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Study Objectives: To assess the validity of sleep architecture and sleep continuity biomarkers obtained from a portable, multichannel forehead 
electroencephalography (EEG) recorder.
Methods: Forty-seven subjects simultaneously underwent polysomnography (PSG) while wearing a multichannel frontopolar EEG recording device (Sleep 
Profiler). The PSG recordings independently staged by 5 registered polysomnographic technologists were compared for agreement with the autoscored sleep 
EEG before and after expert review. To assess the night-to-night variability and first night bias, 2 nights of self-applied, in-home EEG recordings obtained 
from a clinical cohort of 63 patients were used (41% with a diagnosis of insomnia/depression, 35% with insomnia/obstructive sleep apnea, and 17.5% with all 
three). The between-night stability of abnormal sleep biomarkers was determined by comparing each night’s data to normative reference values.
Results: The mean overall interscorer agreements between the 5 technologists were 75.9%, and the mean kappa score was 0.70. After visual review, the 
mean kappa score between the autostaging and five raters was 0.67, and staging agreed with a majority of scorers in at least 80% of the epochs for all stages 
except stage N1. Sleep spindles, autonomic activation, and stage N3 exhibited the least between-night variability (P < .0001) and strongest between-night 
stability. Antihypertensive medications were found to have a significant effect on sleep quality biomarkers (P < .02).
Conclusions: A strong agreement was observed between the automated sleep staging and human-scored PSG. One night’s recording appeared sufficient to 
characterize abnormal slow wave sleep, sleep spindle activity, and heart rate variability in patients, but a 2-night average improved the assessment of all other 
sleep biomarkers.
Commentary: Two commentaries on this article appear in this issue on pages 771 and 773.
Keywords: biomarkers, in-home, scoring, sleep architecture, sleep continuity, sleep EEG, validity, variability
Citation: Levendowski DJ, Ferini-Strambi L, Gamaldo C, Cetel M, Rosenberg R, Westbrook PR. The accuracy, night-to-night variability, and stability of 
frontopolar sleep electroencephalography biomarkers. J Clin Sleep Med. 2017;13(6):791–803.

INTRODUCTION

The use of cardiovascular, tissue, and blood biomarkers are quite 
common in clinical research and clinical practice in large part 
because these measures characterize and repeatedly demon-
strate a context for the interpretation of clinical outcomes across 
treatments and conditions.1 Mounting evidence has linked 
sleep phenomenology with the manifestation of a number of 
chronic diseases such as hypertension, heart disease, and dia-
betes.2 Emerging evidence also suggests that sleep architecture 
and sleep continuity (ie, sleep biomarkers) may be beneficial in 
monitoring brain health in the setting of management of neuro-
degenerative disorders. For example, sleep spindle characteris-
tics during non-rapid eye movement (NREM) sleep have been 
associated with cognitive decline in patients with Parkinson dis-
ease,3–5 and reduced slow wave sleep has been associated with 
increased beta amyloid (directly linked to Alzheimer disease) 
concentrations in the cerebrospinal fluid.6 Because sleep spin-
dles and slow wave sleep are believed to be associated with the 
metabolic clearance systems of the brain,7 it is now argued that 
the routine monitoring of change in these measures are useful 
in evaluating the risk for, or progression of neurodegeneration.8
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Although sleep biomarkers are commonly used as outcome 
measures and covariables in clinical trials and clinical research,2 
these biomarkers are rarely used in clinical practice to predict 
outcomes or direct therapies that could improve morbidity and 
mortality. For example, the diagnosis of insomnia is commonly 
based solely on a patient’s self-report. However, there is clear 
evidence of an objectively measured insomnia subtype (ie, in-
somnia with short sleep time) which has been associated with 
increased inflammatory state profiles and significant morbidity 

BRIEF SUMMARY
Current Knowledge/Study Rationale: The accuracy of autostaged 
frontopolar electroencephalography (EEG) compared to human-
scored polysomnography (PSG) in patients with sleep disorders has 
not been established. The repeatability of sleep biomarkers acquired 
in the home of patients with insomnia is not currently known.
Study Impact: This study demonstrates that autoscored 
multichannel frontopolar EEG is as accurate as human-staged PSG, 
and ranks sleep biomarkers by variability and stability. The results 
point toward the use of sleep biomarkers for directing patient care 
and for assessing the effect of pharmacological interventions on 
sleep quality.
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and mortality.9,10 Evidence also suggests that electroencepha-
lography (EEG) based sleep time can be used to identify a “nor-
mal sleep duration” insomnia phenotype and positively predict 
those individuals most likely to respond to cognitive behavioral 
treatment intervention (the now recognized first-line therapy 
for insomnia).11 Additional phenotypes are emerging through 
the use of sleep biomarkers related to depressive and anxiety 
disorders and/or stress-related insomnia.12,13

Critical cost-benefit analysis discussion remains paramount 
when the practitioner and patient decides if and what type of 
pharmacotherapeutic sleep agent is most appropriate for treat-
ing their respective sleep complaint.14,15 Moreover, the United 
States Food and Drug Administration has continued to stress 
the importance of monitoring all classes of sleep aides due to 
concerns over safety and habituation16,17 calling for the poten-
tial clinical value for repeated-measures dose-response EEG 
studies. Although classes of drugs are currently available to 
enhance slow wave sleep (ie, carbamazipine, gabapentin, and 
tiagabine),2 the relative cost of acquiring the physiological data 
(primarily via in-laboratory polysomnography [PSG]) needed 
to objectively evaluate the long-term health benefits of drugs 
that deepen sleep, and to identify patients who may benefit 
from this type of intervention has been a limiting factor.

A prerequisite for establishing the validity and clinical util-
ity of a sleep biomarker(s) is to demonstrate its accuracy and 
its reproducibility.1 Two previous reports evaluated the accuracy 
of the Sleep Profiler device used in this study, a portable, self-
applied, multichannel recorder that could potentially meet the 
requirements for simple and routine assessment of sleep archi-
tecture and sleep continuity (ie, sleep biomarkers). One study 
compared the agreement between the autoscoring before and 
after manual editing to human-scored PSG in healthy subjects.18 
A second study evaluated the agreement with PSG in a group 
that included elderly control patients for an Alzheimer disease 
investigation.19 The first part of the current study was intended 
to demonstrate the validity of sleep biomarkers by first evaluat-
ing the accuracy based on the agreement in the autostaging from 
frontopolar sites to simultaneously acquired PSG in a group of 
patients mainly referred for probable obstructive sleep apnea. 
In the second part of this study, we evaluated the night-to-night 
consistency of sleep biomarkers identified by this device in a 
clinical population of insomnia patients vulnerable to a first-
night effect. Variability assessments were conducted to identify 
those biomarkers, which provide a high degree of between-night 
stability such that a medication dose effect might be measurable 
in a single night. The stability of an abnormality across nights 
was used to identify the sleep biomarkers that may be useful in 
predicting a phenotypic trait, or in confirming a disease state.

METHODS

Biomarker Accuracy: Part 1
For this Institutional Review Board-approved prospective ac-
curacy study, 65 subjects underwent laboratory PSG at Com-
plete Sleep Solutions in Murrieta, California, United States 
using Alice 5 systems (Philips Respironics, Monroeville, 
Pennsylvania, United States) while simultaneous multichannel 

frontopolar EEG recordings were acquired with a forehead-
worn recording device (Sleep Profiler, Advanced Brain 
Monitoring, Carlsbad, California, United States). The sleep 
laboratory study technician who conducted the study assisted 
the subject apply the recording device.

After the PSG biocalculations were performed, the recording 
device was turned on by the technician. Subjects were instructed 
to sit up in bed and slowly count to 10 so that the sound to be used 
for signal synchronization could be captured by both the PSG 
and the forehead EEG device followed by “lights out” and in-
structions to recline. The 2 sets of recordings were synchronized 
by first identifying the clock time associated with the start of a 
PSG epoch just prior to the 10-count. This clock time established 
the start of PSG recording time. The Sleep Profiler record was 
then cut so each epoch started at the same clock time as the PSG.

Forty-seven records from 35 males and 12 females (ages 
23–77 years) with a minimum of 3 hours of PSG-based record-
ing time and ≥ 85% good signal quality across all 3 frontopo-
lar EEG channels were submitted for staging by 5 independent 
scorers. Eleven records did not meet the minimum recording 
time criteria (ie, split-night studies) and 7 had ≤ 85% good EEG 
quality. Forty records were from subjects referred for a PSG 
for an assessment of sleep-disordered breathing and the rest 
were from presumably healthy controls. Scorer 1 was a regis-
tered polysomnographic technologist (RPSGT) affiliated with 
the American Academy of Sleep Medicine (AASM)-accredited 
site where the PSG studies took place. Scorers 2 and 3 were in-
dependent RPSGTs, and scorers 4 and 5 were technologists spe-
cialized in sleep staging for research studies conducted at New 
York University. All of the PSG records were scored accord-
ing to the AASM-recommended criteria. Scorer 1 staged sleep 
with a screen view that presented all of the PSG signals.20 Scor-
ers 2 through 5 staged sleep using only the EEG, electroocular 
(EOG), and electromyographic (EMG) signals (ie, blinded to 
the cardiorespiratory signals). The staged epoch was exported 
and pooled into a single cross-tabulation for all studies. Interra-
ter comparisons between the 5 scorers were made using Cohen 
kappa scores and by- and across-sleep stage agreements. Each 
scorer’s staging was compared to the autostaging, before and 
after expert editing. Accuracy was also assessed with compari-
sons between those epochs where a majority of scorers agreed 
with the autostaging, both before and after review.

Biomarker Variability and Stability: Part 2
A retrospective study was conducted on studies acquired be-
tween August 2013 and July 2016 from the Sleep Disorders Cen-
ter of Prescott Valley (Prescott Valley, Arizona, United States) 
and the Integrative Insomnia and Sleep Health Center (San Di-
ego, California, United States). Patients were briefly instructed 
on how to self-apply the Sleep Profiler based on the written in-
structions. With in-home, self-application, patients acquired 2 
nights of recordings and completed a medical questionnaire and 
sleep diary. An internet-based portal was used to enter the ques-
tionnaire responses, process the studies, enable expert review of 
the studies, and export the variables used for the analyses.

Selected records required 2 nights of data with no more than 
a 3-hour difference between each night’s recording time, and 
with at least 85% of the epochs staged with the EEG channel. 
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Records were further excluded based on missing entries in the 
medical questionnaire. These responses were used to character-
ize the cohort (Table 1) and to assess the effect of self-reported 
prescription sleeping aids and antidepressant medications on 
sleep architecture and sleep continuity. The responses were 
also used to select records that met the study’s inclusion cri-
teria of clinical insomnia. The sleep diary responses enabled 
confirmation that the use of prescription sleeping aids on the 
nights of the study matched the frequency of prescription sleep 
aids’ use reported on the medical questionnaire.

Inclusion into the insomnia cohort required an Insomnia Se-
verity Index (ISI) score ≥ 14 (n = 34),21 administration of pre-
scription sleep aids (n = 23), or having an ISI ≥ 12 with either a 
reported clinician diagnosis of insomnia (n = 4) or a concurrent 
diagnosis of depression and anxiety (n = 2). Sleep biomarkers 
were extracted from 63 patient records, after expert review. 
To reduce the influence of outliers on the first-night reliability 
analyses, 3 subjects were excluded from rapid eye movement 
(REM) latency analysis due to less than 3 minutes of REM 
across an entire night. For the analysis of autonomic activation, 
16 subjects were excluded due to less than 75% of reliable pulse 
rate recordings in each night.

Sleep biomarkers obtained from each night and averaged 
across both nights were compared to clinical thresholds to iden-
tify the stability of abnormal sleep characteristics. When avail-
able, abnormality was defined by the 10th or 90th percentile 
age- and sex-matched reference values reported for the Sleep 
Heart Health Study.22 For the remaining sleep measures, refer-
ence thresholds were obtained using the first or third interquar-
tile cutoffs from a group of healthy controls. Inclusion in this 
healthy control group (n = 48) required not taking prescription 
sleeping aids or antidepressants, no diagnosis of obstructive 
sleep apnea, having an ISI score ≤ 12, and daytime somnolence 
(Epworth Sleepiness Scale), depression (Patient Health Ques-
tionnaire-9) and anxiety (Generalized Anxiety Disorder 7-Item) 
scores ≤ 10. The controls included records acquired by Wash-
ington University for the Knight Alzheimer’s Disease Research 
Center (16 males and 18 females, ages 65 to 89 years) and by 
Advanced Brain Monitoring (9 males and 5 females, ages 24 
to 44 years). Subjects 70 years or older were excluded from the 
interquartile range calculations for sleep spindle activity.

Intraclass correlations were used to compare the reliability 
of the first-night sleep quality measures. Bland-Altman plots 

were used to assess potential bias resulting from a first-night 
effect; t tests and Fisher exact tests were applied to the nor-
mally distributed/transformed variables.

Biomarker Measurement
Hardware
The Sleep Profiler used in this study was a battery-powered re-
corder designed to acquire 3 frontopolar EEG signals between 
AF7-AF8, AF7-Fpz, and AF8-Fpz (Figure 1). The EEG signals 
were sampled at 256 Hz with a gain of ± 1000 µV, and filtered 
with a 0.1-Hz high-pass and 80-Hz low-pass filter. The scalp/
electrode impedances were obtained at each sensor site at the 

Table 1—Characteristics of the night-to-night variability 
study patient cohort.

Demographic
Age, years, mean ± SD 60.7 ± 14.7
Females, % (n) 62% (39)
BMI, kg/m2, mean ± SD 27.3 ± 5.7

Questionnaire
Epworth Sleepiness Scale score, mean ± SD 6.0 ± 4.9
Insomnia Severity Index, mean ± SD 18.4 ± 4.7
Depression score (PHQ-9), mean ± SD 10.0 ± 5.1
Anxiety score (GAD-7), mean ± SD 7.4 ± 5.2

Medications 
Blood pressure, % (n) 40% (25)
Hypnotic sleeping aids, % (n) 37% (23)
Antidepressant, % (n) 35% (22)
Antianxiety, % (n) 18% (11)
Narcotic pain, % (n) 16% (10)
Stimulant, % (n) 6% (4)

Comorbidities
Insomnia, % (n) 65% (41)
Depression, % (n) 59% (37)
Obstructive sleep apnea, % (n) 52% (33)
Anxiety, % (n) 44% (28)
Hypertension, % (n) 43% (27)
Restless leg syndrome, % (n) 16% (10)
Diabetes, % (n) 13% (8)
Heart disease, % (n) 10% (6)

BMI = body mass index, GAD-7 = Generalized Anxiety Disorder 7-Item, 
PHQ-9 = Patient Health Questionnaire-9, SD = standard deviation.

Figure 1

Left: Depiction of Sleep Profiler worn in a home setting. Right: Sensor strip electrode configuration for the Sleep Profiler.
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start of the study and every one-half hour throughout the night. 
The photoplethysmography (sampled at 100 Hz) obtained from 
the forehead was used to calculate the pulse rate at 1 Hz. Snor-
ing sounds acquired with an acoustic microphone were sam-
pled with firmware at 2 kHz, root mean square filtered to create 
a sound envelope that was downsampled to 10 Hz and saved in 
the study record. A triaxial accelerometer was sampled at 100 
Hz, with the X|Y|Z signals converted to 360 degree angles and 
saved at 10 Hz.

For the in-home studies, patients were instructed to wipe 
their forehead thoroughly with an alcohol wipe prior to affix-
ing the device to obtain acceptable skin-sensor impedances. 
Voice messages alerted patients when the impedances were too 
high at the beginning of the night. Patients replaced the fore-
head sensors prior to night 2.

Software
Automated sleep staging was applied to sleep markers ex-
tracted from each 30-second epoch for the 3 frontopolar EEG 
channels (Figure 2). After rejection of periods when the ab-
solute amplitude is ≥ 500 µV, the signals were notch filtered, 
and then infinite impulse response band pass-filtered to obtain 
16 Hz samples of the power values for delta (1–3.5 Hz), DeltaC 
(delta power corrected for ocular activity), theta (4–6.5 Hz), 
alpha (8–12 Hz), sigma (12–16 Hz), beta (18–28 Hz), and EMG 
bands (> 40 Hz with a 80 Hz, 3 dB rolloff). A second set of 
power values was obtained after application of a 0.75-Hz high-
pass filter. Both filtered and unfiltered power spectral data 

from the three frontopolar EEG channels were used to charac-
terize and stage sleep.

If at least 15 seconds of valid data were available, the AF7-
AF8 channel was used for autostaging, followed by the AF7-
Fpz and AF8-Fpz channels. When either the AF7-Fpz or the 
AF8-Fpz signal was used for staging, the power spectra were 
increased to compensate for signal attenuation attributed to 
amplifier common mode rejection resulting from the substan-
tially shorter interelectrode distances.

The power spectra values, averaged from 16 to 4 Hz, were 
used to detect sleep spindles, characterized by spikes in the ab-
solute and relative alpha and sigma power that met empirically 
derived thresholds designed to ensure there was a sufficient 
sigma component (Figure 3). The minimum spindle length 
was 0.25 Hz with no maximum spindle length. To reduce the 
likelihood of misclassifying pseudospindles, the beta and EMG 
power bands required simultaneous suppression relative to the 
alpha and sigma power. When the sigma power peaked prior to 
the alpha power, the spindles were classified as fast-dominant. 
The spindle length (ie, from the start to the end of the spindle) 
was determined by either the alpha or sigma power crossing a 
minimum absolute power threshold. Spindle duration was tal-
lied as the sum of all spindle lengths. Cortical arousals were 
detected when 3 or more seconds of absolute and relative alpha 
power exceeded the median alpha power from the preceding 
2 minutes. Increased absolute and relative EMG powers were 
similarly compared to median values to detect micro-arousals. 
The duration of detected spindles and arousals were marked 

Figure 2—Presentation of a 10-minute screen of the Sleep Profiler signals.

Assigned primary and secondary staging of 30-second epochs marked , upper gray secondary stripes 
 identify epochs to be reviewed, with stripes identifying spindles, cortical arousals, and autonomic activations. Note changes in amplitudes in 

the frontopolar EEG signals labeled LEOG, REOG, and EEG and reduction in sigma power in transitions from NREM to REM. In this example secondary 
stripes identify the need to review the transition between NREM and REM. Low amplitude EEG in combination with phasic REM patterns to the right of 
the transition confirm the REM period. EEG = electroencephalography, EMG = electromyography, EOG = electrooculography, NREM = non-rapid eye 
movement; REM = rapid eye movement.
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with a stripe in the staged channel. If a spindle occurred during 
a cortical arousal, the spindle was not marked.

Patterns in the AF7-Fpz and AF8-Fpz signals that character-
ized and distinguished slow eye rolls from phasic REMs were 
recognized by computing Pearson correlations of the 6.5 Hz 
zero phase infinite impulse response filtered outputs. The dis-
tinction between elevated delta power resulting from phasic 
REM versus slow wave sleep was made by comparisons of the 
filtered and unfiltered DeltaC.

Autonomic activation events were detected when the pulse 
rate changed by 6 or more beats per minute compared to the 
pulse rate 10 seconds prior and/or 10 seconds subsequent to 
the current second. Movement intensities from 0 to 5 were 
assigned to each second based on the sum of the actigraphy 
changes across the X|Y|Z axes. Position changes typically re-
sulted in a movement ranking of 3 or more. For each epoch, 
the average magnitude (dB) and the percentage of time snoring 
were calculated. Crescendo and loud snoring events terminat-
ing with a significant decrease in sound or a single loud snore 
(ie, gasp) were identified as likely indicators of sleep-disor-
dered breathing for visual inspection.

For each 30-second epoch, the power spectra values were 
averaged, and the number of arousals, spindles, movements, 
snoring, and other patterns tallied. These data in combina-
tion with ratios of the mean power spectra were used to as-
sign sleep stages. A discriminant function analysis was used 
to differentiate stages N2 and N3. The number of seconds (ie, 
slow wave seconds) that delta power exceeded a threshold 
equivalent to ± 30 µV was primarily used to stage N3. Epochs 

with relatively high beta and low EMG power were classified 
as tonic REM and distinguished from tonic stage N1, based 
on temporal proximity to epochs with phasic REM. Brief but 
intense periods (eg, < 5 seconds) of increased EMG power 
typically resulted in an epoch being staged awake. A sub-stage 
labeled Light N2 was assigned to N2 epochs with no spindles 
and characterized with either a K-complex or dominant theta 
activity with relatively elevated levels of alpha or EMG power.

In the absence of a sleep spindle, the first sleep epoch fol-
lowing an awake epoch was staged N1. Epochs with at least 1 
sleep spindle and no arousal, 2 sleep spindles and 1 arousal, or 
at least 3 sleep spindles with 2 cortical arousals were staged 
N2. Epochs with a cortical arousal or microarousal and no 
sleep spindle, or 2 arousals with 2 spindles were staged N1.

A number of additional rules and thresholds were developed 
to identify epochs that should be visually inspected. During 
visual inspection, these epochs were identified by the presen-
tation of “primary” and “secondary” stage stripes (Figure 2). 
The greatest number of epochs assigned primary and second-
ary strips were those transitioning between awake and sleep. 
The software enabled selection of a setting, applied to the entire 
record that biased staging toward an increased classification of 
sleep. This awake = low setting reduced the editing needed for 
individuals with severe disruptions attributed to sleep-disor-
dered breathing. The default setting applied a sequence of dis-
criminant function analyses (awake versus N1, awake versus 
N2, and awake versus REM) to reassign the primary stage as 
awake, and provide a secondary stripe based on the original 
sleep stage. Epochs staged REM during the first 10 minutes after 

Figure 3—Three 30-second epoch screenshots of frontopolar EEG signals AF7-Fpz, AF8-Fpz and AF7-AF8 labeled LEOG, 
REOG and EEG from two elderly healthy controls.

Top: Epoch screenshot from a 74-year-old woman with total of 10.9 seconds of sleep spindle activity (sum of all blue spindle stripe durations). Middle and 
bottom: Screenshot from a 74-year-old man with a very low total sleep spindle duration < 5 seconds with one potential event not marked due to excessive 
beta power relative to the alpha and sigma (middle), and one potential sleep spindle with insufficient sigma power accompanying the alpha burst (bottom). 
EEG = electroencephalography, EMG = electromyography, EOG = electrooculography.
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sleep onset were assigned a primary stage N1 and a secondary 
stage of REM. Intermittent NREM epochs within a block of 
REM epochs were assigned REM as the primary and NREM as 
the secondary stage. Intermittent REM epochs in proximity to 
multiple awake epochs were assigned primary and secondary 
stages of N1 and REM, respectively. Epochs with large phasic 
REM but staged NREM due to the incomplete correction for 
ocular activity were assigned an REM secondary stage.

Sleep onset was based on 4 consecutive sleep epochs during 
the initial 5 minutes of recording time, and 3 consecutive epochs 
after 5 minutes of recording time. All epochs were staged awake 
prior to sleep onset. The cortical and autonomic indexes were 
based on the total number of events divided by sleep time. Auto-
nomic activation indexes were additionally computed for events 
that occurred during NREM and REM sleep time. Spindle and 
slow wave events were divided by the time staged N2 and N3.

For visual inspection, the signal acquired from AF7-AF8 was 
labeled EEG, default scaled to ± 50 µV and presented with the 
ocular activity removed. The signals from AF7-Fpz and AF8-Fpz 
were labeled LEOG and REOG and default scaled to ± 75 µV.

Expert Review
One rater visually inspected the frontopolar EEG signal wave-
forms along with the presentations of the alpha, sigma, beta, 
and EMG power to confirm the veracity of the autostaging near 
REM transitions and when epochs were assigned secondary 
stripes (Figure 2). Minimal editing was made when the pri-
mary/secondary stripes were awake/N1 in the absence of snor-
ing with the goal to: (1) adjust the beginning of the study when 
necessary if the device was turned on prior to lying in bed; 
(2) review the autoscoring to accurately identify sleep onset, 
and the EMG power should be lower than the alpha, sigma, 
and beta; (3) review epochs with gray “secondary” stripes; 
(4) check the start and end of all REM periods, and look for 
missed REM at the end of the first sleep cycle; (5) inspect the 
dark blue signal used for staging when it includes segments 
marked red (rejected signals), ie, gross differences between the 
LEOG and REOG indicate artifact that may cause stage N3 
or REM to be incorrectly staged; and (6) adjust the end of the 
study if the device was inadvertently left on (signals are flat). A 
detailed description of the sleep staging rules and application 
of expert editing is provided in the training video.23

RESULTS

Accuracy
After pooling of all staged PSG epochs, the mean interscorer 
agreements between the 5 technologists were 75.9% over-
all, with 90.1%, 51.3%, 75.5%, 67.2%, and 91.1% for stages 
awake, N1, N2, N3, and REM, respectively. The mean kappa 
score across the 10 comparisons was 0.70 (range 0.61 to 0.78). 
Scorers 1, 4, and 5 staged over 4.5 times more N1 epochs than 
scorer 2, and over 2.5 more N1 epochs than scorer 3. As com-
pared to scorers 1, 4, and 5, scorers 2 and 3 staged over 2.5 
times more N3 epochs.

When unedited default autostaged epochs were compared to 
each of the 5 scorers, the mean overall agreement was 71.3%, 

and 80.9%, 22.9%, 79.7%, 74.9%, and 71.5% for stages awake, 
N1, N2, N3, and REM, respectively. After expert review, the 
mean overall agreement improved to 73.9%, and to 85.3%, 
27.9%, 80.6%, 75.3%, and 77.6% for stages awake, N1, N2, N3, 
and REM, respectively. The mean autostaging kappa score in-
creased from 0.63 (range 0.62–0.65) to 0.67 (range 0.65–0.68) 
after visual review.

Table 2 and Table 3 compare the majority agreement in 
staging among the 5 scorers to the autostaging without and 
with the increased classification of awake time (which affected 
3% of the epochs). Table 4 presents comparisons after the au-
tostaging was expert reviewed. The primary benefit of techni-
cal review was improved sensitivity and specificity between 
REM and awake, and transitions between REM and N2. With 
each step, the overall agreements increased from 75.8% to 77.1 
and 80.0%. As a result of the expert review, 3.3% of the total 
number of epochs was changed.

In contrast to the contingency tables, which compared ex-
act agreement of each epoch, Table 5 compares the agreement 
among sleep architecture biomarkers while allowing for dif-
ferent epochs to contribute to the method-specific percentage 
of staged time, and incorporating method specific differences 
in the staging of sleep and wake. Although minimal differ-
ences were observed across stages awake and REM, there was 
a threefold difference across scorers in the percent time staged 
N1 and N3. Differences resulting from the 3 autoscoring meth-
ods were far less than that of PSG interscorer variability.

The scatterplots in Figure 4 show a strong concordance 
between majority agreement and the autostaging after expert 
review for all stages except N1. The mean biases point to the 
autoscoring overreporting awake time, and underreporting 
stages N1 and REM, compared to majority agreement.

Variability
Figure 5 presents scatterplots displaying the night-to-night 
variability and between-night bias for biomarkers useful in 
characterizing sleep. Sleep spindles, autonomic activation 
index, and slow wave sleep had the most consistent patterns, 
whereas sleep time, sleep latency, and wake after sleep onset 
had the greatest night-to-night variability. The mean alpha and 
sigma power across stages N2 and N3 exhibited very limited 
night-to-night variability (intraclass correlation of 0.97 and 
0.98) given the relative prominence of these frequencies dur-
ing sleep spindles and slow wave sleep.

There was significantly greater sleep spindle activity, and 
greater sigma and beta power across stages N2/N3 in those 
taking antidepressants (P < .01). Patients taking antihyperten-
sive medications exhibited significantly less stage N3, coupled 
with increased Light N2, and lower delta, theta, alpha, and 
sigma power across stages N2/N3 (P < .001). Additionally, 
patients taking antihypertensive medications exhibited lower 
autonomic activation during REM sleep (P < .03). 

Stability
The stability of the sleep biomarkers was evaluated by compar-
ing individual results to clinical thresholds used to assist with 
clinical interpretation (Table 6). Biomarkers with the strongest 
trait characteristic would be consistently normal or abnormal 
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on nights 1 and 2 (ie, stable) despite the night-to-night vari-
ability. The biomarkers with the highest stability were stage 
N3/slow wave sleep, spindle activity, and autonomic activa-
tion; sleep biomarkers were associated with chronic disease 
and neurodegeneration.2,8 For measures with lower stabilities, 
2-night averages were needed to determine a normal/abnor-
mal state in more than 25% of patients. Short sleep time, based 
on fewer than 6 hours, had the least night-to-night stability, 
and there were substantial differences in the proportion of 
those classified as abnormal based on the 10th percentile ver-
sus fewer than 6 hours of sleep across 2-night averages (14% 
versus 52%, respectively). A greater number of patients were 

identified as long sleepers based on the 90th percentile com-
pared to the more than 10-hour threshold; however, neither 
measure could be thoroughly evaluated, because the inclu-
sion criteria required complaints of chronic insomnia. Use of 
prescription sleeping aids did not influence the distributions 
of cases classified as either normal or abnormal. Based on the 
stability of the majority of sleep biomarkers, a 2-night study 
appears necessary for accurate profiling or assessment of 
treatment outcomes.

A framework for interpreting abnormal sleep biomarkers 
within the construct of a clinical evaluation or research inves-
tigation is presented in Table 7.

Table 2—Contingency table of agreement between majority PSG staging by human scorers versus Sleep Profiler autostaging 
of pooled epochs (awake = low).

Majority of scorers staged as:
Autostaging

Awake (%) N1 (%) N2 (%) N3 (%) REM (%) No. Epochs
Awake 75.2 34.2% 3.5% 0.4% 11.5% 7,749
N1 12.6 27.6% 7.2% 0.1% 4.1% 3,057
N2 5.6 20.4% 80.4% 20.0% 3.2% 14,190
N3 0.2 0.4% 3.9% 79.1% 0.7% 3,705
REM 2.9 11.6% 3.3% 0.0% 77.4% 4,118
No consensus 3.5 5.9% 1.6% 0.4% 3.0% 816

No. epochs 7,590 3,032 15,232 3,861 3,920 33,635

PSG = polysomnography.

Table 3—Contingency table of agreement between majority PSG staging by human scorers versus Sleep Profiler autostaging 
of pooled epochs (awake = default).

Majority of scorers staged as:
Autostaging

Awake (%) N1 (%) N2 (%) N3 (%) REM (%)
Awake 82.2 35.9 4.0 0.5 5.8
N1 9.6 26.1 4.7 0.4 8.7
N2 3.8 33.2 85.0 16.0 12.3
N3 0.2 0.2 5.4 82.3 0.0
REM 4.2 4.7 0.8 0.8 73.2
No consensus 3.8 5.6 1.5 0.4 2.4

No. epochs 8,052 3,238 14,404 3,721 4,220

PSG = polysomnography.

Table 4—Contingency table of agreement between majority PSG staging by human scorers versus Sleep Profiler expert edited 
default autostaging of pooled epochs.

Majority of scorers staged as: 
Expert edited autostaging

Awake (%) N1 (%) N2 (%) N3 (%) REM (%)
Awake 86.8 32.2 3.0 0.3 1.9
N1 9.3 32.6 5.3 0.6 8.8
N2 2.7 33.3 86.0 16.2 9.3
N3 0.1 0.1 5.4 82.9 0.0
REM 1.2 1.8 0.3 0.0 80.0
No consensus 3.4 6.3 1.6 0.5 2.0

No. epochs 8,018 3,262 14,425 3,723 4,201

PSG = polysomnography.
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DISCUSSION

This study demonstrated that sleep biomarkers obtained from 
the multichannel frontopolar EEG recording device (Sleep 
Profiler) are valid, accurate, and reproducible. Three analyses 
were applied to assess the autostaging accuracy of frontopolar 
recordings compared to human scored PSG-based sleep archi-
tecture measures: direct agreement of epoch-by-epoch staging, 
total staged sleep times, and proportional agreement based on 
the percentages of staged time. Our study supports previously 
published studies reporting a fairly broad range of interscorer 
variability.24,25 Thus, our findings also underscore the difficulty 

in validating the accuracy of autostaging software against 
the current gold standard practice of technician-based visual 
scoring24,26–28 or by RPSGT certification,29–31 even when the 
same equipment and software is used.

The interscorer variability in staging N1 and N3 observed 
in this study is consistent with reports from the AASM Inter-
Scorer Reliability Program.25 One of the challenges of vali-
dating autostaging is overcoming the inherent scorer bias. If 
this study had been conducted where all of the scorers were 
trained to stage sleep in a manner similar to that of scorers 2 
and 3, the autoscoring would have underreported stage N3 and 
overreported stage N1. Conversely, if the training reflected the 

Figure 4—Scatterplots of the relationship between minutes of sleep and awake measured by majority agreement of staging 
from PSG versus staging from default autoscored and expert edited frontopolar EEG.

EEG = electroencephalography, ICC = intraclass correlation; PSG = polysomnography, TST = total sleep time

Table 5—Comparisons of the percentages of sleep staging time across pooled epochs by- and across-human scorers, and by 
autoscoring.

Awake (%) N1 (%) N2 (%) N3 (%) REM (%)
Human Scorers

Scorer 1 – RPSGT 22.6 19.9 55.4 10.6 14.1
Scorer 2 – RPSGT 22.1 4.0 59.6 22.4 13.9
Scorer 3 – RPSGT 25.4 7.1 48.6 26.5 17.8
Scorer 4 – Research tech 21.5 18.2 57.4 7.5 16.9
Scorer 5 – Research tech 23.2 19.6 51.4 12.9 16.1

Majority of Scorers 23.6 12.2 56.6 14.8 16.4

Autoscored
Awake-low 22.3 11.2 58.8 15.1 15.4
Awake-default 25.3 10.5 59.0 15.7 15.2
Expert-edited 25.0 11.6 59.6 15.7 14.5

RPSGT = registered polysomnographic technologist.
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styles of scorers 1, 4, and 5, the autoscoring would overreport 
stage N3 and underreport stage N1. In the absence of a true 
gold standard, the autoscoring achieved a level of “Goldilocks” 
accuracy.32

Autoscoring combines speed and consistency, with the ca-
pability to further improve results with a focused, relatively 
brief technical review.18,26 In this study, changes in alpha, 
sigma, beta, and EMG power viewed on a 10-minute screen en-
able recognition of 30-second epochs that should be manually 

inspected due to transitions between NREM and REM or be-
tween sleep and wake. Autodetected sleep spindles and arous-
als were visually marked in the record, a technique shown to 
reduce interscorer variability.29 The presentation of second-
ary stripes assisted in the identification of epochs that might 
benefit from visual inspection, a concept similar to the editing 
helper feature described by Younes et al.33 A total of 3.3% of 
autostaged epochs were changed, with the greatest effect noted 
in the improved staging of REM, N1, and awake, specifically 

Figure 5—Scatterplots displaying night-to-night variability of sleep architecture and sleep continuity measures.

All intraclass correlation (ICC) P < .0001. WASO = wake after sleep onset.
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Table 6—Stability of abnormal sleep biomarkers in the patient cohort when compared to reference values.

Sleep Quality Metrics 

Clinical Thresholds N1 and N2 Both Night Stability
N1 & N2 

N1 and N2 Averaged

Abnormal 
based on

Abnormal 
range Normal Abnormal Normal Abnormal

Highest stability
Sleep spindle duration, min < IQR1 < 70 1.6 46% 44% 90% 54% 46%
Stage N3, % < 10th 1.3–9.5 47% 40% 87% 49% 51%
Light N2, % > IQR3 21 64% 22% 86% 73% 27%
Autonomic activation index < IQR1 11.4 51% 34% 85% 62% 38%
Snoring > 50 dB, % > IQR3 9 52% 33% 85% 60% 40%

Moderate stability
Snoring > 40 dB, % > IQR3 18 41% 43% 84% 49% 51%
Awakening index > 90th 4.6–5.9 33% 49% 82% 43% 57%
Wake after sleep onset, min > IQR3 95 65% 16% 81% 75% 25%
Sleep latency, min < 10th 31–47 73% 6% 79% 86% 14%

Lowest stability
Cortical arousal index > 90th 19–27 62% 11% 73% 71% 29%
Stage N2, % long > 90th 64–76 46% 27% 73% 63% 37%
Stage N1, % > 90th 6.4–10.6 24% 49% 73% 35% 65%
Sleep time, h short < 10th 4.2–5.3 64% 6% 70% 86% 14%
REM latency, min > 90th 119–150 48% 20% 68% 67% 33%
Sleep efficiency, % < 10th 69–79 54% 14% 68% 71% 29%
Stage REM, % short < 10th 12.6–14.6 48% 19% 67% 65% 35%
Sleep time, h short < 6.0 24% 32% 56% 48% 52%

Biased toward normalcy
Sleep time, h long > 10.0 97% 2% 99% 97% 3%
Stage REM, % long > 90th 27–30 95% 0% 95% 97% 3%
Stage N2, % short < 10th 35–48 94% 3% 97% 97% 3%
Sleep time, h long > 90th 7.1–7.5 67% 8% 75% 95% 5%

IQR = interquartile range.

Table 7—Clinical and research framework for the evaluation/investigation of associations between sleep biomarkers and 
pharmacotherapy, chronic medical, neurodegenerative, and psychiatric conditions.

Insomnia
Cardio-

vascular Diabetes Obesity
Hyper-
somnia

Neurode-
generation Pain

Psychiatric 
or Mood

Pharmaco-
therapy 

Overall Sleep Patterns
Sleep time        

Sleep latency   

WASO  

Sleep Architecture
Slow wave sleep         

Sleep spindles       

Stage 1       

K-complex/light N2       

REM    

Sleep Continuity
Cortical arousals      

Autonomic activation         

Awakenings       

Other Sleep Measures
Loud snoring      

Movement    

WASO = wake after sleep onset.
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between awake and REM and transitions between REM and 
stage N2, consistent with a previous report.18 The Sleep Profiler 
provides the capability to optionally acquire submental EMG; 
however, the accuracy results in this study were achieved with-
out use of this signal. Studies are underway to evaluate the 
benefit of including this signal for the in-home assessment of 
REM behavioral disorder, another sleep biomarker associated 
with neurodegeneration.34 After expert editing, the kappa score 
between frontopolar sleep EEG and majority agreement from 
PSG increased to 0.67, approximately the same as the mean 
kappa score from the 10 comparisons between the 5 scorers 
(0.70). Table 6 results suggest that accuracy may be further im-
proved with more targeted editing during transitions between 
REM and N1.

Due to the challenges of human application of the N1 stag-
ing rules, a 5-fold difference in the percentage of epochs staged 
N1 was observed across scorers. Although there was relatively 
poor agreement between epochs scored by majority agree-
ment and the autostaging, the percent times staged N1 for the 2 
methods were quite similar, suggesting the discrepancies were 
related to the timing rather than inaccuracy in the recognition 
of light NREM sleep. Given the difficulty in human staging N1 
and N3, it is likely that computer-assisted scoring is required 
to further characterize sleep biomarkers based on the depth 
of NREM.35,36 For this study, a subtype of stage N2 (ie, Light 
N2) was used to classify epochs with K-complex or dominant 
theta activity with relatively elevated levels of alpha or EMG 
power, and absent spindle activity. The staging of Light N2 ex-
hibited less night-to-night variability than the overall stage N2 
(intraclass correlation 0.82 versus 0.77). Light N2 was highly 
stable across both nights and it increased significantly in those 
taking antihypertensive medications, whereas deeper stage N2 
did not. This finding not only validated Light N2 as a unique 
biomarker for depth of NREM sleep, but also highlighted the 
benefit of subcharacterizing NREM sleep. The user option 
that increased autoscored sleep time resulted in improved 
concordance between apnea-hypopnea indexes obtained by 
PSG and with Sleep Profiler with cardiorespiratory signals 
was also evaluated.

Slow wave sleep has emerged as an important sleep bio-
marker, given its association with numerous chronic diseases 
and neurodegeneration.2,7,8 When these patients were stratified 
by condition, reduced slow wave sleep was noted in those with 
hypertension, but not depression, sleeping aids, or obstructive 
sleep apnea. It is unlikely, however, that the clinical applica-
tion of this sleep biomarker can be broadened when the hu-
man scoring of standard PSG is not only time consuming and 
expensive, but unreliable. In this study the manual staging of 
N3 ranged from 7.5% to 26.5% of the pooled epochs, approxi-
mately equivalent to the 10th and 90th percentile cutoffs for 
healthy adults.22 For example, 2 sleep research technicians who 
underwent the same rigorous sleep staging training protocol as 
part of an academic research program still demonstrated rela-
tively large differences in detected N3 sleep (8.1% and 12.9%, 
respectively). Conversely when PSG epochs staged N3 by ma-
jority agreement were compared to the autoscored forehead 
EEG, there was less than a 1% difference. Because the manual 
editing of autoscored N3 is only recommended for epochs with 

artifact or arousals, the accuracies were similar for the uned-
ited or edited results.

The benefit of multichannel frontopolar EEG is that all of 
the signal elements needed to visually stage sleep are present, 
including ocular, spindle, K-complex, slow wave, and cortical 
activity. The differential recordings acquired with Sleep Pro-
filer were selected because of the simplicity with user applica-
tion and reduced likelihood of study failure across multinight 
studies. Additionally, differential recordings do not require 
removal of heartbeat artifact that can contribute to artifact-
induced increases in theta power, and result in the autostaged 
misclassification of stage N2. The disadvantage of differential 
recordings is that the signal amplitudes are attenuated and thus 
the expected amplitudes used to visually or autostage sleep 
must be scaled (eg, 75 versus 60 µV for stage N3). The Sleep 
Profiler sensor placements enabled acquisition of frontopolar 
EEG that can be staged as well as used to detect ocular activity 
for the differentiation of stages N1 from REM. As compared 
to the conventional EOG sensor sites, the frontopolar EEG sig-
nals include blink activity, but not saccades.

Despite the differences in sleep time, sleep spindle duration 
showed the greatest night-to-night concordance, suggesting a 
very strong trait effect. The interscorer agreement achieved by 
manual sleep spindle staging of 115-second segments in one 
study was superior to the reliability obtained by human scor-
ing of cortical arousals in another study.24,37 The accuracy of 
human sleep spindle staging under more realistic conditions, 
however, would be expected to decline as a result of scorer 
fatigue, given 5 times the number of sleep spindles were ob-
served in our typical patient record as compared to cortical 
arousals (mean: 500 versus 100, maximum: 2900 versus 280, 
respectively). The approach used in this study to autodetect 
sleep spindles relied on patterns of the power spectral density, 
rather than extracting spindle patterns with filtering.38 It is 
likely that the sleep spindle length/duration measured by this 
power spectra approach will be less than by filtering, because 
of the rule that marks the spindle length, and as a result of 
elimination of 11–13 Hz spindles (because of the requirement 
for peaks in both the alpha (8–12 Hz) and sigma (12–16 Hz) 
power bands. The sleep spindle detection algorithms used in 
this study were based on thresholds selected for differential 
frontopolar EEG. Further research is required to compare the 
automated sleep spindle detection by this approach with auto-
mated routines applied to more conventional EEG spindle de-
tection sites,38 and to evaluate the changes in this measure as it 
relates to age, sex, and neurodegeneration.3–5,39

A limitation of this study was the relatively dichotomous 
age representation of our healthy controls with very few par-
ticipants in this cohort being between the ages of 40 and 60 
years. Cognizant of the limitation, we excluded those older 
than 70 years when establishing the sleep spindle reference 
values. This enabled exclusion of all but one of the patients tak-
ing antihypertensive medication but may have excluded elderly 
women with sleep spindle activity appropriate for inclusion.40

This study introduced a highly stable sleep biomarker that 
combined sleep stage and cardiac autonomic tone. In the 
patients, the autonomic activation index (AAI), a measure-
ment of brief but important episodic changes in pulse rate, 
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was found to be 2 times greater during NREM sleep as com-
pared to REM sleep, a difference similar to the NREM and 
REM ratio of low- to high-frequency heart rate variability 
(HRV).41,42 The night-to-night variability of the AAI and 
HRV were also similar during both NREM sleep (0.82 ver-
sus 0.90) and REM sleep (0.80 versus 0.89).41 These findings 
suggest that both low HRV and low AAI are measuring in-
creased sympathetic dominance,43 a finding supported by the 
lower REM AAI in patients taking antihypertensive medica-
tions. Each autonomic activation event requires a 10-second 
detection window, thus tallying and computing an index for 
REM and NREM is possible in patients with limited REM 
time or who suffer from highly fragmented sleep. By com-
parison, obtaining a valid stage-dependent HRV measure is 
more challenging, given the need for a 5-minute detection 
window. Further investigations are needed to determine if the 
AAI during REM and NREM is associated with blood pres-
sure, inflammation, and/or hypothalamic-pituitary-adrenal 
systems. If so, this biomarker may assist in subtyping patients 
with insomnia exacerbated by comorbid anxiety or depres-
sion. Longitudinal studies might benefit from the inclusion 
of the AAI biomarker combined with sleep spindle activity to 
monitor cognitive decline in old age, similar to the contribu-
tions made by measuring HRV.44

To achieve the study objectives, a prospectively acquired 
dataset was used to assess accuracy, and a retrospectively ac-
quired dataset was used to assess sleep biomarker variability 
and stability. This study was limited by the fact that patients 
with different combinations of comorbidities, medications, etc. 
were included. For example, patients with depression disorders 
would be expected to have long REM sleep times, yet only 3% 
did, possibly because 35% were taking antidepressants, which 
suppresses REM sleep time. Many of the patients reported 
depressive or anxiety disorders, yet few had long sleep times 
(ie, > 10 hours), likely as the result of overlapping use of antide-
pressant and sleeping aids. At the same time, the heterogeneity 
of our sample size provides a more true to life sample of the 
relatively common complexity of comorbid conditions most 
sleep providers encounter in their sleep patient population.

Sleep biomarkers have been associated with a range of med-
ical and neurodegenerative conditions and a number of medical 
therapies (Table 7); however, the neurobiological mechanisms 
underlying these associations remain poorly understood. In-
terpretive sleep biomarker profiling can serve as a critical 
step toward developing precision-based clinical protocols 
to improve the outcomes of patients frequently experiencing 
various combinations of these sleep and medical conditions. 
Treating patients with complex chronic medical conditions re-
quires knowledge of the potential interplay between iatrogenic 
medications effects and sleep. For example, we found that anti-
hypertensive medications were associated with increased sym-
pathetic dominance during REM and suppressed slow wave 
sleep. Given the evidence suggesting learning, memory, and 
overall neuroprotective/health benefits of slow wave sleep, 
further studies are needed to examine which classes of anti-
hypertensive medications (eg, alpha or beta blockers, angio-
tensin-converting-enzyme inhibitors, etc.) contribute most to 
the manifestation of these abnormal sleep biomarkers. Studies 

utilizing this biomarker approach are also needed to determine 
whether medications associated with enhanced slow wave sleep 
or sleep spindle activity (or other positive sleep biomarker fea-
tures) can provide the same neuroprotective and overall health 
benefits as natural sleep.

CONCLUSIONS

This study confirms the validity of multichannel frontopolar 
EEG recordings for use in clinical or research applications, and 
suggests that autoscoring may be superior to human scoring 
of sleep biomarkers. Furthermore, our findings indicate that 
1 night of recording with Sleep Profiler is sufficient to char-
acterize abnormal slow wave sleep, spindle activity, and heart 
rate variability in patients; however, a 2-night average would 
improve the assessment of abnormality for the balance of sleep 
architecture and sleep continuity biomarkers.

ABBRE VI ATIONS

AAI, autonomic activation index
AASM, American Academy of Sleep Medicine
BMI, body mass index
EEG, electroencephalography
EOG, electrooculography
EMG, electromyography
HRV, heart rate variability
ICC, intraclass correlation
NREM, non-rapid eye movement
PSG, polysomnography
REM, rapid eye movement
WASO, wake after sleep onset
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