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The existence of cooperation, or the production of public goods, is an evol-

utionary problem. Cooperation is not favoured because the Prisoner’s

Dilemma (PD) game drives cooperators to extinction. We have re-analysed

this problem by using RNA viruses to motivate a model for the evolution of

cooperation. Gene products are the public goods and group size is the

number of virions co-infecting the same host cell. Our results show that if

the trade-off between replication and production of gene products is linear,

PD is observed. However, if the trade-off is nonlinear, the viruses evolve

into separate lineages of ultra-defectors and ultra-cooperators as group size

is increased. The nonlinearity was justified by the existence of real viral

ultra-defectors, known as defective interfering particles, which gain a non-

linear advantage by being smaller. The evolution of ultra-defectors and

ultra-cooperators creates the Snowdrift game, which promotes high-level

production of public goods.
1. Introduction
RNA viruses are ideal organisms for modelling the evolution of cooperation.

Besides providing some of the more accurate information on the dynamics of

the process, the molecular mechanisms that drive it have been elucidated to

great detail. They are as simple as possible, but not simpler than a general

case. All viruses are parasites that need to infect a host cell to reproduce. If a

single virion infects a cell, kin selection is the agent of evolution because the

progeny viruses are clonal. Kin selection may be uniquely important, if not

actively enforced, in many RNA viruses because the first one or few viruses

to infect a cell may exclude the entry of others, a phenomenon known as super-

infection exclusion [1–3]. However, if a larger number of viruses are able to

co-infect the same cell, groups of genetically unrelated viruses are created

and opportunities for the evolution of cooperation and defection arise. The

interaction between unrelated viruses in a mixed co-infection group creates

pay-off matrices at the fitness level that correspond to many standard game

theory outcomes such as Prisoner’s Dilemma (PD) and Snowdrift (SD; also

known as the Hawk–Dove or the Chicken games) [4–9]. By increasing the

group size of viruses co-infecting the same host cell, it has been possible to exper-

imentally demonstrate that RNA viruses can evolve to be trapped by PD [10], yet

escaping from this game is still possible if kin selection is restored [11].

A particularly appealing example of the interaction between cooperators

and defectors in the virosphere are replicator-defective mutants known as

defective interfering (DI) particles and the wild-type viruses from which they

evolve and depend for their replication and transmission [12–14]. Almost all

viruses produce DIs, deleted forms of the genome of the wild-type virus,

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.0228&domain=pdf&date_stamp=2017-05-10
mailto:lchao@ucsd.edu
https://dx.doi.org/10.6084/m9.figshare.c.3749936
https://dx.doi.org/10.6084/m9.figshare.c.3749936
http://orcid.org/
http://orcid.org/0000-0001-8249-5593


1

1 + e

3¢ 5¢ (–)
z¢ z

3¢ 5¢ (–)
za

(a) (b)

(c)

0
10

re
pl

ic
at

io
n 

i

5¢ 3¢ (+)
z z’

5¢ 3¢ (+)
z¢a¢

transcription transcription (1 – i)

Figure 1. Trade-off between replication and transcription in VSV viruses and DIs. (a) Complete single-stranded RNA genome of VSV with all required genes. After
the (2) strand enters a host cell, the segment z serves as the initiation site for the synthesis of the (þ) strand, which acts as both the messenger RNA and the
replication template for the (2) strand. The segment a0 acts as the initiation site for both transcription and replication and the (þ) strand is therefore constrained
to trade-off between providing public goods and reproduction. (b) Single-stranded genomes of DI particles. This shortened DI genome is the most abundant type
and it lacks the coding regions for genes needed for replication and infection. Additionally, the (þ) and (2) strands become functionally equivalent and only
capable of replication because their a0 and a segments are replaced with z and z0 segments, respectively. (c) Linear and nonlinear trade-offs between replication and
transcription in VSV. Following the model, a virus can allocate an amount of available resources i to replication and 1 2 i to transcription. In the absence of DIs, a
linear trade-off (dashed line) is assumed between i and 1 2 i because a virus can only trade-off by modulating the initiation site a0 to favour either replication or
transcription, 0 � i � 1. If i ¼ 1 and 1 2 i ¼ 0, a0 has been modulated to promote only replication. With the evolution of DIs, the trade-off becomes nonlinear
because DIs acquire an even higher replication by both foregoing transcription and being smaller and replication rate i . 1. To prevent i from becoming infinity
large, a replication cap of 1 þ e was set (filled square), where i � 0 and e ¼ 0 reverts to a linear trade-off. Because i . 1 makes the transcription rate 1 2 i
negative, the trade-off was bounded 1 2 i � 0. DIs with i ¼ 1 þ e . 1 were termed ultra-defectors.
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during replication. DIs are encapsidated into virus particles

produced by a wild-type co-infecting virus and can be trans-

mitted in a manner identical to the wild-type virus.

Obviously, as DIs need the assistance of the wild-type virus

to replicate and encapsidate, they can only persist in the

long term at high multiplicity of infections (MOIs), when

more than one particle enters into susceptible cells [14,15].

Within co-infected cells, DI and wild-type virus genomes

compete for resources, including binding to the viral replicase

and packaging proteins. This competition results in a reduced

accumulation of the wild-type virus, a process known as

interference [13,16–25]. The interest in DIs has been revita-

lized in recent years mainly for three reasons: (i) they may

be involved in triggering antiviral immunity during acute

viral replication [26], (ii) they negatively impact the biotech-

nological production of vaccines and viral vectors [27], and

(iii) their possible application as transmissible antivirals to

control viral infections at the host-population level [28], the

so-called therapeutic interfering particles.

One of the best studied DI–virus systems was the molecu-

lar control of replication and transcription in Vesicular
stomatitis virus (VSV; genus Rhabdovirus, family Rhabdo-

viridae) (figure 1a), which we have taken as our idealized

virus to model. This system offers a near perfect mechanism

for modelling the trade-off between defection and producing

public goods [13]. The molecular control in VSV DI particles

was also key for evaluating the nonlinearity of the trade-off in

ultra-defectors (figure 1b).
2. Results and discussion
Our model accommodates a viral population of size N that is

randomly divided into N/m groups of size m � 1, where each

group represents viruses that co-infect the same host cell. For

virologists, m would correspond to MOI [29–31]. Once inside

a cell, a virus must trade-off between replicating its own
genome and producing gene products. This aspect of the

trade-off was assumed to be linear because replication and

transcription in VSV compete for the same initiation site

(figure 1a). Thus, let i and 1 2 i represent the effort an indi-

vidual virus allocates to replicating its own genome and

making public goods (e.g. proteins), respectively (with i [

[0, 1]). We assumed additionally that an individual virus n
in a group of size m has access to 1/m of the host’s resources

and therefore is able to make only in/m public goods and

(1 2 in)/m genomes, where the subscript n is here and here-

after used to denote the effort by of the nth virus and n ¼
1, 2, 3, . . . , m. This assumption is justified because many

viral DIs, as per their name, interfere by reducing the total

yield of wild-type and defective genomes produced by a

co-infection group [16–25]. The reduction has also been

shown to be linear, e.g. it is i ¼ 1
2 when co-infections groups

are 50% wild-type and 50% DI viruses [17]. After genomes

and gene products are assembled into virions, a progeny of

b number of viruses is released and the model determines

the final fitness of an individual virus as

Wn ¼ b
in=m
gðmÞ , ð2:1Þ

where gðmÞ ¼
Pm

n¼1 in=m is the total number of genomes pro-

duced by the group of size m. To determine the value of b,

we note that while its value could be equal to the total

amount of public goods produced by the group, namely

hðmÞ ¼
Pm

n¼1 ð1� inÞ=m, it could be less than h(m) if insuffi-

cient genomes are made. If both g(m) and h(m) are scaled in

molar units required to assemble a viable virus, then b ¼
min[g(m), h(m)]. If g(m) . h(m), the excess genomes are

wasted and h(m) caps the number of viruses produced. Vice

versa if g(m) , h(m) and then genomes are the limiting factor

and public goods are produced in excess. Equation (2.1) is for-

mally equivalent to the fitness equations developed by Frank

[7,8] to study the evolution of parasites and protocells.
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Figure 2. Linear trade-off and the evolution of PD. All populations evolved with a linear trade-off and a Monte Carlo simulation with population size of N ¼ 1000,
genomic mutation rate of u ¼ 0.2 and a Gaussian distribution of mutational effects with mean zero and standard deviation s ¼ 0.005 (see Material and methods
for additional details). (a) Evolutionary changes with m ¼ 1. Grey areas represent all individual i values over time in three independent populations started with
i ¼ 0.8, 0.5 and 0.2. Black trace (straight line) represents the mean i values for population started with i ¼ 1

2. A value of m ¼ 1 serves as a control for the
consequences of clonal selection because all individuals in a group descend from one individual. The consequence of clonal selection is that replication and
the production of public goods evolves to the optimum of equalling each other, or ik ¼ 1 2 ik ¼

1
2. (b) Traces of the mean i values for independent populations

evolved with increasing values of m. (c) Match of i values predicted by analytical solution ia ¼ 1 2 1/m and the mean values evolved by Monte Carlo simulations.
(d ) General pay-off matrix representing PD. The pay-offs are the fitness values reward R when both players cooperate, temptation T for one player to defect,
sucker’s pay-off S for the cooperator facing defection and penalty P for both players defecting. PD requires the rank order T . R . P . S. (e) Fitness
pay-off matrix for m ¼ 2 (see §4d for matrix estimation). The population avoids PD because R is the highest value. Cooperation is favoured because group
size is sufficiently small to allow clonal selection. ( f ) Fitness pay-off matrix with m ¼ 3. The required PD rank order is satisfied. Optimal cooperation of i ¼
1
2 is not possible with PD, and defection leads to the evolution of PD and the evolved value of ia ¼ 1 2 1/m (equation (2.2)). (g) Relationship between
pay-offs T, R, P and S with increasing m. Required rank order for PD is satisfied for all m . 2.
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We modelled evolution by Monte Carlo simulations (see

§4a) of a parent population of size N with known or assigned

values of i and assembling N/m random groups. By using

equation (2.1), the fitness of each virus was determined. A pro-

geny population was then created by sampling N viruses from

the parent population. Selection was imposed because the fit-

ness values were used to weight the sampling process. The

progeny was then re-assembled into N/m groups to create

the parent population for the next generation. By using

equation (2.1) and the weighted sampling, the process can be

repeated to create new progeny and parent populations for as

many generations as needed. If desired, the values of i were

mutated before selection, in which case changes in the values

of i over time in a population could be monitored to track the

evolutionary dynamics of cooperation and to search for

steady-state outcomes.

(a) Evolution is trapped by Prisoner’s Dilemma with a
linear trade-off

Used as presented above, equation (2.1) represents a linear

trade-off between replication i and transcription 1 2 i. In a
later section, nonlinear trade-offs are introduced by changing

the relationship of replication and transcription. A first test

was to model evolution with m ¼ 1, for which an evolved

optimum ik ¼ 1
2 was anticipated, and observed, because

each group is clonal and kin selection between groups

favours viruses that make equi-molar amounts of genomes

and gene products (figure 2a). Thus, we used ik ¼ 1
2 as the

evolutionary starting point and examined the effect of

increasing m. In all cases, i evolved dynamically to higher

steady-state values as m was increased (figure 2b). Because

all of the populations remained monomorphic, we were

able to determine analytically the steady-state values by sol-

ving for the i that maximized individual fitness in a group of

mi identical viruses (see §4b for the analytical derivation).

The solution

ia ¼ 1� 1

m
, ð2:2Þ

matched closely all of the steady-state values evolved with

the model (figure 2c). It is also an evolutionarily stable strat-

egy (ESS) because mutants with either higher or lower values

of i have a lower fitness and cannot invade. Indeed, noticing
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rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170228

4

that 1/m is equivalent to a coefficient of relatedness between

viruses within a host, this result is formally identical to the

ESS condition previously derived by Frank [7,8]. Note that

if m ¼ 2, ia ¼ ik ¼ 1
2 and selection for cooperation is as optimal

as kin selection. However, evolution was trapped by PD for

m � 3. By constructing the individual fitness of ik and ia
viruses in pure and mixed groups of size m � 3, we found

that the resulting fitness values conformed to a PD pay-off

matrix (figure 2d–f ). Thus, our first model with linear

trade-offs remained trapped by the PD domain. Replication

effort i evolved to high values, while the production of

public goods 1 2 i evolved to low levels. Only clonal or kin

selection (m ¼ 1) was able to select for high levels of

cooperation with 1 2 i ¼ 1
2.
(b) A nonlinear fitness trade-off allows for an
evolutionary transition from Prisoner’s Dilemma
to Snowdrift

Our examination of a nonlinear trade-off was motivated by the

molecular biology of VSV DI particles described above [13].

Although a linear trade-off was justified for replication and

transcription (figure 1a), DI particles are more than just defec-

tors with i ¼ 1 and producing no public goods (1 2 i ¼ 0).

Once a defector evolves to produce zero public goods, it can

delete the coding sequences and replace its replication and

transcription site with a replication-only site (figure 1b).

These changes introduce a nonlinear trade-off because such

an ultra-defector is able to make i ¼ 1 þ e copies of its
genome, where e is the amount gained by having to replicate

a smaller genome and not having to spend time on transcrip-

tion (figure 1c). The value of e is a constant representing a

cap to the nonlinear gain. Thus, i is now able to evolve in the

interval i [ [0, 1 þ e] through mutations. Because it is now

also possible that i . 1, the new constraint 1 2 i � 0 was

added to the model to prevent public goods from being pro-

duced at a negative rate. By incorporating this nonlinearity in

the fitness trade-off, we have expanded the scope of models

previously proposed by Frank [7,8].

Equation (2.1) can still be used with the nonlinear modifi-

cations, although fitness Wn is now determined by two

discrete and discontinuous functions. We considered modelling

the nonlinearity with a single continuous concave up function

(e.g. exponential or parabolic), but chose to use our formulation

because we deemed it to be more accurate. When a virus

trade-offs by allocating more effort to either transcription or

replication, a linear trade-off is realistic. However, once the

trade-off evolves to allocate i ¼ 1 into replication, the virus is

free to delete coding regions. As more and more regions are

deleted, the replication fitness of the virus increases, but its tran-

scription effort remains unchanged because it is already equal

to zero. Thus, the fitness trade-off of a real virus is actually

determined by two discrete molecular mechanisms, initially

one that affects transcription and a later one that does not.

A single continuous function would force a trade-off when

there is none, or assume none when there is one.

The addition of a nonlinear trade-off and i . 1, altered

qualitatively the evolutionary dynamics of our model

(figure 3a). As an illustrative example, letting m ¼ 8 and e ¼ 1
2,
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we started with a monomorphic population with i ¼ 1
2 and

allowed evolution to proceed with mutations. The population

quickly evolved to a steady state of ia (equation (2.2)) as we

had reported for a linear model and PD (cf. figure 2b; m ¼ 8).

However, as mutations accumulated, the population bifurcated

into a lineage of ultra-defectors and one of ultra-cooperators. In

the ultra-defectors, i evolved upwards until it equalled the cap

of 1 þ e, while in the ultra-cooperators, it evolved downwards

to the clonal selected optimum of ik ¼ 1
2. Note that the evolution

of ultra-cooperators occurs only after the ultra-defectors begin

to increase in frequency. Thus, a mutant ultra-defector must

have a minimum value of i in order to invade the steady-state

ia population. By using equation (2.1) to estimate the fitness of

the DI mutant in the ia population, and assuming that the

mutant is at a low frequency, the minimum i valued needed

by the ultra-defector was found to be

id ; 1þ e ¼ 1þ 1

mðm� 2Þ , ð2:3Þ

(see §4c for the analytical derivation). The bifurcation and the

evolution of the ultra-defector also allow the population finally

to escape PD and transition into SD. By determining the
individual fitness of ik and id viruses in pure and mixed

groups of size m � 3, there are again only two competitors

and the resulting fitness values can be represented by a 2 � 2 fit-

ness pay-off matrix. The results conformed to the SD pay-off

matrix (figure 3b,c).

Equations (2.2) and (2.3) can be used to partition parameter

space and constructing a landscape for the evolution of

cooperation. As the model has only two parameters, let 1 þ e
and m be the y and x axes, in which case equation (2.3) delin-

eates the boundary between PD and SD (figure 4a). Thus, for

all values of m � 3, PD evolves if 1 þ e , id, and SD evolves

if 1 þ e . id. For m values as low as 1 or 2, clonal selection is suf-

ficiently strong and the optimum ik ¼ 1
2 evolves. Note that when

e ¼ 0, the model reverts to the linear form and the outcome is

PD as described by equation (2.2). By plotting the amount of

public goods produced as the response variable on the z-axis,

a landscape for the evolved level of cooperation as a function

of 1 þ e and m is generated (figure 4b). Public goods are pro-

duced maximally by clonal selection, but nearly equivalent

amounts are produced by SD. Moreover, as 1 þ e and m are

increased in SD, ultra-cooperators are selected to make even

more public goods to make up for consumption of the
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progressively stronger and more numerous ultra-defectors.

Indeed, it can be shown mathematically that as 1 þ e increases,

ia tends to ik ¼ 1
2 (see §4e). However, because the frequency of

individuals producing public goods is not equal (figure 4c),

we also examined the landscape for the mean production of

public goods as a response variable (figure 4d ). Because the

frequency is low for high values of 1 þ e and m, the highest

mean production, outside of clonal selection regime, is situated

centrally, in the SD region, and just beyond the id boundary.
 g.org
Proc.R.Soc.B

284:20170228
3. Concluding remarks
The evolution of cooperation remains a problem partly because

it has been easier to identify the barriers to the process rather

than solutions. PD presents an obstacle, but it is not clear that

escaping PD promotes cooperation. The cooperator could

evolve to resist the defector more effectively, but that only

makes the goods less public, as did reciprocation and kin selec-

tion. SD was recognized as promoting more cooperation [9],

but we know little about its evolutionary maintenance, origin

and link to PD and kin or clonal selection. Our model resolves

many of these issues by mapping the evolution of cooperation

onto two parameters, group size and the magnitude of the non-

linear gain to an ultra-defector. On this parametric space,

increasing group size alone is sufficient for driving the evol-

ution of cooperation from clonal (kin) selection to PD and to

SD. We show that the transition to SD results from the splitting

of the population into lineages of ultra-defectors and ultra-

cooperators. However, the split is triggered by the initial

evolution of more defection, rather than more cooperation. If

the trade-off between defection and cooperation is linear, PD

traps the population because the evolution of more defection,

and the split, is prevented. With a nonlinear trade-off, more

defection and the ultra-defector are able to evolve. Once the

ultra-defector increases in frequency, the cooperator is selected

to make even more public goods and to evolve into the ultra-

cooperator of SD. The best ultra-cooperators make nearly as

much public goods as clonally selected individuals. The

numerical analysis of equation (4.7) supports this latter con-

clusion: for any given value of m, one can explore which

values should take i to hold the equilibrium frequency of

wild-types, p̂, constant if the DIs take increasingly large

values of 1 þ e. It turns out that at the limit when 1 þ e!1,

then i! 1
2. This means that the optimal solution for a wild-

type virus in the presence of an ultra-defector DI would be to

become itself and ultra-cooperator and invest 50% of its

resources in the production of common goods.

The effect of increasing group size on the evolution of

cooperation has been observed in laboratory studies with

RNA viruses. The first transition from clonal selection to

PD was seen in the bacteriophage w6, where cheaters spon-

taneously arose when group size was increased to m ¼ 5

[10,11,32]. This was a reversible process, as cheaters were out-

competed when a regime of clonal selection (m� 1) was

imposed [11]. The second transition, from PD to SD, has

been documented in many RNA viruses by the evolution of

DIs in dense cultures when large viral groups are able to

co-infect the same host cell [33–37]. Subsequent evolution

in some of these dense cultures often result in population

cycles during which wild-type viruses become resistant to

the effects of the DIs [18,19,38–41] and the DIs evolve in

turn the ability to overcome the resistance [15,16,39–41].
Such cycles are driven by the evolution of new wild-type

RNA replicases that no longer recognize the replication sig-

nals of the DIs, followed by the coevolution of DIs with

altered signals that are recognized [39]. Because the aim of

our model was to analyse the evolutionary dynamics of

cooperation between a given pair of wild-type and DI, such

coevolutionary races for novel replicases were not considered.

In other words, our model focuses on the period of stasis

between cycles. Periods of stasis can be long, and evolutiona-

rily important, because the start of a new cycle requires a

double mutation in the wild-type virus. One mutation must

change the replicase to provide resistance, but a second one

is needed to change the wild-type replication signal, so that

it recognizes the mutated replicase. Double mutants will be

rare and less likely to appear if population size is small.

While laboratory populations can be large, wild popula-

tions may be much smaller because of bottlenecks or other

ecological stresses.

Although our model was motivated by viral biology, there

are clear overlaps between our approach and previous studies.

At the mathematical and the theoretical level, viruses, prebiotic

replicons and humans can sometimes be modelled equivalently

[4,5,7–9]. SD was recognized as favouring the evolution of

higher cooperation levels [8], but because the games had been

studied as separate games played in isolation, there was no

evolutionary connection between them. For a population to

evolve more cooperation by transitioning from PD to SD, the

pay-off matrix had to be changed. However, the rules control-

ling the matrices and their changes were not apparent, or at

least assumed to be too complex to be derived from known eco-

logical and evolutionary processes. Our finding that varying

group size alone, so long as the trade-offs between replication

and the production of public goods are nonlinear, controls the

transition between PD and SD, and greatly simplifies the con-

ditions required for the evolution of cooperation. Our pay-off

matrices were able to evolve freely, and the ones emerging as

ESS conformed to PD and SD as group size changed. Because

all organisms experience a group size, the results of our

model show that the evolution of cooperation may not need

much more than changing one ecological parameter. We hope

that our work will stimulate additional work on RNA viruses

or other organisms that produce public goods as model systems

to explore social evolution.
4. Material and methods
(a) Monte Carlo model for simulating of evolution in

viral populations
A population of size N viruses was constructed by assigning a

starting value of i to each virus. The assigned value could be ran-

domly or deliberately chosen to explore different starting

scenarios. The population was then divided into N/m groups of

size m and the fitness of individual viruses was determined with

equation (2.1). To create the population for the next generation,

the current population was sampled N times with replacement

to ensure a constant population size. The sampling was biased

by using the normalized fitness values of each virus as their prob-

ability of being chosen. Fitness was determined using equation

(2.1) with the appropriate linear and nonlinear values of i and

1 2 i. This sampling bias introduces natural selection and evol-

ution could thus be modelled and followed over generations.

Whenever desired, mutations were introduced by changing



rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170228

7
individual values of i with a probability of 0 , u , 1. If mutations

were not desired, a value of u ¼ 0 was used instead. If a virus was

to be mutated, its i value was changed by an amount randomly

drawn from a Gaussian distribution with a mean zero and a speci-

fied standard deviation, s. All simulations were coded in R v. 3.2.4

computer language.

(b) Analytical solution of equation (2.2)
Let j and i be the replication effort of a mutant and wild-type

virus, and j . i. The fitness of a wild-type virus in a popula-

tion all formed by wild-type viruses can be computed using

equation (2.1). In such case, the burst size would be

bwt ¼
Pm

n¼1 ð1� iÞ=m ¼ ð1� iÞ and the total replication effort

gwt ¼
Pm

n¼1 i=m ¼ i because the co-infection group has a uniform

composition. Thus,

Wwt ¼
1� i

m
: ð4:1Þ

Now let us imagine that a defector mutant that invests j . i into

replication appears in a population of m 2 1 wild-type viruses.

The fitness of this mutant can be calculated using equation

(2.1) but now considering that bdef ¼ ½ðm� 1Þð1� iÞ þ 1� j�=m
and gdef ¼ ½ðm� 1Þiþ j�=m:

Wdef ¼
j½ðm� 1Þð1� iÞ þ 1� j�

m½ðm� 1Þiþ j� : ð4:2Þ

Coexistence of both genotypes would occur if, and only if,

Wwt ¼Wdef. If Wwt , Wdef, the defector mutant will invade,

whereas the opposite condition means that invasion is not poss-

ible. Combining equations (4.1) and (4.2) and simplifying, we

found that there are two different values of j that satisfy the coex-

istence condition: j ¼ i and j ¼ (1 2 i)(m 2 1). These two lines

correspond to pairs of values (i, j ) in which defector mutant

and wild-type have equal fitness. The intersection of these two

fitness isoclines results in the equilibrium condition shown in

equation (2.2)

ia ; ı̂ ¼ 1� 1

m
:

The linear stability of this fixed point was evaluated by construct-

ing the Jacobian matrix of the system formed by equations (4.1)

and (4.2), which is given by

Jði, jÞ ¼

@Wwt

@i
@Wwt

@j
@Wdef

@i
@Wdef

@j

0
BB@

1
CCA ¼

� 1

m
jð1�mÞ

[ jþ iðm� 1Þ]2

0
iðm� 1Þ

½jþ iðm� 1Þ�2
� 1

m

0
BBB@

1
CCCA:

The two eigenvalues for the fix point ðı̂, ĵÞ are l1¼ 1/m3 and

l2 ¼ 21/m. As l1. 0 and l2, 0 8 m . 0, the fix point takes

the form of a saddle and is thus unstable.

(c) Analytical solution of equation (2.3)
The solution is obtained by exploring the conditions in which a

DI mutant will invade a population at the equilibrium specified

by equation (2.2). Substituting i by the equilibrium condition

given by equation (2.2) into equations (4.1) and (4.2) and recal-

ling that DIs do not contribute to the production of common

goods and have an investment in reproductive effort 1 þ e . i,
we obtain after some algebraic work the following fitness

equations for wild-type and DI, respectively:

Wwt ¼
1

m2
ð4:3Þ

and

WDI ¼
ð1þ eÞðm� 1Þ

m½ðm� 1Þ2 þmð1þ eÞ�
: ð4:4Þ
By making Wwt¼WDI and solving for 1 þ e, we found the 1 þ e
value at which wild-type and DI viruses will coexist (equation (2.3))

id ; 1þ e ¼ 1þ 1

m(m� 2)
:

(d) Constructing pay-off matrixes for Prisoner’s
Dilemma and Snowdrift

Pay-off values in a game theory matrix traditionally represent

interactions between two individuals rather than between

many in a large group. Because our models consider groups of

size m that can be much larger than two, we adapted the

pay-off matrix
R T
S P

� �
to represent individual fitness values

in populations with only cooperators, only defectors, one coop-

erator invading a large population of defectors and one

defector invading a large population of cooperators. The fitness

of the invading cooperator, which equals the value the virus

has when it is alone in a group with m 2 1 defectors, represents

S. The fitness of the invading defector represents T, or the value

when it is alone in a group of m 2 1 cooperators. The fitness of a

cooperator in a population with only cooperators represents R, or

the value when it is in a group with m cooperators. The fitness of

a defector in a population with only defectors represents P, or the

value when it is in a group with m defectors. A pay-off matrix

adapted to larger groups retains the predictive properties for

an ESS analysis. If T . R, a defector is able to invade a popu-

lation of cooperators. If S . P, a cooperator is able to invade a

population of defectors, which is one of the requirements for

SD. All fitness values were based on equation (2.1) and using

the appropriate linear and nonlinear values of i and 1 2 i.
Although we can potentially have m players in a group, the

interaction can be reduced to a two-player game for the construc-

tion of a 2 � 2 play-off matrix. In an ESS analysis, the resident

population (even if it is polymorphic) is always held constant,

in which case the two players are the resident(s) and the invader.

(e) Equilibrium frequencies of defective interfering and
wild-type viruses in Snowdrift

With SD, the trade-off is necessarily nonlinear and both DIs and

wild-type viruses are present in the population. We calculate

here the equilibrium frequencies of DI and wild-type viruses

in the population for a given set of values for group size m, DI

replication fitness 1 þ e and wild-type replication fitness i.
Let p and 1 2 p represent, respectively, the frequency of wild-

type and DI viruses in the population. Assuming that the viruses

are distributed by a binomial process into groups of size m, the

probability of getting x wild-types is PðxÞ ¼ m
x

� �
pxð1� pÞm�x.

The mean individual fitness of the viruses in the population is

then given by

Wwt ¼
Pm

x¼0 PðxÞbðxÞgðxÞPm
x¼0 xPðxÞ ð4:5Þ

and

WDI ¼
Pm

x¼0 PðxÞbðxÞ½1� gðxÞ�Pm
x¼0 ðm� xÞPðxÞ , ð4:6Þ

where b(x) ¼ x(1 2 i)/m is the total production of common

goods by a group of size m that contains x wild-types, and

g(x) ¼ xi/[xi þ (m 2 x)(1 þ e)] is the relative individual replica-

tion effort by the wild-type virus in the same group. Because

DIs do not make public goods, they do not contribute but have

access to b(x). On the other hand, because DIs replicate, their

relative individual replication rate is 1 2 g(x).
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Noting that the denominators of equations (4.5) and (4.6) are

the expectations of the binomial distribution mp and m(1 2 p),

the frequency of DIs and wild-types will be unchanging and at

their equilibria p̂ and 1� p̂ when Wwt ¼WDI, or

1

mp̂

Xm

x¼0

PðxÞbðxÞgðxÞ ¼ 1

mð1� p̂Þ
Xm

x¼0

PðxÞbðxÞ½1� gðxÞ�:

After replacing P(x), b(x) and g(x) by their actual values, we

obtain the following expression:

p̂
1� p̂

¼ i
1þ e

Xm

x¼0

m
x

� �
px(1�p)m�xx2

xiþ (m�x)(1þ e)
=Xm

x¼0

m
x

� �
px(1�p)m�x(m�x)x

xiþ (m�x)(1þ e)
:

ð4:7Þ

Equation (4.7) can be solved analytically for any value of m � 2

to obtain the equilibrium frequency of the cooperator virus

as a function of i and e, namely p̂(i, ejm). For instance, in the

case m ¼ 3, the equilibrium frequency for the cooperator virus

is given by p̂ði, ej3Þ ¼ ið1þ eþ 2iÞ=½2ð1þ eÞð1þ e� iÞ�, which

takes positive values for any i , 1 þ e value. Linear stability

analysis shows that the two eigenvalues of the Jacobian matrix

Jði, eÞ ¼ @Wwt=@i @Wwt=@e
@WDI=@i @WDI=@e

� �
evaluated at the fix point

p̂ði, ej3Þ are l1, 0 and l2. 0, as corresponds to an unstable

saddle fix point. For m � 4, p̂ði,ejmÞ is a complex polynomic func-

tion of i and e, with at least one root in the interval [0, 1] that in

every case corresponds to an unstable saddle point. Equation

(4.7) can also be solved numerically for every value of m to find

the frequency p of wild-types in the population as a function of

values of i and e.
( f ) Numerical solutions for the evolved values of
replication fitness i and of the frequency of ultra-
cooperators in a Snowdrift parameter space

From equation (4.7), we first obtained the equilibrium frequency

of wild-type and DI viruses in a population, p̂ and 1� p̂, for a

given group size of m, a DI replication fitness of 1 þ e and a

wild-type replication fitness of i. These equilibrium values are

not necessarily the ones that will evolve by natural selection in

a population. To determine if they could be the evolved values,

we evaluated whether a population with these frequencies of p̂
and 1� p̂ could be invaded by a mutant wild-type virus.
Invasion by mutant DI was not examined because we had

found in our Monte Carlo simulations that 1 þ e would evolve

to be infinitely large and thus had to be capped at its chosen

value (figure 3a). The capping is justified on the basis of physio-

logical limit to replication speed in the host cell. The evolution of

the wild-type replication fitness was frequency dependent, which

is why we need to evaluate using an invasion criterion and

searching for an ESS value.

To assess the invasion, we first estimated the individual fit-

ness of DI and wild-type viruses distributed by a binomial

process in groups of size m. By knowing the binomial compo-

sition of each group, the individual fitness of DI and wild-type

viruses in the group could be determined with equation (2.1).

To test invasiveness, we then introduced one mutant wild-type

with a replication fitness of i+ d. The individual fitness of the

mutant was estimated by adding it to all binomially distributed

groups of size m 2 1. The mutant was judged to be able to

invade if it had an individual fitness, again estimated by

equation (2.1), greater than the wild-type virus. A value of d ¼

0.001 was used for all evaluations. The evolved value of i was

found by searching over a range of [0, 1], a value that was not

invasible. The p̂ and 1� p̂ values corresponding to the evolved

i were then used as the evolved frequencies of the DI and

wild-type viruses. These evolved values are depicted in the SD

parameter space of figure 4b–d. Estimates of these evolved

values were also obtained from our Monte Carlo simulations.

Our numerical and Monte Carlo estimates were highly correlated

(see electronic supplementary material, figure S1). The search

code was written in R v. 3.2.4 computer language.
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