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Animal coloration has traditionally been the target of genetic and evolutionary

studies. However, until very recently, the study of the genetic basis of animal

coloration has been mainly restricted to model species, whereas research on

non-model species has been either neglected or mainly based on candidate

approaches, and thereby limited by the knowledge obtained in model species.

Recent high-throughput sequencing technologies allow us to overcome

previous limitations, and open new avenues to study the genetic basis of

animal coloration in a broader number of species and colour traits, and to

address the general relevance of different genetic structures and their impli-

cations for the evolution of colour. In this review, we highlight aspects where

genome-wide studies could be of major utility to fill in the gaps in our under-

standing of the biology and evolution of animal coloration. The new genomic

approaches have been promptly adopted to study animal coloration although

substantial work is still needed to consider a larger range of species and colour

traits, such as those exhibiting continuous variation or based on reflective struc-

tures. We argue that a robust advancement in the study of animal coloration

will also require large efforts to validate the functional role of the genes and

variants discovered using genome-wide tools.

This article is part of the themed issue ‘Animal coloration: production,

perception, function and application’.
1. Past and future of the genetics of animal coloration in
natural populations

The study of animal coloration has been essential for the development of

biological sciences, particularly for the fields of genetics and evolutionary biology

(reviewed in [1]). Pioneering geneticists like Morgan, Bateson or Haldane studied

the inheritance of colour traits to establish the basics of Mendelian genetics.

Similarly, studies of coloration in wild populations, such as Kettlewell’s studies

[2] on the action of natural selection on the black and pale morphs of the peppered

moth, Biston betularia, or Endler’s studies [3] on the joint role of sexual and natural

selection on explaining colour variation in guppies, Poecilia reticulata, have also

moulded our understanding of evolution. For practical reasons, many of these

studies took advantage of colour traits exhibiting relatively simple discrete vari-

ation and inheritance patterns. Also for practical reasons, research on animal

coloration has continued and flourished mainly on the model systems used by

these pioneers (Drosophila and mice, for instance), with only a few new species

being adopted as model systems later on (e.g. the zebrafish, Danio rerio [4]).

Our current understanding of the genetics of animal coloration is therefore

limited to a handful of well-studied systems, and does not account for the

extant variation of life forms and colour traits. In natural conditions, discrete vari-

ation is the exception rather than the rule. Most colour traits vary continuously

between two extreme values and are complexly based on the deposition of several

pigments and/or on the spatial arrangement of integumentary structures. The

expression of these traits can be strongly determined by genetic factors but also

by the environment or by the interaction of genetic and environmental factors.

Finally, colour traits can have different types of functions and adaptive roles
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[5–8], which can result in different evolutionary histories

and underlying genetic architectures, even when considering

colour traits of high resemblance.

Remarkable exceptions aside (e.g. mapping studies in

Heliconus, cichlids and white-throated sparrows, Zonotrichia
albicollis [5]), identifying the underlying genes and genetic

structures of such a diverse spectrum of colour traits has

received little attention in the wild, partly because previous

methods to find loci responsible for colour variation were

laborious, expensive and/or unfeasible in natural popula-

tions. In recent years and thanks to the seminal work of

N. Mundy [9] and H. Hoekstra [10] on the melanocortin-

receptor 1, MC1R, unravelling the genetic basis of coloration

has been mainly based on the more accessible candidate-

gene approach [5,8]. This method assesses the role that

genes known to regulate coloration in model species play in

non-model species. It has proven very useful to achieve a

better understanding of colour variation in a wide range of

species, highlighting the recurrent role of certain colour

genes, like the MC1R, in mediating adaptive colour changes

in several species [5]. However, the candidate-gene approach

is severely limited given that candidate genes are described

only in the few existing model species, and on the basis of

their role in the colour traits these species display. As a conse-

quence, the study of the genetic architecture of colour traits has

been biased towards melanin-based coloration, the main

source of colour variation in current model species such as

mice and Drosophila. Additionally, the discovery of new

genes and the study of colour traits other than melanin are hin-

dered, if not impossible, with the candidate gene approach.

The study of animal coloration has often neglected the role

of the genetic structure underlying colour variation. Explicitly

or implicitly, phenotypic variance has been assumed to be a

good surrogate of genetic variance, and phenotypic evolution

to circumvent the constraints imposed by the genetic architec-

ture. This assumption, the so-called ‘phenotypic gambit’ [11],

has allowed us to simplify evolutionary scenarios and to

model and test the applicability of theories that can explain

how colour traits evolve. For instance, the burst of studies

conducted on carotenoid-based coloration in the previous

decade was largely influenced by the modelling that Grafen

and others did of the Zahavi’s handicap principle [12]. This

provided a good theoretical background to understand

how carotenoid-based coloration could have evolved, and

to envision the evolutionary consequences of observations

done at the phenotypic level. However, the phenotypic

gambit has rarely been challenged in relation to colour traits.

To the best of our knowledge, the only study conducted in

this sense rejected an association between phenotypic and gen-

etic variation for colour traits [13], highlighting the need for

improving our knowledge on the genetic basis of colour

variation in order to understand how colour forms evolve.

The arrival of the ‘genomic era’ with high-throughput or

next-generation sequencing methods opens new avenues for

the study of the genetics of animal coloration in wild popu-

lations, surpassing limitations of previous approaches to a

great extent. Current genomic tools (reviewed in [14]) offer

the opportunity to conduct genetic studies with a finer detail,

incurring fewer costs than a few decades ago. They do not

entirely rely on previous knowledge of particular genes,

and they can be applied to outbred populations and model

systems where conducting controlled crosses or obtaining ped-

igree information is impractical. Consequently, genomic tools
allow us to explore genetic aspects that were only possible to

address in model species. This widens the spectrum of colour

traits, species, and ecological and evolutionary scenarios to

study, filling current knowledge gaps and leading to more

robust generalizations on the evolution, development and

ecology of animal colorations. These new sequencing tools

have been promptly adopted to study natural variation of

coloration in non-model species (figure 1 and table 1). Genomic

studies conducted to date depict a diverse spectrum of genetic

architectures, including single coding mutations underlying

colour variation between populations, alternative cis-regulat-

ory changes controlling colour variation within and between

species, and supergenes associated with discrete colour mor-

photypes, among others (figure 1 and table 1). However,

biases towards the study of melanin-based colorations, discrete

colour traits and specific groups (e.g. mimicry in butterflies and

colour patterns in cichlid fish, table 1) still prevail. We believe

that several knowledge gaps still remain and that it is timely

to highlight them as well as how high-throughput sequenc-

ing can be put into use to improve our understanding of the

underlying genetics of colour diversity in animals.

Here, we review how different types of colorations are

generated, how colorations within and between body parts

are genetically integrated, what genetic mechanisms drive

associations between colour and other phenotypes, and some

of the genetic assumptions yielded by theoretical models

of colour evolution. Research in other important aspects of

animal colour evolution (e.g. coevolution of coloration and

colour vision, the role of animal coloration in reproductive iso-

lation and speciation, the genetic basis for rapid morphological

colour changes, among others) can also benefit from the appli-

cation of high-throughput sequencing data. Unfortunately,

particular consideration of all aspects regarding animal color-

ation is beyond the scope of this review. However, many of

the principles reviewed here have general implications for

our understanding of the basics of animal coloration and are

therefore expected to be also of use for a broader range of

research on animal coloration.
2. Complicating the picture: beyond melanin and
single-trait variation

Colour production can be based on different pigments

(e.g. melanins, pteridines, carotenoids, ommochromes, por-

phyrins), or reflective structures deriving from the finely

tuned arrangement of purine crystals, collagen, keratin or

chitin [26]. The synthesis pathways are known for most of

these components (e.g. [27]), except for taxa-specific pigments

such as psittacofulvins and turacoverdins. In contrast, the regu-

lation of other processes responsible for variation in animal

coloration (e.g. pigment transport and allocation or the fine

spatial organization of reflective structures) is less well under-

stood except perhaps for melanins, for which the regulation of

melanosome formation and of melanophores and melano-

blasts migration, and differentiation in different vertebrate

taxa and the process of cuticular melanin deposition in differ-

ent invertebrate taxa has been studied [4,28–30]. The genetic

basis of melanin-based coloration has also been more exten-

sively studied in the wild, in contrast to other pigments, and

several genes such as the MC1R and OCA2 [5] have been

associated with variation in melanin-based coloration in natural

populations. However, the number of studies where candidate



(a)

(c)
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Figure 1. Studying the genetic basis of coloration in natural populations using high-throughput sequencing. The figure illustrates three case studies where the
genetic basis of colour variation has been studied using high-throughput sequencing methods. (a) Using genetic crosses and genome-wide association mapping
based on RAD-sequencing markers, the genetic architecture of green/brown polymorphism and pattern (i.e. the presence/absence of the light longitudinal stripe)
was unravelled in Timema cristinae (see [15,111,112] in table 1). One and two large-effect loci were found for colour and pattern, respectively. Dominant effects of
the alleles determining green and stripe occurrence were observed for all loci, and such genetic architecture might be constraining local adaptation in the green
form. (b) Using whole-transcriptome shotgun sequencing together with several validation methods (see text and ref. [16]), the role of the gene fhl2b in mediating
egg-spot formation in the anal fins of haplochromine cichlids was demonstrated. The haplochromine cichlid Astatotilapia burtoni and a detailed image of the anal fin
are shown. (c) Using a combination of RAD-sequencing and whole-genome resequencing, a genomic region hosting ca. 125 genes was found to differ between the
three forms (faeder, satellite and independent) present in male ruffs, Philomachus pugnax. Recombination between forms is suppressed owing to two alternative
and recessive lethal genomic inversions of this region in faeder and satellite forms (see [17]). Pictures were kindly provided by A. Comeault and P. Nosil (a), E. Santos
and A. Theis (b) and R. Vervoort (c).
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genes have failed to explain colour variation is accumulating

[31], indicating that there must be other genetic actors driving

variation in melanin-based coloration in natural populations.

Despite some recent discoveries [19,20] and advancement

in understanding the biology of xanthophores in model species

[4], carotenoid-based colorations still have an understudied

genetic basis. To the best of our knowledge, the genetic basis

of coloration based on pteridines has not been studied in

natural populations, despite having been intensively studied

in Drosophila eye mutants and zebrafish [4], and being a

common pigment in both vertebrates and invertebrates.

Ommochromes have received relatively more attention, given

that they are responsible for colour variation in Heliconius
butterflies, where genes like optix were shown to regulate the

development of red wing patterning in several species [32].

In relation to structural components, genes that were high-

lighted in screenings of zebrafish mutants have also been

observed to underlie iridophore-based coloration in a natural

cichlid population [33], and Santos et al. identified two novel

candidate genes regulating iridophore-based coloration in hap-

lochromine cichlids [16]. However, little is known about the

regulation of other structural components [34] or the regulation

of iridophore-based coloration outside fish.

Only rarely does animal coloration result from a single pig-

mentary or structural component, and a deeper understanding
of how colour differences arise also comes from studying how

different colour components interact [35–37]. In the same

sense, the development and function of a given colour patch

has been shown to depend on coloration at other body parts

(i.e. on colour patterning), which can also be based on different

pigments or structural components. This is best exemplified

by recent studies conducted on the striped pattern of adult

zebrafish [4]. In the dark stripes, xanthophores are faintly

pigmented, stellated and have lower densities than in the

light stripes. Such differences in xanthophore morphology

and number result from interactions with the other types of

skin chromatophores: iridophores and melanophores. Differ-

ent connexins mediate these interactions, and mutations at

their encoding genes do not only impact xanthophore differen-

tiation but the formation of the whole pattern, with dark stripes

dissolving into dark spots. Spatial and temporal modulariza-

tion of gene expression via transcription factors or epigenetic

changes is also expected to be of great importance to differently

use the same genetic machinery at distinct body parts [28].

This aspect has been studied in some natural scenarios, for

instance in beach mice (Peromyscus polionotus), where differen-

tial cis-regulation of ASIP transcription seems to account for

differences in colour patterning between populations [38], or

in carrion crows (Corvus corone), where differential expression

of ASIP across body parts was observed even in uniformly
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black-coloured crows [18]. This points to the existence of

interactions with trans-acting factors in determining pattern

differences between populations in this species. In contrast,

epigenetic changes have received little attention in wild popu-

lations [39] although they are known to underlie certain colour

patterns in domestic or laboratory animals [40].

A deeper knowledge of the genetic architecture of different

types of pigments and reflective structures, as well as a more

complete understanding of the factors driving their inter-

actions within and across body parts, is still needed. This will

help us to understand several unsolved questions, such as

the predominance of certain pigments (e.g. melanin) across

the tree of life, the existence of different pigments or structures

with equivalent effects on coloration (e.g. carotenoids and

pteridines), the evolution of taxon-specific components,

the loss and gain of certain components in different taxa

(e.g. why penguins are the sole known bird taxon colouring

their feathers with pteridines), and to what extent the same

type of colour traits evolved similar or different genetic archi-

tectures under different evolutionary scenarios. Studies in

natural conditions will give insight into whether complex

colour patterns can indeed evolve from relatively simple

genetic mechanisms as depicted by studies in zebrafish,

to what extent the pathways of different pigments and/or

structures have commonalities, and whether such common

pathways could explain the fact that different types of color-

ations have been repeatedly observed to associate with the

same phenotypes (e.g. competitive dominance in intraspecific

contexts [41]).

Studies using high-throughput sequencing methods would

shed some light on the genetic basis of different types of

pigments and structures, the genetic causes of their variation

between and within species, and on the genetic basis of their

interaction in determining colorations within and between

body parts. Whole-transcriptome sequencing tools can be of

great utility to unravel the expression of which genes underlie

the development of different types of coloration in different

taxa and in different body parts (table 1). The particular effects

of multiple colour components on a single colour trait could

also be addressed by applying more precise methods, such as

single-cell RNA sequencing [42]. In combination with whole-

genome or genome-wide sequencing techniques, these studies

can potentially reveal the mutational changes leading to

alternative colours and patterns [22,23]. Furthermore, epige-

nomics can help us to understand the basis for the

modification of gene expression and differential colour

expression between and within individuals [43].

Probably, the main limitation to the application of these

methods to a wider range of non-model species, colour traits

and patterns is the availability of a good reference genome

sequence. However, the genomes of several non-model species

have recently been assembled or are being assembled (geno-

me10 k.soe.ucsc.edu/), and the arrival of the third-generation

sequencing technologies is expected to facilitate and speed

up the process of sequencing and assembly of new genomes

by producing longer fragments (approx. 10–30 kb). Despite

its costs, investing in a reference genome is always desirable.

It allows us to conduct more detailed (e.g. whole-genome rese-

quencing: [44]) and accurate [45] analyses given that less

information is lost when mapping the sequenced reads [46].

Nevertheless, if costs or time only allow producing a low-

quality genome, it can be more advisable to use the genome

of a closely related species, or reference-free methods like de
novo transcriptome assembly rather than to base the analyses

on an incomplete and highly fragmented genomic sequence

[45,47,48]. Actually, given the increasing number of species

with an available genome sequence and the costs of a de novo
genome assembly, we can expect reference-guided genome

or transcriptome assembly methods to become more pre-

dominant in the near future. Given this, we encourage

further research on the impact that divergence between the

study and the reference species has on both assembly and

downstream analysis (e.g. [45]).
3. The genetic architecture of continuous colour
variation

Animal colour traits can vary continuously between two

extreme colour phenotypes, and this variation is of interest

because it is often the target of natural and/or sexual selection.

Both genetic and environmental factors can be responsible for

gradual rather than abrupt colour differences between individ-

uals, although primarily environmental influences have been

studied in the wild [49,50]. The underlying genetic structure

of such quantitative colour traits is expected to be complex,

and its characterization challenging [51]. Loci contributing to

quantitative traits can be numerous (several dozen) with

most of them having small phenotypic effects. Major differ-

ences exist in this sense and only a few major-effect loci can

explain most of the variation of quantitative traits [52]. This is

best exemplified by the genetics of human eye colour for

which six variants of the 37 described so far explain most of

the variation [53]. Many causal variants can also occur at

very low frequencies (less than 5%) which together with their

small effect size undermine the statistical power to detect

them in a mapping study [54]. Lack of statistical power to

detect small-effect loci is the major limitation when studying

the genetic basis of quantitative traits. This is evidenced by

the low proportion of heritable variation that is normally

explained by the sum effects of the loci discovered in a map-

ping study [55]. Because many loci may be not detected in

mapping studies, it is necessary to take into account the

power of individual studies when comparing the genetic

structures of different traits.

High-throughput sequencing studies can be more powerful

because they substantially increase the number of genetic mar-

kers and, for the specific case of whole-genome resequencing,

because the requirement of strong linkage between a genetic

marker and the causal variant is no longer needed (actually,

a rapid decay of linkage over distance can be desirable in

order to narrow down the number of candidate causal variants,

although see ref. [21]). Whole-genome resequencing has been

applied to disentangle the genetic basis of natural, continuous

variation in the melanin-based pigmentation of Drosophila
melanogaster females (table 1). Female pigmentation was

found to associate to several SNPs at the genes tan and

bab1 in both studies [25,56], although in one of the studies, a

less restrictive confidence level and posterior functional

validation supported the association of 17 additional variants

with female pigmentation [25]. In this study, variation

explained by top variants (those associated with tan, bab1
and ebony) where found to have major phenotypic effects but

to explain only one third of colour heritability. Whole-

genome resequencing has also been applied to unravel the

genetic basis of the forehead white patch size of male



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160337

9
flycatchers, Ficedula albicollis [21]. In their study, Kardos et al.
[21] maximized the sampling variance by comparing the gen-

omes of individuals with extreme colour phenotypes, a more

powerful approach than considering all the intermediate

colour values in the population. However, no loci were

detected owing to a lack of statistical power to detect loci of

moderate effect (less than 10% of the total phenotypic var-

iance), and the apparent absence of larger effect loci [21].

This study suggests that detecting loci of moderate effect size

would have required approximately 250 individuals. It also

suggests that methods that yield a lower density of markers

(e.g. RAD-sequencing [57]) than whole-genome resequencing

can have reduced power to detect moderate effect-size loci

unless they are applied to populations with small effective

size, where higher levels of linkage between genetic markers

and the causal variants would be expected owing to a lower

genetic variation.

Although this last study could discourage researchers

from studying the genetic basis of continuous colour vari-

ation in wild species, we remain optimistic. On one hand, it

is probably impossible to unravel the genetic basis of a quan-

titative trait in one single study. The main reason is that the

power of the study largely depends on a priori unknown fea-

tures (effect size and allele frequencies). Similarly to Kardos

et al. [21], the first approximation to the question can help

us to gather the information needed to conduct an accurate

power analysis and use this analysis to decide what could

be the best design. Sequencing more individuals a posteriori
is always possible (although batch effects should be taken

into account: [58]), and probably more economically feasible

in the years to come. Alternative designs can be used to

increase power to detect small effect variants. The power of

association studies in humans increases when individuals

are selected not only on the basis of their phenotype (e.g. a dis-

ease) but on the basis of their ‘familiality’ (e.g. the presence of

the disease on the family) [59]. In wild animal populations,

such an approach can be implemented by gathering pedigree

information from either behavioural or molecular data, and

by using estimated breeding values (an estimate of the capacity

of an individual to genetically transmit the phenotype), to

decide which individuals could be included in the association

study. When possible, crosses of homozygous lines (alterna-

tively, pedigrees [60]) can be used to create a linkage map

using methods like RAD-sequencing that are less costly and

can be implemented in a larger number of individuals [61].

Highly polygenic architectures may be partially represented

in the parental generation of a cross [62], which can be taken

into account by using replicated crosses of different individ-

uals. Finally, if continuous colour traits exhibit substantial

environmental variation, studies can be designed to account

for known sources of environmental noise by manipulating

the environment and scanning for QTLs within and across

environments, which can also unravel genotype x environment

interactions.
4. Colour and genetically correlated traits
Colour traits have often been found to genetically correlate

with behavioural, morphological, physiological and life-his-

tory traits [7,63]. Selective forces (e.g. [64]) allowing distinct

colour forms with alternative suites of phenotypes to coexist

within the same population have received relatively more
attention than their genetic architecture. Nevertheless, their

genetic architecture is also essential to ensure the co-segre-

gation of coloration with other phenotypes, and therefore,

the maintenance of trait associations in the face of reproduction

and recombination [63]. Pleiotropy [65,66] and the evolution of

adaptive gene complexes (supergenes: [63]) are often invoked

to explain colour-trait associations. Both mechanisms have

received empirical support in a few species [17,63,67], but

further case studies are nevertheless needed. On one hand,

pleiotropic effects have been observed to mediate associations

between coloration and single phenotypes [67], but whether

they can also mediate associations with a suite of different

phenotypic traits has not been considered in the same study.

Similarly, studies that detected the existence of supergenes

used colour morphotypes as the variable of interest, but

to the best of our knowledge, parallel association studies

also considering the phenotypes that differ between colour

morphs have not been conducted. This would reveal whether

only variants at the supergenes associate to the different

phenotypes or if causal variants for these phenotypes also

map outside supergenes. Further case studies would also

help us to understand the relative importance of these mechan-

isms, the conditions that determine why some species evolved

one mechanism and not the other, to what extent both mechan-

isms interact (e.g. how often supergenes host pleiotropic genes

or alleles; [68]), and the plausibility of alternative unexplored

architectures (e.g. those based on epistatic modifiers: [69]).

It is important to highlight that current methods are more

powerful to detect large, divergent genomic regions, than to

detect pleiotropic effects of single variants, which should be

taken into account when considering the role of pleiotropy

and supergenes in driving associations between colour and

other traits.

Genomic tools in combination with pedigree information

can be used to develop detailed genetic maps of distinct

colour morphs in order to detect differences in linkage and

genomic inversions. As recently done in the ruff, Philomachus
pugnax, [17], these studies can be combined with deep sequen-

cing of the inverted region (or regions) to detect the genes

included inside it. Owing to the strong linkage within the

non-recombining region, candidate variants need to be tested

and validated with posterior functional analysis. This is not a

minor task given the large number of variants and genes that

may occur in the inverted regions (e.g. the ruff supergene is

expected to contain up to 125 different genes). Pedigree-free

methods can also be applied to detect inversions (e.g. via com-

parisons of several assemblies [70]). Similarly, pleiotropic (or

epistatic) effects can also be detected from genomic data by

specifically modelling these effects during data analysis (e.g.

[71]). Within the same studies, other factors leading to spurious

genetic correlations (assortative mating, migration, admixture)

between colour and other traits can be discarded as they are

expected to result in divergence spreading across the genome.

In the past decades, numerous studies were done to inves-

tigate the condition dependency of several types of colorations

[72]. The association between condition and coloration and

its evolvability is expected to be based, at least in some evol-

utionary scenarios, on a genetic correlation between body

condition and coloration [73]. In these cases, genetic variation

in condition is expected to determine genetic variation on

coloration, and the molecular basis of condition-dependent

expression of coloration will not be expected on genes that

are ultimately linked with the development of coloration
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(e.g. pigment synthesis), unless they also determine condition.

The main difficulties to unravel the condition dependency of

certain colour traits could come from the expected highly poly-

genic basis of these traits [74] and the multifaceted nature of

condition. A potential approach would be to ‘divide’ condition

into the different aspects that may define it for a given species.

For a trait based on carotenoids for example, we could expect

that genetic variation at the level of foraging efficiency, absorp-

tion efficiency, storage allocation and immunological response

defines, among others, the aspects of condition that actually

determine the development of a given trait. Performance of

individuals at each of these levels and its effect on coloration

can be measured, and genome scans of individuals with

the most differentiated levels of performance (and colour)

can be conducted to search for candidate variants. The analysis

of changes in gene expression with condition will also be of

great utility to pinpoint the association between condition

and colour regulation, and the different genetic actors that

might be at play when different aspects of coloration

are manipulated.
0337
5. Delving into evolutionary mechanisms
Knowledge on the genetic architecture will be of major impor-

tance to clarify how animal colour traits evolve. Predicting

phenotypic evolution in the wild has turned out to be a

highly challenging task given the action of selection on other

genetically correlated traits, physical linkage, and epistatic

and dominant interactions between and within loci, respect-

ively. Genomic tools can provide useful insights on these

determinants (e.g. [15], figure 1a). They can help us to under-

stand how colour traits respond to selection, how variation is

maintained and the general applicability of the phenotypic

gambit [13]. Predicting phenotypic evolution is also the ulti-

mate goal of convergence and parallel evolution studies,

which have ideal model studies in mimic butterflies [32], adap-

tive radiations of cichlid fishes [75] and adaptive melanism in

rodents, lizards and birds [76]. Understanding the molecular

means through which organisms evolve similar colour traits

is possible with genomic tools without the biases associated

with candidate gene approaches [5]. In this sense, it will also

be important to unravel potentially constraining interactions

between genes (i.e. epistatic and pleiotropic gene effects) to

test whether molecular adaptation proceeds through the path

of less genetic resistance, or whether selection can overcome

such contingencies.

Specific gene effects or genetic architectures are also at the

core of several evolutionary theories. Rowe & Houle [18]

proposed that the capture of genetic variance by condition-

dependent traits would help to solve how genetic variation

for sexually selected traits is maintained, i.e. the so-called lek

paradox. This model assumes a large genetic variance for

condition, owing to many small-effect QTLs associated to con-

dition, and consequently, a high mutation rate for condition

[77]. These assumptions can be challenged at least in part by

unravelling the genetic architecture of condition-dependent

colour traits. Similarly, Hamilton & Zuk [78] proposed that

individual coloration can signal an individual’s genetic cap-

acity to resist parasites, and that host-parasite co-adaptation

cycles could maintain genetic variation in male traits and, con-

sequently, female choice. Such dynamics can be tracked down

knowing which causal variants underlie colour differences
between individuals [79]. These are only a few of the theoreti-

cal frameworks underlying the study of animal coloration;

other scenarios of ‘good genes’ affecting offspring viability

have been proposed to drive indirect benefits of mate choice

and its evolution [80], and the incomplete evolution of sexual

dimorphism is predicted to result from loci that have opposing

fitness effects on males and females (intra- and inter-locus

sexual conflict; [81]). We believe that genomic studies can be

designed with the ultimate goal of testing the genetic assump-

tions of these and other theories, which we predict will increase

our understanding of the evolution of animal coloration.
6. Final remarks: validation and novelty
We have highlighted different frameworks where using high-

throughput sequencing data could aid in advancing the

study of animal coloration. It is important to equally highlight

that there are plenty of scenarios where the application of geno-

mic tools is not justified or can lack power (e.g. to detect lowly

expressed genes or variants in genomic regions that are diffi-

cult to sequence). Previous approaches, such as the candidate

gene approach, will be more useful, for instance, to address

specific hypotheses on the role of certain genes [82]. Similarly,

it is important to highlight that studies using genomic or

transcriptomic-wide approaches will be rarely definitive, and

that their utility largely relies on follow-up studies validating

the causality of the discovered candidate variants or tran-

scripts. Validation studies are essential for two different

reasons. On one hand, high-throughput sequencing data is

highly prone to false-positive signals owing to the massive

amount of data and multiple hypothesis testing [83], sequen-

cing biases [84] and potential flaws in the experimental

design [58]. Additionally, several variants or transcripts can

be discovered owing to linkage or co-expression, while only

few may have a true effect on coloration. On the other hand,

if validation is not implemented, the potential of genomic

and transcriptomic studies to unravel novel genetic pathways

will be undermined by the lack of experimental evidence on

the functional role of the new discoveries.

Validation is not a minor task given that gathering robust

experimental support of the functional effects of a given var-

iant or gene can be difficult in non-model species. Closely

related model species can be used to validate the causal func-

tion. Santos et al. [16] used this approach to validate the role

of the gene fhl2b in mediating egg-spot formation in the anal

fins of haplochromin cichlids (figure 1b). Using whole-tran-

scriptome shotgun sequencing, Santos et al. found fhl2b to be

highly expressed in anal fins presenting egg-spots. A compari-

son of the genomic sequences of different cichlids species

revealed the presence of a transposable element in the regulat-

ory region upstream the gene fhl2b in species displaying egg

spots. They then generated transgenic lines of the closest

model species, the zebrafish, which confirmed that the inser-

tion of the transposon upregulates the expression of fhl2b.

Other manipulative approaches like CRISPR/Cas9 [24], or

the transfection of cell cultures [85], have also been successfully

applied to validate the role of candidate variants on coloration.

Although desirable, manipulative experiments may not

be feasible in certain species, or may not be conclusive (some

variants may have a true effect but only on the genetic or

physiological background where they were discovered). Thus,

gathering multiple lines of evidence on the role of a gene or a
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gene variant will be more informative and should become stan-

dard practice. Multiple lines of evidence can be obtained

in most study systems by: (i) following the transmission of the

candidate variants and coloration within a pedigree [86],

(ii) confirming predicted effects on expression (e.g. measuring

gene expression during colour development or between body

parts expressing different colours [22,23]), (iii) replicating the

study in independent samples or in related species exhibiting

similar colour traits [16], or (iv) by assessing the capacity

of the observed variants in predicting colour variation in a

different sample [53]. Given the importance and difficulty

of validating findings obtained with high-throughput sequen-

cing data, we encourage discussion and consensus on this

topic as recently done for association studies in humans [87].
Without the ultimate goal of validation, and further research

on the function of newly as well as previously discovered

genes, genome-wide tools will be largely misleading and of

little help in understanding the wide and complex diversity

of animal colour traits.
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