), facilitating recruitment and 

binding of XRCC1 to generate a multiprotein complex with LIG3α (and possibly POLβ) 
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[261]. Other groups, however, have demonstrated that XRCC1-deficient EM9 cells do not 

form nuclear PNKP foci following DNA damage induction via hydrogen peroxide or laser 

microirradiation, suggesting that XRCC1 is important for PNKP recruitment to DNA lesions 

[177, 178, 245]. Reconstitution of the end-processing, gap-filling and ligation steps of SSBR 

using a DNA substrate containing 3′-phosphate and 5′-hydroxyl groups indicates that 

XRCC1 (but not POLβ or LIG3α) stimulates the enzymatic activities of PNKP, thereby 

accelerating repair. Accordingly, the reduced SSBR efficiency of a similar substrate by 

whole cell extracts from XRCC1-deficient cells was complemented by the addition of 

recombinant XRCC1 [176]. Ablation of the phosphorylation-mediated interaction via 

targeted XRCC1 mutation does not entirely eliminate SSBR stimulation, suggesting that the 

second binding mechanism involving non-phosphorylated XRCC1 is able to maintain a 

portion of the PNKP activation [260]. Thus, promotion of PNKP activity by XRCC1 appears 

to be mediated by two mechanisms: 1) enhanced discrimination capacity for terminal 

blocking groups and 2) increased PNKP turnover by displacement from the DNA product 

[262]. The interaction between PNKP and XRCC1 also appears important for stable 

retention of XRCC1 at the site of DNA damage [177, 263], possibly to prevent ubiquitin-

mediated degradation and retain a cellular XRCC1 pool [264]. Taken together, it appears 

that the XRCC1-PNKP interaction has many important biological roles, including damage 

recognition, bilateral recruitment, repair stimulation and coordination, and XRCC1 protein 

stability.

APTX, APLF

XRCC1 is believed to interact with other end-processing repair enzymes (Figure 4). 

Aprataxin was initially identified as a putative DNA repair protein due to sequence 

homology with the FHA region of PNKP [265], and was later demonstrated to resolve the 

5′-AMP intermediate formed when DNA ligase activity is aborted, typically as a result of 

non-ligatable DNA ends [266]. In its ‘long-form’ splicing variant, an NLS directs nuclear 

localization, where interaction with XRCC1 is observed [267-269]. As with PNKP, this 

interaction is mediated by binding between the aprataxin FHA domain and the CK2 

phosphorylation sites in the XRCC1 inter-BRCT region [270, 271], and appears to play a 

role in maintaining steady-state levels of XRCC1 by an unknown mechanism [272]. Loss of 

aprataxin is characterized by an impaired SSBR response to DNA-damaging agents, 

including hydrogen peroxide, MMS, camptothecin and laser microirradiation [272-274], 

perhaps in part because it plays an important role in stabilization of a cellular pool of 

XRCC1.

XRCC1 interacts in a CK2-dependent manner with a third enzyme possessing an FHA 

domain, aprataxin- and PNKP-like factor (APLF), which is known to bind the NHEJ factors 

XRCC4 and XRCC5 (aka KU80) [275]. Although APLF has been assigned both single 

strand endonuclease and 3′-exonuclease/end resection activities [276-278], and appears to 

demonstrate recruitment and subsequent repair stimulation at both SSBs and DSBs, its exact 

cellular role has not been clearly defined. Recruitment to sites of DNA damage has also been 

attributed to a pair of PAR-binding zinc finger motifs located in the APLF C-terminus, 

accounting for the foci formation observed in XRCC1-deficient EM9 cells (at a reduced 

level in comparison to wildtype cells) following hydrogen peroxide exposure [275, 279]. 
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More work is required to determine whether the XRCC1 interaction (and/or PARylation) has 

a role in enzymatic stimulation of APLF, in addition to its recruitment to sites of DNA 

damage.

TDP1

As previously discussed, TOP1 is essential to relax supercoiled DNA that forms ahead of 

replication forks and transcription complexes, creating a transient TOP1-linked SSB known 

as a cleavage complex that permits controlled rotation around the nicked strand [280]. 

Unresolved cleavage complexes (for example, when DNA modifications prevent 

realignment, or topoisomerase inhibitors prevent religation) can be converted to cytotoxic 

lesions by collision with replication forks [281] or, to a lesser degree, transcription 

complexes [282]. TDP1 limits this deleterious outcome by hydrolyzing the covalent bond 

between the TOP1 catalytic tyrosine residue and the 3′-DNA terminus (Figure 4) [283, 284]. 

This activity results in a SSB with a 3′-phosphate that can be first processed by PNKP to a 

3′-hydroxyl group, and then extended and/or repaired by downstream BER enzymes. More 

recently, TDP1 has also been demonstrated to possess end-processing activity against 

additional 3′-blocking lesions, including 3′-phosphoglycolate groups induced by •OH, 3′-

deoxyribose phosphates resulting from AP lyase processing of alkylation damage, and 

terminal nucleoside adducts following antiviral and anticancer nucleoside analog exposure 

(reviewed in [285]), as well as to cleave at AP sites to initiate a possible APE1-independent 

BER sub-pathway [286, 287].

The involvement of SSBR enzymes in TDP1-mediated repair, as well as the hypersensitivity 

of XRCC1-deficient cells to the TOP1 inhibitor camptothecin, suggests that XRCC1 plays a 

role in the repair of stabilized TOP1 cleavage complexes [288]. Accordingly, XRCC1 co-

localizes with foci of TDP1 and the DSB-associated histone modification γH2AX following 

camptothecin exposure [289], and reconstitution assays indicate that XRCC1 enhances the 

activity of the TDP1/PNKP pathway in the repair of camptothecin-induced cleavage 

complexes [290]. Camptothecin-treated XRCC1-deficient cells exhibit only a partial 

response to aphidicolin, an inhibitor of polymerases α, δ and ε, which protects against 

camptothecin cytotoxicity by preventing the formation of replication-associated DSBs, 

suggesting a specific role in the repair of replication-independent (i.e. transcription-

associated) damage [288, 290]. However, XRCC1 does not directly interact with TDP1. 

Instead, recruitment of TDP1 to cleavage complexes is mediated through its interaction with 

activated PARP1, both by PAR modification of TDP1, and by direct binding between the N-

terminal domain of TDP1 and the catalytic domain of PARP1, which stabilizes TDP1 at the 

site of the cleavage complex. These TDP1-PARP1 complexes in turn recruit XRCC1 [101] 

(and hence LIG3α, which also physically interacts with TDP1 [291]), which presumably 

(though not yet proven definitively) functions as a repair scaffold as described above.

BER/SSBR Defects and Neurological Disease

Murine models have revealed that homozygous deletion of many of the core constituents of 

BER/SSBR (such as APE1, XRCC1, LIG3, POLβ) is incompatible with embryonic or 

postnatal survival, underscoring the importance of efficient and accurate resolution of 
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endogenous DNA damage [292]. Several groups have reported the characterization of 

heterozygous or conditional knockout animals, which has indicated that a frequent feature of 

defects in SSBR components is abnormalities in neurological development or maintenance 

[293]. For example, the postnatal lethality observed in mice carrying a homozygous POLβ 
deletion is associated with extensive cell death in newly generated post-mitotic neuronal 

cells in the central and peripheral nervous systems [294], and POLβ deletion may exacerbate 

the neurodegeneration phenotype of an Alzheimer disease mouse model [295]. Brain-

specific conditional knockout of LIG3 in a murine model results in growth retardation and 

profound ataxia associated with cerebellar neurodegeneration [252]. Similarly, knockout of 

XRCC1 in the brain results in viable progeny that exhibit a rapidly progressive loss of 

cerebellar and hippocampal neurons during the postnatal period, associated with ataxia and 

death at approximately 4 months of age [296]. Mouse models have also provided evidence 

for a protective role of SSBR in the development of neuropathologies of aging, for example 

XRCC1 in ischemic stroke [218].

Notably, proteins with specialized roles specifically in SSBR have recognized neurological 

disease linkages in humans [297, 298]. Ataxia with ocular motor apraxia 1 (AOA1) is an 

autosomal recessive disorder caused by mutations in APTX that, in addition to the 

eponymous symptoms, is characterized by peripheral neuropathy, hypoalbuminemia, and, 

pathologically, loss of Purkinje cells and neurons from the anterior horn and dorsal root 

ganglia [265, 299]. A further AOA sub-type, AOA4, has been linked to a homozygous 

mutation in the PNKP gene (Gly375Trp) [300]. Compound heterozygote PNKP mutations 

have been implicated in the autosomal recessive developmental disorder MCSZ 

(microcephaly with early-onset, intractable seizures and development delay) [301] and in an 

unnamed disorder of neurodegeneration and cerebellar ataxia [302]. Accordingly, mice 

harboring a brain-specific PNKP knockout exhibit cortical and cerebellar neuron loss and 

early postnatal death, while an MCMZ mouse model expressing an intermediate level of 

PNKP protein demonstrates generalized neurodevelopmental and maintenance defects, 

including microcephaly [303]. Homozygous mutation in TDP1 (His493Arg), a gene that is 

normally highly expressed in neuronal cells, results in spinocerebellar ataxia with axonal 

neuropathy 1 (SCAN1) [304]. A consistent feature of each of these disorders is selectivity 

for neurological tissue, likely a reflection of neuronal cell characteristics, including a post-

mitotic status that is associated with inefficient compensatory DNA repair pathways (namely 

HR), and a high metabolic demand resulting in high levels of endogenous oxidative DNA 

damage [305]. Evidence that TDP1, aprataxin, and PNKP can each localize to the 

mitochondria, which is the overwhelming source of cellular ROS, and which is largely 

reliant on BER for mtDNA repair, suggests a significant mitochondrial component to these 

diseases as well that has not yet been fully explored (reviewed in Sykora et al. [306]).

Interestingly, the above human neurological disorders are devoid of a cancer phenotype, a 

finding not necessarily expected for diseases underpinned by mutations in DNA repair 

genes. The observation that HR is upregulated in SCAN1 lymphoblastoid cells [291] 

suggests that this compensatory repair mechanism may be sufficient to suppress malignant 

transformation in proliferating cells, whereas the low replicative potential of neurons favors 

activation of cell death upon transcription machinery arrest at accumulating SSB lesions. 

Abbotts and Wilson Page 21

Free Radic Biol Med. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further study is required to fully understand how the SSBR defects manifest these 

phenotypes.

Closing Remarks

SSBR is a critical mechanism for resolving strand break forms of endogenous DNA damage, 

and our understanding of its key players and molecular coordination continues to evolve and 

become refined. Results regarding the activity and interactions of PARP1 suggest that the 

protein largely functions through its DNA binding-activated PARylation activity as a 

scaffold to recruit and coordinate the proteins that mediate repair, most notably XRCC1. 

XRCC1 shares this scaffold function, but has additional important roles that are mediated 

through its many direct interactions with its SSBR protein partners, including maintenance 

of repair factor stability, protein recruitment, and stimulation of enzymatic repair functions. 

Two of the most important XRCC1 associations appear to be with POLβ and PNKP, 

although its other interactions cannot be ignored. Despite the advances in our understanding 

of SSBR in the past thirty years, there remains much room for expanding our knowledge, as 

highlighted by the poorly understood basis for the phenotypes observed in defects of SSBR. 

We recognize, in particular, the need to better grasp the mechanics of sub-pathway choice 

(such as damage lesion specificity or post-translational modifications [237]), the role of cell 

type and replicative capacity in SSBR mechanics [305], the protein and organizational 

differences in nuclear and mitochondrial SSBR [306], and the role of polymorphic SSBR 

variants in aging and disease [307, 308].
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Highlights

• Overview of the types and consequences of prominent forms of endogenous 

DNA damage

• Detailed description of the structure, biochemistry and biology of PARP1 and 

XRCC1

• Comprehensive summary of the molecular choreography of single strand 

break repair

• Introduction of the link between defects in single strand break repair and 

neurological disease
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Figure 1. 
Overview of BER.

1. BER is initiated by substrate-specific recognition and excision of a damaged base by a 

DNA glycosylase (e.g. OGG1), creating an abasic site. 2. APE1 incises the DNA backbone 

at the AP site, generating a strand break with 3′-hydroxyl and 5′-deoxyribosephosphate 

(dRP) flanking groups. Bifunctional glycosylases with AP lyase activity can also cleave the 

abasic site, generating a 3′-α,β-unsaturated aldehyde (or 3′-phosphate) and 5′-phosphate 

termini; blocking termini require additional processing (see text). 3. The excised nucleotide 

is replaced by DNA polymerase repair synthesis. A. Short-patch repair synthesis by POLβ 
involves the incorporation of a single nucleotide. B. In the long-patch pathway, a DNA 

polymerase (δ, ε or β) incorporates 2-12 nucleotides by strand displacement synthesis in 

conjunction with the sliding clamp PCNA, creating a flap intermediate that is removed by 

FEN1 (4). 5. The DNA nick is sealed by a ligase, namely DNA LIG3α (likely in complex 

with XRCC1) or LIG1. PARP1 preumably participates in the response when DNA damage 

or repair intermediates are not engaged by the classic BER machinery.
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Figure 2. 
PARP1.

A. PARP1 domain architecture. ZnF1-3: zinc finger domains 1-3; BRCT: BRCA1 C-

terminus domain; WGR: tryptophan-, glycine- arginine-rich domain; PRD: PARP regulatory 

domain; ART: catalytic domain, highly-conserved in other ADP-ribosyl transferases.

B. Crystal structure of PARP1 DBD in complex with DNA (PDB ID 4AV1) [79].

C. Schematic of ADP-ribosylation as catalyzed by PARP1, in which an ADP-ribose 

molecule is transferred from NAD+ to an acceptor protein with the release of nicotinamide 

(NAM). Red structures represent critical residues of the PARP1 active site. Nu: acceptor 

protein nucleophile.

D. Elongation and branching reactions use the same chemistry, but vary in the orientation of 

the riboses. Elongation involves a 1′′ → 2′ ribose-ribose (A-ribose) bond. Branching 

(every ~20 ADP-ribose units) involves a 1′′′ → 2′ ribose-ribose glycosidic (N-ribose) 

bond.
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Figure 3. 
XRCC1.

XRCC1 domain architecture with crystal structures of the N-terminal domain (NTD; PDB 

ID 1XNA [166]), BRCT-I (PDB ID 1CDZ [165]) and BRCT-II (PDB ID 3PC6 [167]). Also 

indicated are sites of interaction with other BER and SSBR proteins; see text for 

abbreviations. NLS = nuclear localization sequence.
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Figure 4. 
Obstructive 5′ and 3′ strand break termini and the repair enzymes required for resolution. 

PARP1 and XRCC1 regulate the stability, complex assembly and coordination, and/or 

enzymatic activity of many of these repair factors as described in the text. Enzymes in green 

are known to interact with XRCC1, enzymes in orange are known to interact with both 

XRCC1 and PARP1, and enzymes in blue are known to interact with XRCC1 and possess a 

prototypical PAR binding site that may mediate an interaction with PARP1. PNKP: 

polynucleotide kinase 3′-phosphatase; POLβ: DNA polymerase β; FEN1: flap endonuclease 

1; APTX: aprataxin; APE1: apurinic/apyrimidinic endonuclease 1; TDP1: tyrosyl DNA 

phosphodiesterase 1.
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Table 1

Endogenous DNA damage types and associated lesions, their potential consequences, rates of formation, and 

major associated repair mechanism.

Damage type Lesion Potential consequences
if unrepaired

Rate
(per
cell
per
day)

Major
repair
enzyme

Depurination/depyrimidation
(spontaneous, glycosylase-
mediated)

Abasic site Mutagenic bypass, replication
fork stalling, conversion to DSB ~10000 APE1

Cytosine deamination Uracil (U:G) Mutagenic base mispairing
(C→T) 400

UNG,
SMUG1,
TDG

5-Methylcytosine
deamination Thymine (T:G) Mutagenic base mispairing

(C→T) 30 TDG,
MBD4

Methylation 7-
methylguanine

Tolerance, abasic site formation,
ring-opening to FaPy-G 4000 MPG

3-
methyladenine

Replication stalling,
chromosomal instability 600 MPG

Nitrosamine alkylation O6-
methylguanine

Mutagenic base mispairing
(G→A) ~200 MGMT

ROS attack, abortive TOP1
activity, etc. SSB Replication fork collapse,

conversion to DSB ~10000 SSBR

Base oxidation 8-oxo-G Mutagenic base mispairing
(G→T) ~1000 OGG1

Thymine glycol Mutagenic base mispairing
(T→C) ~500 NTH1

APE1: apurinic/apyrimidinic endonuclease 1; TDG: thymine-DNA glycosylase; UNG: uracil-DNA glycosylase; SMUG1: single strand selective 
monofunctional uracil DNA glycosylase 1; MBD4: methyl-CpG-binding domain protein 4, AAG: alkyladenine-DNA glycosylase; MPG: N-

methylpurine-DNA glycosylase; MGMT: O6-methylguanine-DNA methyltransferase; SSBR: single strand break repair; OGG1: oxoguanine 
glycosylase; 8-oxo-G: 8-oxo-7,8-dihydroguanosine; FaPy-G: 2,6-diamino-4-hydroxy-5-formamidopyrimidine; DSB: double strand break.
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