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Humans are a colourful species of primate, with human skin, hair and eye

coloration having been influenced by a great variety of evolutionary forces

throughout prehistory. Functionally naked skin has been the physical interface

between the physical environment and the human body for most of the history

of the genus Homo, and hence skin coloration has been under intense natural

selection. From an original condition of protective, dark, eumelanin-enriched

coloration in early tropical-dwelling Homo and Homo sapiens, loss of melanin

pigmentation occurred under natural selection as Homo sapiens dispersed

into non-tropical latitudes of Africa and Eurasia. Genes responsible for skin,

hair and eye coloration appear to have been affected significantly by popu-

lation bottlenecks in the course of Homo sapiens dispersals. Because specific

skin colour phenotypes can be created by different combinations of skin

colour–associated genetic markers, loss of genetic variability due to genetic

drift appears to have had negligible effects on the highly redundant genetic

‘palette’ for the skin colour. This does not appear to have been the case for

hair and eye coloration, however, and these traits appear to have been more

strongly influenced by genetic drift and, possibly, sexual selection.

This article is part of the themed issue ‘Animal coloration: production,

perception, function and application’.
1. Introduction
Discussions of the cardinal features of the human lineage usually focus on biped-

alism, relative brain size, language and technology, and ignore the remarkable

distinctions of the integument and eyes that have figured importantly in

human evolution. In this paper, we explore the diversity of skin, hair and eye

coloration in the human lineage, and seek explanations for the evolution of pig-

mentation traits in relation to the history of human dispersals and population

history. Our focus is primarily on the evolution of pigmentary traits in anatomi-

cally modern Homo sapiens, but brief consideration of integumentary coloration

in non-human primates and during pre-sapiens phases of human evolution is

necessary for understanding the starting point for Homo sapiens.
2. Human coloration in context
Like most mammals, primates have hair covering most of their bodies. Most

non-human primates have coats consisting of brown or grey agouti hairs, but

lavish variation exists. The trunk and limbs of most primates exhibit darker

dorsal and lighter ventral pelage, probably for both concealment and thermo-

regulation [1–4]. Striking patterns of coat colours are found in some lineages

[1,5–7], with the most conspicuous patterns found on both the bodies and

faces of forest-dwelling diurnal primates such as marmosets (e.g. Mico species),

guenons (Cercopithecus) [8], and doucs and snub-nosed monkeys (Pygathrix and

Rhinopithecus). Nocturnal strepsirrhines such as lorises and galagos, and the

only nocturnal haplorhine, the night monkey Aotus, are remarkable for cryptic

body coloration combined with mask-like patterns of facial hair, which have

almost certainly evolved primarily to facilitate species and mate recognition
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under markedly reduced light conditions [1]. Compared with

other catarrhines, the apes (gibbons, orangutans, chimpan-

zees and gorillas) lack agouti banding, and the large apes

mostly lack regional patterning on their coats and colourful

facial markings.

In some platyrrhines and all catarrhines, the skin of the

face, and sometimes also the perineum, is not covered with

hair and instead is glabrous and, sometimes, spectacularly

coloured. The facial masks and perineal regions of the man-

drill and golden snub-nosed monkey, to take two extreme

examples, exhibit highly modified naked skin. Zones of red

coloration are produced by a rich capillary bed perfused

with haemoglobin-carrying red blood cells, while the zones

of blue are structural colours produced by coherent scattering

of light from oriented arrays of dermal collagen [9]. In some

female catarrhines, the perineal skin turns pink or red near

the time of ovulation as blood and interstitial fluid infuses

the region as an advertisement of oestrus [10,11]; in some

macaques, these changes are also accompanied by darkening

of the facial skin, presumably also caused by perfusion of the

region by blood [12]. In Old World monkeys and apes, the

intensity of coloration of glabrous skin is under hormonal

control and is considered a sign of fertility in females and

competitive ability in males [12–14].

The genetic and developmental processes that produce

the complex topographical arrangements of coloration on

the face, trunk and limbs are not well understood [15], and

are still mostly a matter of conjecture. The fact that many pat-

terns follow presumed pathways of migration of the neural

crest-derived melanocytes into the face and trunk during

development warrants further study [5].

Humans are distinguished from their non-human rela-

tives by an absence of most fur and an almost complete

lack of regional patterning in hair coloration, except for

male facial hair in some populations [16]. Most of the surface

area of human skin is covered with almost invisible vellus

hairs and is often referred to as ‘functionally naked’. The rem-

nants of the primate hair coat are the localized concentrations

of non-agouti terminal hairs of similar colour that occur on

the scalp, and of a different type in the axillae and pubic

region. The evolution of hair loss in the human lineage has

been discussed extensively in the literature and is reviewed

elsewhere [17]. Because skin is mostly not preserved in the

fossil record, arguments about the evolutionary causation

of hair loss have relied on critical examination and integration

of pertinent comparative anatomical, physiological, palaeo-

ecological and climatological evidence. This evidence is

consistent with an explanation based on natural selection

for enhanced thermoregulation during high physical activity

levels under conditions of high environmental heat load

[18–20]. Under these conditions, most body hair was lost

and a high density and broad somatic coverage of eccrine

sweat glands was gained in order to increase the capacity

for heat dissipation by evaporation from the surface of the

skin [21–23]. Loss of body hair was accompanied by disad-

vantages, notably, loss of some protection against abrasion

and ultraviolet radiation (UVR). Compensatory changes

evolved quickly in hominin skin, as evidenced by genomic

comparisons between humans and our closest relative, the

chimpanzee. These have revealed that the human lineage is

characterized by accelerated evolution of keratinization and

epidermal differentiation genes that contribute to enhanced

barrier functions of the epidermis [24–26].
While these changes were occurring, others affecting con-

stitutive pigmentation were also taking place. Decades before

genomic evidence became available, the timing of the origin

of permanent darkly pigmented skin over the entire hominin

body surface had been deduced from anatomical, physiologi-

cal and climatological evidence [27]. Since genomic evidence

has become available, comparative study of the human mel-

anocortin 1 receptor (MC1R) locus demonstrated that the

timing of evolution of permanent, dark, eumelanin-rich,

skin pigmentation coincided with the evolution of functional

hairlessness and increased density of eccrine sweat glands

early in the history of the genus Homo, approximately 1.2 Ma

or earlier [28]. Adaptive evolution for sun-resistant alleles of

the MC1R locus appears to have occurred, therefore, when

early members of the genus Homo became mostly hairless

and highly physically active inhabitants of open savannah

environments in Africa. For members of the Homo lineage evol-

ving since then in sub-Saharan Africa—including the earliest

modern people, Homo sapiens—the absence of functional poly-

morphism has been maintained by purifying selection [29,30].

Protective, eumelanin-rich constitutive pigmentation has per-

sisted because of its contribution towards the survival and

successful reproduction of populations living under high

UVR at low latitudes.
3. Variation in human skin coloration is mostly a
product of natural selection

Skin colour (as measured by skin reflectance) and levels of

UVR are highly correlated. Biologically effective UVR is

often described in units of minimal erythemal dose or

MED, which expresses the amount of UVR radiation that

will produce minimal erythema (sunburn or redness caused

by engorgement of capillaries) in lightly pigmented human

skin within a few hours following UVR exposure. Skin

colour can be almost fully modelled as an effect of autumn

UVMED alone (r ¼ 0.927; p , 0.0001) [21,31]. If this relation-

ship developed under natural selection, plausible causation

must demonstrate real or probable enhanced reproductive

success for specific skin pigmentation phenotypes under

specific UVR conditions. Many adaptive explanations for

the evolution of variation in human skin colour have been

put forward in the last century, as reviewed elsewhere [17],

and most have suffered from a lack of evidence for likely

differences in survivorship and reproduction of different

skin colour phenotypes under the same UVR conditions.

Such was the fate of the ‘skin cancer hypothesis’, recently

revived [32], that has invoked dark pigmentation as an evol-

utionary adaptation against sunburn, DNA damage and skin

cancer. Skin cancers rarely cause death or adversely affect

reproductive success during the peak reproductive years [33],

so this explanation was dismissed long ago as being a primary

cause of the evolution of dark skin pigmentation. The recent

argument that ancestral hominins had pale, cancer-prone

skin similar to that of individuals with OCA2 albinism and

that evolution of dark skin spared the human lineage from

skin cancer–related mortality lacks support [34]. Other expla-

nations have insufficient explanatory power. These include the

hypothesis that the eumelanin was most important in affording

protection against tropical parasites and tropical skin diseases

because of its potent antimicrobial properties [35–37], an idea

that fails to explain the near-absence of eumelanin on the
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primary environmental interfaces of the volar surfaces of the

hands and feet and the lips. More recently, mooted is the

hypothesis that the primary function of eumelanin was aug-

mentation of epidermal barrier function by increasing the

skin’s resistance to desiccation under arid conditions, and that

depigmentation did not occur under positive selection for vita-

min D production [38–40]. This hypothesis has been disproved

by multiple lines of evidence, including the fact that tanning

occurs in the presence of UVR, not desiccation [41], and that

positive selection for depigmented skin capable of producing

vitamin D under low and highly seasonal UVB conditions is

now well established [42].

The strongest hypothesis for the evolution of dark skin

colour is that it afforded protection against photodegradation

of cutaneous and systemic folate under high UVR conditions

for early members of the genus Homo. The physiological

effects of photodegradation of folate were explored long

before the full extent of folate’s roles in DNA biosynthesis,

repair, DNA methylation, amino acid metabolism and mela-

nin production were appreciated [43]. Because folate (in its

main form of 5-methyltetrahydrofolate or 5-MTHF) is sensi-

tive to photodegradation [44–47], protective eumelanin-rich

pigmentation evolved in early Homo primarily to prevent

reduction of fertility due to loss of folate in cutaneous

blood vessels and the systemic circulation [21,48]. Folate

deficiencies are associated with potentially fatal birth defects

such as neural tube defects and male infertility [49–52].

Folate metabolism is regulated by genes and epigenomic fac-

tors, which have evolved to favour conservation of folate

under conditions of longer day length and greater potential

UVR-related folate loss [53,54]. Recent physiological evidence

also indicates the importance of folate (in the form of

5-MTHF) in thermoregulation, via its effect on controlling

nitric oxide-mediated cutaneous vasodilation [55–58]. Main-

taining the integrity of folate metabolism is important with

respect to evolution because it directly affects reproductive

success and survival early in life [21,59]. Natural selection

has, thus, affected varied genetic and physiological mechan-

isms in order to protect folate and 5-MTHF in the face of high

UVR. The primary role of constitutive dark skin colour in

hominin and modern human evolution is that of a natural

sunscreen to conserve folate. Protection of epidermal DNA

against strand breaks was the important secondary role

played by dark skin colour.

The genus Homo and the species Homo sapiens emerged in

equatorial Africa under conditions of intense and relatively

invariant sunlight and UVR. Dispersal of hominins into

non-equatorial Africa, Eurasia and the Americas involved

movements into habitats with more seasonally variable pat-

terns and differing wavelength mixtures of UVR [60]. In this

review, we shall confine our discussion to the consequences

for skin colour of dispersal of Homo sapiens into Eurasia and

the Americas, a process which began around 55 000 years ago

[61]. Dispersing populations were small and bottlenecks further

reduced available genetic variation in populations crossing

major geographic boundaries [62]. Note also that there is no evi-

dence that dispersing archaic Homo sapiens used sewn clothing

or other methods of full-coverage protection against the sun

and elements. Non-sewn animal skins probably afforded

some protection, but for the most part people were subjected

to the full force of UVR apart from the times when they

sought natural shelter. Skin was thus the primary interface

with the environment for most of human evolution.
The UVR regimes faced by dispersing hominins were a

major selective pressure affecting the evolution of skin pigmen-

tation. Outside of the tropics, consideration of the pattern of

UVB is relevant because only some wavelengths of UVB

(between 270 and 300 nm, with peak synthesis between 295

and 297 nm) catalyse production of vitamin D in the skin.

Within the tropics, average UVB is high and has two equinoc-

tial peaks, but outside of the tropics, average UVB levels are

lower and exhibit but a single peak at the Summer Solstice

[60]. Average UVB in northern Eurasia and North America is

extremely low and highly variable. Because eumelanin in

skin is a highly effective sunscreen, the potential for cutaneous

vitamin D production is reduced by dark skin [21,63–66].

Darkly pigmented hominins dispersing out of equatorial

Africa thus faced conditions that significantly affected their

vitamin D physiology. Penetration of UVR into the skin is

related to the amount and distribution of melanin; larger and

more superficial melanosomes and ‘melanin dust’ present in

the stratum corneum are highly effective at reducing UVB

transmission [67]. Pre-vitamin D production occurs in skin of

all colours, but in eumelanin-rich skin, low doses of UVB do

not raise 25(OH)D levels to physiologically adequate levels at

which storage can take place; higher doses over longer periods

of time are required for this, and these conditions are not met

outside of equatorial latitudes. For people with dark skin

living outside of the tropics, and especially north or south of

438, there is insufficient UVB available in the sunlight outside

of the time immediately around the summer solstice to satisfy

the body’s vitamin D requirement [21,41,60,68,69]. Long-term

occupation of non-tropical latitudes, thus, would not have been

possible without loss of some constitutive eumelanin pigmen-

tation in order to prevent the serious sequelae of vitamin D

deficiency [21]. At extreme high latitudes, year-round occu-

pation is not possible without a diet that is centred on

consumption and storage of vitamin-D rich foods such as

oily fish, marine mammals, or caribou and reindeer, which

concentrate vitamin D in their muscle meat and fat [21,70].

Most people living in the tropics and subtropics (at latitudes

below 388) gain eumelanin pigment in their skin as the result of

seasonal high UVR exposure in a process referred to as the tan-

ning response. Melanin produced by the tanning response is

the outcome of UV-induced stress and is regulated by melano-

cortins in the skin [71]. Melanocortins in the skin reduce the

production of reactive oxygen species, enhance repair of

DNA damage caused by UVR and inaugurate eumelanin syn-

thesis in individuals who carry specific, naturally expressed

variants of MC1R [71]. Tanning is thus a response to damage

caused by UVR. Contrary to popular belief, tanned skin affords

little or no protection from damage from subsequent UVR

exposure. Recent experimental studies have shown that a tan

developed under suberythemal UVB exposure provides mini-

mal photoprotection, but a tan developed under UVA-rich

sunlamps such as those used in tanning salons provided no

photoprotective benefit [72–74].

Depigmented skin evolved not once, but multiple times

in human history, and was accomplished by different

combinations of genetic mutations. For modern European popu-

lations, different signatures of selection on the MC1R and

SLC24A5 genes imply that both natural selection and genetic

drift contributed to the evolution of depigmented skin. These

genetic changes affected the amounts of melanin being pro-

duced in melanocytes and the size of the melanosomes in

which the melanin was packaged [75]. For modern eastern
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Asian populations, depigmentation was not achieved through

mutations at the SLC24A5 locus [75], but via a different set of

genetic changes, which are still incompletely known [76,77].

The fact that depigmented skin evolved independently in the

ancestors of modern Europeans and East Asians suggests that

at least two (and probably more) distinct genetic mutation

events occurred and that multiple loci underwent positive selec-

tion in these two regions receiving relatively low levels of UVB

[78–80]. The most likely reason for this was that it was associated

with a loss of skin pigment that favoured vitamin D production

under conditions of low UVB [69,78,81]. Depigmented skin also

evolved independently in Homo neanderthalensis [82] probably

for the same reason. The ‘palette’ of skin and hair colour genes

is extensive and, especially outside of Africa, there is evidence

that multiple genes of small effect have contributed to subtle

differences in integumentary coloration [83].

There has been a cause and effect relationship between UVR

and skin pigmentation in human evolution, and skin colour

phenotypes have been modified under the action of natural

selection to maintain an optimum balance between photopro-

tection and photosynthesis over spatially varying conditions

of UVR. Skin colour thus evolved as the product of two

opposing clines, one emphasizing dark pigmentation and

photoprotection against high loads of UVA and UVB near the

equator, the other favouring depigmented skin to promote sea-

sonal, UVB-induced photosynthesis of vitamin D3 nearer the

poles [60]. Intermediate latitudes with seasonally high loads

of UVB favoured the evolution of people with intermediate

colour capable of tanning [84,85]. The most important points

to reinforce here are that the geographical gradient of human

skin colour evolved under the influence of natural selection,

and that very similar skin colour phenotypes (dark, light and

intermediate) have evolved independently numerous times

under similar UVR conditions. Diverse combinations of skin

colour genes occurred during the course of prehistory as the

combined result of natural selection, gene flow due to migration,

and founder effect or genetic drift due to population bottlenecks

occurring in the course of dispersal events [62,86]. Indigenous

populations of the New World have generally lighter skin col-

ours than those of the Old World, probably because they have

not resided in their homelands for as long a time and because

their adaptations to the environment have been more strongly

cultural than biological, as exemplified by the wearing of

sewn clothing and the making of shelters [21,22,87].

Sexual selection does not appear to have been a major influ-

ence on the evolution of human skin coloration, but it probably

did increase the degree of sexual dimorphism in skin colour in

some populations [21,87]. The unexposed skin of females is

lighter than that of males in most populations [21,83], possibly

because of the greater need of females to produce vitamin D in

the skin to absorb and mobilize calcium during pregnancy and

lactation. A persistent, directional preference for lighter-

coloured females as marriage partners has been recognized

during historic times in some east- and south-Asian cultures,

and it is likely that this has contributed to the greater sexual

dimorphism in coloration observed [21,87].
4. Hair and eye coloration are not under strong
natural selection

Like skin, the coloration of human hair and eyes is deter-

mined primarily by the amount and type of melanin
produced and stored in melanosomes [88,89]. Iris pigmenta-

tion is also influenced by structural features within the eye

itself and by the degree of pupillary dilation [90–92].

Although skin coloration varies according to the intensity

and seasonality of UVR on a global scale, no such regular

geographical pattern is observed with hair and eye coloration

[93]. In fact, little variation in hair and eye coloration occurs

in indigenous populations outside of Europe (for hair) and

outside of Europe, North Africa, the Middle East, Central

Asia and South Asia for eyes [88,89,94]. The lack of variation

in hair and eye coloration in Africa has been assumed to be

caused by the importance of eumelanin in affording protec-

tion, as it does in the case of skin coloration, but this has

not been empirically established. Hair and eye coloration

appear to have not been under as strong natural selection

as skin coloration, and loss of genetic variation at one or

more population bottlenecks probably contributed to the pat-

terns of phenotypic variation observed in the hair and irises

of modern people [95].

Scalp hair in most non-European populations is very dark

brown, with little phenotypic variation [96]. Many genes

appear to contribute to the dark brown hair colour phenotype

[88,93], and the relative importance of different loci is not yet

known. The relatively high prevalence of blond hair in North-

ern Island Melanesia has been traced to the 93C allele of the

TYRP1 gene [97,98], which has been dispersed throughout

the region in the course of human colonization of the South-

west Pacific. In Europe, blond hair has been traced to

establishment of variation in a regulatory enhancer of the

KITLG gene, while red hair is produced by a specific range

of variants of the MC1R locus [99–102]. Sexual selection is

thought to have influenced the high prevalence of blond-

and red-hair phenotypes in Europe [93], but this has not

been established empirically.

The nature and coloration of human male facial hair—

beards and moustaches—have been a matter of curiosity and

speculation, but little formal research [16,103,104]. Male facial

hair, manifested as moustaches, cheek hair (whiskers) and

beards, occurs in some male primates and appears to represent

secondary sexual characteristics that evolved as amplified

visual signals of rank, dominance and attractiveness [8,105].

This supports claims that age-related changes in human

beard and moustache coverage and colour on the male face

serve as honest signals of age or social dominance [104], and

that they evolved as products of contest competition between

males [106]. Beards augment the effectiveness of human

aggressive facial displays, but are rated as ambivalent or

unattractive by females [107,108].

Iris coloration in modern people is mostly brown, but this

label is misleading because colours described as ‘brown’ vary

greatly from light to dark [89]. Until very recently, studies

of human iris coloration focused primarily on European

populations, where the greatest range and variety of eye col-

ours—from dark brown to pale blue—are found. Iris colour

phenotypes are determined by amounts of melanin and by

the ratio of eumelanin to phaeomelanin in the iris, with

brown eyes having a higher ratio than light eyes [88,89].

Other categorical eye colours, such as blue, green and hazel,

are common in Europe and parts of the Middle East, and

Central and South Asia, with Europeans having the lightest

eye colours [88]. The sets of genetic markers associated

with variation in iris coloration in Europe, South Asia and

East Asia are distinct, and relatively little is known of the



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160349

5
combination of evolutionary forces—including natural and

sexual selection—that influenced their distribution [89]. Dark

iris coloration is associated with less scattering of intraocular

light, a trait that may be protective under conditions of bright

sunlight and high UVR. Blue eye coloration, on the other

hand, is associated with greater intraocular light scattering

and a higher level of melatonin suppression, traits that may

have been adaptive under highly seasonal sunshine regimes

in northwestern Eurasia [109]. Blue-eyed women have been

found to be preferred by blue-eyed men, possibly as a manifes-

tation of a male adaptation for the detection of extra-pair

paternity based on eye colour, as a phenotypically based assur-

ance of paternity [110]. Arguments for the action of natural and

sexual selection on iris colour need to be examined with great

care as more data on the genetic basis of the trait are revealed.

A recent study showing that the genetic markers associated

with iris coloration are also associated with skin and hair

pigmentation traits suggests that iris coloration was a pleitro-

pic effect associated with selection on pigmentation genes

whose primary effect was skin or hair pigmentation, not iris

coloration [89].

The genetic basis of human coloration is complex because

some genetic variants affect all pigmentary systems—skin,

hair and eyes—through pleiotropic effects, while others

affect only one type [111] and because different genes and

gene combinations can create similar coloration phenotypes.

Despite the technical difficulties of such studies, the fascina-

tion of humans with their own coloration phenotypes will

certainly continue to propel research forward quickly.
5. Conclusion
Skin, hair and eye coloration in humans is variable, and has

been influenced by different combinations of evolutionary

forces. Skin coloration has been strongly influenced by natu-

ral selection, globally and throughout human prehistory,

because of the importance of melanin as a natural sunscreen

on naked skin. The role of natural selection in the evolution of

hair and eye coloration appears to have been negligible, but

genetic bottlenecks followed by sexual selection may have

played more significant roles in establishing the patterns of

variation recognized outside of Africa.
In recent centuries, humans have migrated faster and over

longer distances than during any time in prehistory. Many of

these movements have brought people into regions with

markedly different solar regimes than their homelands.

Many people now live under levels of solar radiation that

are much stronger, or much weaker and more seasonal,

than those under which their ancestors evolved. These

rapid changes in living circumstances have created significant

health problems resulting from too much UVR exposure (skin

cancer, accelerated ageing of the skin) and from too little

UVR exposure (vitamin D deficiency and its many sequelae)

that have greatly impacted individual well-being and public

health. Mitigating these problems is now the focus of con-

siderable attention in many health professions [112–115].

Rapid, long-distance migrations have also brought people

together from disparate and widely separated places, creating

unprecedented and novel opportunities for gene flow. The

twenty-first century world contains a sepia rainbow of

human skin colours, created from old and new combinations

of skin colour–related genetic markers. The effects of these

new genetic admixtures on health are not known. More sig-

nificant to health and overall human well-being, however,

are the problems of social segregation and behavioural bias

that are rooted in cultural constructions of skin colour–

based race categories [87]. Humans are visually oriented

primates, and our varied colours are badges of our recently

shared evolutionary history. Our skin colours unite us, not

divide us.
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