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FGF21 does not require adipocyte AMP-activated
protein kinase (AMPK) or the phosphorylation of
acetyl-CoA carboxylase (ACC) to mediate
improvements in whole-body glucose
homeostasis
Emilio P. Mottillo 1,8, Eric M. Desjardins 1,8, Andreas M. Fritzen 3, Vito Z. Zou 1, Justin D. Crane 1,
Julian M. Yabut 1, Bente Kiens 3, Derek M. Erion 5, Adhiraj Lanba 6, James G. Granneman 4,
Saswata Talukdar 7, Gregory R. Steinberg 1,2,*
ABSTRACT

Objective: Fibroblast growth factor 21 (FGF21) shows great potential for the treatment of obesity and type 2 diabetes, as its long-acting analogue
reduces body weight and improves lipid profiles of participants in clinical studies; however, the intracellular mechanisms mediating these effects
are poorly understood. AMP-activated protein kinase (AMPK) is an important energy sensor of the cell and a molecular target for anti-diabetic
medications. This work examined the role of AMPK in mediating the glucose and lipid-lowering effects of FGF21.
Methods: Inducible adipocyte AMPK b1b2 knockout mice (ib1b2AKO) and littermate controls were fed a high fat diet (HFD) and treated with
native FGF21 or saline for two weeks. Additionally, HFD-fed mice with knock-in mutations on the AMPK phosphorylation sites of acetyl-CoA
carboxylase (ACC)1 and ACC2 (DKI mice) along with wild-type (WT) controls received long-acting FGF21 for two weeks.
Results: Consistent with previous studies, FGF21 treatment significantly reduced body weight, adiposity, and liver lipids in HFD fed mice. To add,
FGF21 improved circulating lipids, glycemic control, and insulin sensitivity. These effects were independent of adipocyte AMPK and were not
associated with changes in browning of white (WAT) and brown adipose tissue (BAT). Lastly, we assessed whether FGF21 exerted its effects
through the AMPK/ACC axis, which is critical in the therapeutic benefits of the anti-diabetic medication metformin. ACC DKI mice had improved
glucose and insulin tolerance and a reduction in body weight, body fat and hepatic steatosis similar to WT mice in response to FGF21 administration.
Conclusions: These data illustrate that the metabolic improvements upon FGF21 administration are independent of adipocyte AMPK, and do not
require the inhibitory action of AMPK on ACC. This is in contrast to the anti-diabetic medication metformin and suggests that the treatment of
obesity and diabetes with the combination of FGF21 and AMPK activators merits consideration.
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1. INTRODUCTION

Initially identified as a hormone secreted by the liver that could potently
stimulate glucose uptake in adipocytes [1], fibroblast growth factor 21
(FGF21) is an endocrine factor that exerts potent anti-obesity and anti-
diabetic effects in rodents and non-human primates [2e8]. Further-
more, long-acting FGF21 analogues in phase 1 clinical trials decrease
body weight and improve the lipid profile of patients with type 2 dia-
betes [6,9]. In pre-clinical rodent models, FGF21 administration in-
creases energy expenditure and improves glucose and lipid
homeostasis [2]. These effects have been related to increases in
glucose uptake and triglyceride clearance in white (WAT) and brown
adipose tissue (BAT) [10] and require the expression of the FGF21
receptor, fibroblast growth factor receptor 1c (FGFR1c), and cofactor
beta klotho (KLB) [11,12]. Findings from several FGF21 studies have
also shown increases in the browning of WAT; a process whereby WAT
acquires characteristics of brown fat such as increases in mitochon-
drial number and the expression of uncoupling protein 1 (UCP1). While
recent studies have suggested that metabolic improvements mediated
by FGF21 do not require UCP1 [13,14] nor intrascapular BAT [2], other
groups have shown that UCP1 is required for FGF21-mediated glucose
disposal [15] (see Straub and Wolfrum for a minireview [16]). Although
it has recently been recognized that FGF21 may exert many of its
pharmacological effects through the central nervous system (CNS)
[17], the intracellular mechanisms mediating the beneficial metabolic
effects of FGF21 on adipose tissue metabolism in vivo are currently not
fully elucidated.
Previous studies have shown that FGF21 administration activates the
energy sensor AMP-activated protein kinase (AMPK) to promote mito-
chondrial biogenesis and greater mitochondrial oxidative function in
cultured rodent and human adipocytes [18]. AMPK is a central regulator
of the energy status of the cell, regulating a myriad of metabolic
pathways [19e22]. AMPK in WAT and BAT is activated by sympathetic
drive through mechanisms that are not fully understood but are thought
to occur, at least in part, by increased lipolysis [23e25]. Our previous
work demonstrated that adipocyte AMPK is required for acute BAT-
mediated thermogenesis, the browning of WAT in response to b3-
adrenergic stimuli, and protection against the deleterious effects of a
high fat diet (HFD) via the regulation of the mitochondrial quality control
pathway (mitophagy) [23]. Furthermore, the inducible deletion of
adipocyte AMPK in adult mice did not alter adipocyte lipolysis [23].
However, whether adipocyte AMPK is important for the glucose and
lipid-lowering effects of FGF21 remains to be determined.
Chronic FGF21 treatment reduces hepatic triglyceride levels by pro-
moting fat oxidation [26,27] and suppressing de novo lipogenesis in
the liver of rodents, effects associated with an increase in AMPK
activation [2]. In addition, discrete effects of FGF21, such as sup-
pression of hepatic glucose output [28], are thought to involve action
on the liver [2,29,30]. Interestingly, the therapeutic effects of met-
formin, a first line therapy for the control of blood glucose levels, re-
quires AMPK regulation of acetyl-CoA carboxylase (ACC) to suppress
de novo lipogenesis and promote hepatic fat oxidation [31]. Together,
these data suggest that FGF21 might also mediate improvements in
blood glucose levels through the AMPK/ACC axis in the liver.
Considering that FGF21 is in clinical trials for the treatment of obesity
and diabetes, a deeper understanding of the responsible in vivo
signaling pathways has obvious medical benefits. In particular, both
clinical studies published to date do not demonstrate robust glycemic
control, despite weight loss [6,9]. Since adipose tissue is a key organ
that directly mediates the effects of FGF21 [6,17,32,33], a better un-
derstanding of adipocyte-specific signaling events is required in the
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context of improvements in whole-body metabolism. Moreover, since
metformin is a first line therapy for glycemic control in diabetic patients,
it would be of great benefit to understand if FGF21 also requires the
AMPK/ACC axis to improve blood glucose levels. To this end, we utilized
an inducible model for the deletion of AMPK in adipocytes of adult mice
[23] to examine whether the metabolic improvements of FGF21 therapy
require adipocyte AMPK in vivo. To circumvent the deleterious effects of
AMPK removal prior to HFD challenge [23], we performed deletion of
adipocyte AMPK following HFD treatment. We also tested whether
FGF21 requires AMPK-mediated phosphorylation of ACC to improve
blood glucose and hepatic lipid levels by utilizing a knock-in model in
which AMPK lacks the ability to inactivate ACC. Overall, we demon-
strated that the beneficial metabolic effects of pharmacological
administration of FGF21 on energy metabolism, fuel selection, body
weight, insulin tolerance, and liver lipids are not mediated through
adipocyte AMPK or the upregulation of a thermogenic program in BAT
or inguinal WAT (iWAT). Additionally, FGF21 administration does not
require the AMPK/ACC pathway to reduce hepatic lipid content or
improve glucose homeostasis and insulin sensitivity. Taken together,
these findings offer new insights into the mechanism of FGF21 action
and open up the possibility of understanding the disconnect between
rodent and clinical data on glucose endpoints.

2. MATERIALS AND METHODS

2.1. Animals
All experiments were approved by the McMaster University Animals
Ethics Committee and conducted under appropriate Canadian guide-
lines for animal research. Mice lacking adipocyte AMPK b1b2
(ib1b2AKO) along with littermate controls were generated as previ-
ously described [23]. Tamoxifen (Cayman Chemical; MI, USA), dis-
solved in sunflower oil, was given via oral gavage for five consecutive
days in adult males to induce the deletion of adipocyte AMPK b1b2
after 10 weeks of a high fat diet (HFD, 45% kcal fat) (D12451,
Research Diets; New Brunswick, New Jersey). At week 14 of HFD,
control and ib1b2AKO mice were anesthetized with Avertin (2,2,2-
tribromoethanol dissolved in methyl-2-butanol, Sigma-Aldrich; ON,
Canada; 0.5 mg/g body) and implanted dorsally with two week mini-
osmotic pumps (1002, Alzet; CA, USA) delivering 0.35 mg/kg/day of
native FGF21 or 0.9% sodium chloride (saline) and incisions closed
with perma-hand silk suture (Ethicon; ON, Canada). Food and water
were provided ad libitum and mice were housed at 23 �C with a 12-
hour light/dark cycle.
Male ACC1-S79A and ACC2-S212A knock-in mutation mice (ACC DKI)
were as previously described and were put on a 45% HFD at 3e4
months of age [31]. At week 10 of HFD, wildtype and ACC DKI mice
received subcutaneous injections of long-acting FGF21 (PF-05231023)
at 10 mg/kg twice a week for 2 weeks.

2.2. Metabolic parameters and blood measurements
Metabolic monitoring was performed using a Comprehensive Lab
Animal Monitoring System (CLAMS, Columbus Instruments; OH, USA).
Body fat was determined using a time-domain NMR whole-body
composition analyzer (minispec LF90II, Bruker; MA, USA) and
normalized to body weight. A glucose tolerance test (GTT) or insulin
tolerance test (ITT) was performed with 6-hour fasted mice on day 13
of treatment, after intraperitoneal injection of 1.0 g/kg of glucose or
1 U/kg insulin, respectively, for HFD-fed mice [34]. Blood glucose
levels were determined using a One Touch Ultra Glucometer (LifeScan,
Canada). FFA were measured by isolating plasma via centrifugation at
4 �C, diluting in PBS at a 1:5 ratio, and using a non-esterified fatty acid
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colorimetric assay kit (NEFA-HR 2, Wako Diagnostics; VA, USA).
Plasma insulin and adiponectin were quantified by ELISA (Millipore).

2.3. In-vivo glucose clearance
Tissue-specific glucose uptake, stimulated by 1.0 U/kg of insulin via
intraperitoneal injection, was performed by tail vein injection of 2 mCi of
3H-2-deoxy-D-glucose (2-DG) 15 min prior to sacrifice, as previously
described [35]. Rates of tissue-specific glucose uptake were measured
by analyzing radioactivity from tissues in both the deproteinized and
proteinized state using 0.3 mM BaOH and 0.3 mM Zn(SO4) (Sigma-
Aldrich; ON, Canada).

2.4. Immunoblotting and cytochrome c oxidase (COX) activity
Tissue lysates were prepared in lysis buffer (50 mM HEPES pH 7.4,
150 mM NaCl, 100 mM NaF, 10 Na-pyrophosphate, 5 EDTA mM,
250mM sucrose, 1 mM DTT, and 1 mMNa-orthovanadate, 1% Triton X,
and Complete protease inhibitor cocktail (Roche)). Western samples
were prepared using 4x SDS sample buffer (40% glycerol, 240 mM,
TriseHCl pH 6.8, 8% SDS, 0.04% bromophenol blue, 5% b-mercap-
toethanol, with a 1:50 dilution of 1 M DTT) and boiled at 95 �C for 5 min.
20mg of proteinwas loaded perwell for iWAT and 5mg of protein for BAT,
as this amount avoids oversaturation of the UCP1 signal. Immunoblotting
was performed as previously described [23]. Using antibodies purchased
from Cell Signaling Technology (AKT, #9272; pAKT Ser473, #4058; anti-
Rabbit IgG horseradish peroxidase (HRP)-linked, #7074; and anti-Mouse
IgG HRP-linked; #7076), Alpha Diagnostic International (UCP1, #UCP11-
A), and Invitrogen (b-tubulin, #32-2600), blocked membranes were
incubated in primary antibody overnight at 4 �C (5% BSA in TBST).
In order to determine phospho/total protein ratios, membranes were
first probed for the phospho protein, stripped for 30 min at 37 �C using
Restore Plus (Thermo Scientific; ON, Canada) to ensure removal of
phospho signal, and re-probed overnight using antibody against the
total protein. UCP1 protein levels were normalized to the loading
control b-tubulin. Densitometrical analysis was performed using Image
J Software (NIH; MD, USA).
COX activity was measured in tissue lysates as prepared above and as
previously described [23].

2.5. Histology
Samples harvested from mice were initially stored and fixed in 10%
formalin (24e48 h) and subsequently processed for paraffin embed-
ding and stained with H&E by the Department of Pathology and Mo-
lecular Medicine at McMaster University Children’s Hospital. Images of
the liver (20x) and BAT (10x) were taken using a Nikon 90i Eclipse
(Nikon Inc.; NY, USA).

2.6. Lipid analysis
Plasma and lipid analysis was performed as previously described [6].
Briefly, liver tissue samples were homogenized in Methanol:Water (1:1
v/v) and then lipids were extracted with Dichloromethane: Isopropanol:
Methanol (25:10:65, v/v/v) and analyzed by mass spec against internal
standards. Liver triglyceride levels in ACC-DKI mice were measured
using a Triglyceride Assay Kit (Cayman Chemical) as previously
described [23].

2.7. Real-time quantitative PCR (RT-qPCR)
RT-qPCR was performed to determinemRNA expression of browning and
mitochondrial markers as previously described [36]. Briefly, RNA was
isolated using TRIzol reagent (Invitrogen; CA, USA) and applied to columns
(RNeasy kit, Qiagen; CA, USA) for purification. All Taqman primers
were purchased from Invitrogen [23] (Hadh, Mm00492535_m1;
MOLECULAR METABOLISM 6 (2017) 471e481 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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Cpt1b, Mm00487191_g1; Ppargc1a, Mm01208835_m1; Ppara,
Mm00440939_m1; Ucp1, Mm01244861_m1; Ppia, Mm02342430_g1;
Mt-co2, Mm03294838_g1; Cox8b, Mm00432648_m1; Cidea,
Mm00432554_m1), and relative gene expression was calculated using
the comparative Ct (2-DCT) method. Values were normalized to the
housekeepinggene Ppia and subsequently expressedas relative to control
saline.

2.8. Statistical analyses
Results were analyzed by two-way ANOVA using GraphPad Prism
software. Repeated measures two-way ANOVA was used for GTT and
ITT data. All values are presented as mean � SEM and significance
was accepted at p � 0.05.

3. RESULTS

3.1. FGF21 increases energy expenditure, reduces adiposity, and
improves blood parameters independent of adipocyte AMPK
To examine the role of adipocyte AMPK in mediating the metabolic
effects of FGF21, double floxed AMPK b1 and b2 mice with or without
the Adiponectin Cre recombinase e estrogen receptor T2 (CreERT2)
transgene were subjected to HFD treatment for 10 weeks followed by
tamoxifen-induced deletion of AMPK (Figure 1A). We evaluated the
efficiency of deletion by determining phosphorylation of ACC, the most
sensitive method for detecting cellular AMPK activity, and found no
detectable phosphorylation of ACC in BAT and iWAT of mice deficient
for AMPK (Supplemental Figure 1). Following three weeks to allow for
the appropriate genetic recombination and recovery, mice treated with
native FGF21 for two weeks showed increased oxygen consumption
and energy expenditure (Figure 1BeD) and lowered respiratory ex-
change ratio (R.E.R.) (Figure 1E) in both control and mice deficient for
AMPK in adipocytes. The increase in metabolic activity by FGF21 was
similar when the data were normalized to lean body mass (Figure 1B
vs. C) and was not due to differences in food intake and physical
activity, as these parameters were unchanged upon FGF21 adminis-
tration (Figure 1F and G). Concomitant with greater metabolic activity,
FGF21 treatment reduced body weight (Figure 1H) and adiposity
(Figure 1I) in both genotypes. Overall, these data indicate that FGF21
does not require adipocyte AMPK to mediate an increase in energy
expenditure and a reduction in body fat.
Adiponectin has been suggested to be an important mediator for the
insulin sensitizing effects of FGF21 [3,37] and is an activator of AMPK
[38]. Indeed, FGF21 administration increases circulating adiponectin in
humans [6,9]. FGF21 administration caused amodest trend of increased
circulating adiponectin levels in control (p¼ 0.068) (Figure 2A) but not in
ib1b2AKO mice; however, serum insulin levels were dramatically
reduced in both genotypes (Figure 2B). Despite the much lower insulin
levels, WT and ib1b2AKO mice treated with FGF21 had lower fed
(Figure 2C) and fasted blood glucose levels (Figure 2D). FGF21 treatment
also lowered plasma free fatty acid (FFA) and triacylglycerol (TAG) levels
in both genotypes to a similar extent (Figure 2E and F). Overall, these
data indicate that FGF21 lowers serum insulin, blood glucose, and
plasma TAGs and FFAs independently of adipocyte AMPK.

3.2. FGF21 improves insulin sensitivity and promotes glucose
uptake in BAT independently of adipocyte AMPK
Consistent with lower blood glucose and plasma insulin, FGF21
improved insulin-mediated glucose disposal in both control and
ib1b2AKO mice (Figure 3A and B). To determine which tissues were
mediating the improvements in insulin-mediated glucose uptake, we
assessed 2-deoxyglucose uptake following an intraperitoneal injection
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 473
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Figure 1: Native FGF21 increases energy metabolism, fuel selection, and body weight regulation in both control and ib1b2AKO mice. (A) timeline of experiment with
45% high fat diet (HFD), in weeks, consisting of a week of tamoxifen (TMX) treatment to induce the deletion of both AMPK beta subunits (b1 and b2) only in adipocytes, and two
weeks of native FGF21 administration using implanted osmotic mini-pumps. Mice were maintained on a HFD throughout the illustrated timeline and FGF21 treatment was
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Original Article
of insulin. FGF21 increased glucose uptake in BAT (Figure 3C), but this
effect was not significant in iWAT (Figure 3D). Interestingly, FGF21 had
an overall effect of lowering glucose uptake in gonadal WAT (gWAT),
liver and quadriceps muscle (Figure 3EeG). To determine if FGF21
treatment was associated with improvements in adipose tissue insulin
signaling, and whether there were differences in ib1b2AKO mice, we
examined AKT phosphorylation status in BAT and iWAT. FGF21
treatment increased phosphorylation of AKT in both BAT (Figure 3H and
I) and iWAT (Figure 3H and J) following an acute injection of insulin.
These data indicate that FGF21 treatment improves BAT insulin action
and that these effects do not require AMPK.
474 MOLECULAR METABOLISM 6 (2017) 471e481 � 2017 The Authors. Published by Elsevier GmbH. Thi
3.3. FGF21 reduces hepatic steatosis without increasing WAT
browning
FGF21 reduces non-alcoholic fatty liver disease (NAFLD) [2,5] while
inducible deletion of adipocyte AMPK prior to HFD treatment promotes
NAFLD [23]. Consistent with previous reports [2,29], FGF21 treatment
resulted in lower hepatic lipid content, as indicated by lower lipid-laden
white area present within cells in hematoxylin and eosin (H&E) stains
(Figure 4A), which was further confirmed by a reduction in liver
diacylglycerol (DAG) (Figure 4B) and TAG (Figure 4C) levels. In contrast
to DAG and TAG levels, liver ceramide levels were increased with
FGF21 treatment (Figure 4D).
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: The effects of native FGF21 on specific blood parameters in control and ib1b2AKO mice. Circulating adiponectin (A) and insulin (B) levels of control and ib1b2AKO
mice treated with saline or native FGF21 for 14 days (n ¼ 4e7 per group). Blood glucose levels in the fed (C) and 12 h fasted (D) state (n ¼ 4e7 per group). E and F: end-point
plasma triacylglycerol (E) and free fatty acids (FFA) (F) of Control and ib1b2AKO mice treated with saline or native FGF21 (n ¼ 4e7 per group). Data are means � SEM with yyy
p < 0.001 denoting a general treatment effect and * p < 0.05 denoting a general genotype effect as determined by a two-way ANOVA.
FGF21 has been associated with improvements in BAT function and
increased WAT browning; however, the role of UCP1 and WAT
browning in mediating the metabolic improvements induced by
pharmacological administration of FGF21 are somewhat dichotomous
[13,15,16]. FGF21 treatment reduced both BAT and iWAT mass
(Figure 5A and B, respectively) and reduced the presence of lipid in
BAT, as indicated by H&E staining (Figure 5C). FGF21 treatment had a
modest overall effect on increasing UCP1 and MT-CO2 mRNA levels in
BAT of control and ib1b2AKO mice (Figure 5D), but not in iWAT
(Figure 5F). Consistent with an increase in MT-CO2, FGF21 increased
mitochondrial cytochrome c oxidase (COX) activity in the BAT of both
control and ib1b2AKO mice (Figure 5E). FGF21 increased Ppargc1a
mRNA levels in iWAT, but the expression of other browning markers
was unaffected (Figure 5F). FGF21 treatment did not affect UCP1
protein levels in BAT, while there was an overall effect for lower UCP1
MOLECULAR METABOLISM 6 (2017) 471e481 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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levels in the BAT of ib1b2AKO mice (Figure 5G and H). The expression
of UCP1 protein in iWAT, while highly variable, was unaffected by
FGF21 treatment in either Control or ib1b2AKO mice (Figure 5G and I).

3.4. FGF21-mediated improvements in glucose homeostasis,
insulin sensitivity and hepatic lipid content are independent of
phosphorylation of ACC by AMPK
The accumulation of hepatic lipids is thought to be critical in liver
insulin resistance and causative in the dysregulation of whole-body
glucose homeostasis [39]. One of the molecular mechanisms for
hepatic lipid accumulation is the process of de novo lipogenesis.
FGF21 has been shown to suppress hepatic glucose output [28] and
de novo lipogenesis, effects that were associated with the activation
of AMPK [2]. To examine whether the metabolic improvements
resulting from FGF21 administration are due to AMPK’s inhibitory
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 475
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action on ACC e a key rate-limiting enzyme in the lipogenesis
pathway and regulator of hepatic fat oxidation e we utilized a pre-
viously described knock-in mutation mouse model for ACC where
AMPK lacks the ability to phosphorylate and inactivate ACC [31]. In
addition, we utilized a long-acting form of FGF21 (PF-05231023) that
demonstrated efficacy in humans [6]. Consistent with previous
476 MOLECULAR METABOLISM 6 (2017) 471e481 � 2017 The Authors. Published by Elsevier GmbH. Thi
studies [2,5] and the current data in ib1b2AKO mice, FGF21
significantly improved glucose tolerance (Figure 6A and B) and insulin
sensitivity (Figure 6C and D). However, these effects were indepen-
dent of the ability of AMPK to phosphorylate and inactivate ACC.
Additionally, FGF21 administration led to reduced body weight
(Figure 6E), adiposity (Figure 6F), and lowered fed (Figure 6G) and
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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fasted-state (Figure 6H) blood glucose levels, irrespective of geno-
type. Lastly, the administration of long-acting FGF21 substantially
lowered hepatic lipid content, marked by the reduced lipid containing
area within H&E stained liver sections (Figure 6I) and reduced liver
triacylglycerol levels (Figure 6J).

4. DISCUSSION

In the current study, we examined whether pharmacological admin-
istration of FGF21 requires adipocyte AMPK to mediate its beneficial
effects on metabolic homeostasis. Our previous work demonstrated
that adipocyte AMPK was necessary to maintain BAT function, mediate
increases in WAT browning and protect against the development of
hepatic steatosis in rodents on a HFD [23]. Our current results
demonstrate that FGF21 administration does not require adipocyte
478 MOLECULAR METABOLISM 6 (2017) 471e481 � 2017 The Authors. Published by Elsevier GmbH. Thi
AMPK to mediate improvements in glucose homeostasis, lipid ho-
meostasis, insulin sensitivity, and reductions in body weight in vivo.
Furthermore, we tested whether AMPK’s inhibitory phosphorylation of
ACC mediated the metabolic benefits of FGF21 administration and
showed no genotype differences in the treated groups.
In mice, FGF21-mediated improvements in metabolic homeostasis
have also been associated with the browning of WAT [2,14]. We found
that FGF21 treatment increased energy expenditure, reduced body fat
mass, and improved insulin sensitivity without increases in BAT or
iWAT UCP1 protein levels. Indeed, as previously reported [23], we
found that BAT UCP1 levels were lower in mice deficient for adipocyte
AMPK, yet FGF21 improved metabolic homeostasis in these mice.
FGF21 increased mitochondrial COX activity in both genotypes, which
may explain how FGF21 might be mediating its effects independently
of adipocyte AMPK, possibly via UCP1-indepdendent mechanisms (see
s is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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below). We did not observe changes in overall WAT browning, as
measured by gene expression analyses and UCP1 protein levels,
although FGF21 treatment did increase Ppargc1a mRNA levels, which
could still be involved in mediating the effects of FGF21 [18,40] in this
model.
We found that FGF21 increased glucose uptake in BAT and lowered
uptake in the liver and quadriceps muscle, effects which were inde-
pendent of adipocyte AMPK. Since we did not perform the hyper-
insulinemiceeuglycemic clamp technique, we cannot rule out the
potential effects of FGF21 on suppressing hepatic glucose output [2,28].
FGF21 also increased tissue insulin action in BAT and iWAT indepen-
dently of adipocyte AMPK; however, FGF21 did not significantly increase
tissue glucose uptake in iWAT. These data suggest that the target tissue
for the glucose lowering effects of FGF21 is likely BAT, although this
does not require increased BAT UCP1 protein levels or AMPK. These data
could explain the lack of glucose lowering in humans since the subjects
recruited for the clinical studies were not measured for the presence of
functional BAT. An alternate pathway is that FGF21 might promote
UCP1-independent thermogenic mechanisms to mediate some of its
beneficial metabolic effects. Recently, a phospho-proteomic approach to
identify the signaling pathways activated downstream of FGF21 in adi-
pocytes uncovered the metabolic sensor mammalian target of rapa-
mycin (mTORC1) as an important mediator of the effects of FGF21
in vitro [41]. mTORC1 was required for FGF21-mediated increase in
UCP1 mRNA, adiponectin secretion, and glucose uptake [41]. Future
work should determine whether FGF21 requires adipocyte mTORC1 to
mediate improvements in whole-body metabolism.
FGF21 likely improves hepatic steatosis and liver insulin action by
reducing lipogenesis and enhancing lipid oxidation [2,27,29,30]. As
metabolic improvements upon FGF21 administration are associated
with reduced expression of ACC1 and ACC2 in liver [27], we used
previously described knock-in mutation mice (ACC DKI) to test whether
AMPK’s inhibitory phosphorylation of ACC (ACC1-S79 and ACC2-S212)
mediated the metabolic benefits of FGF21 administration. When ACC is
phosphorylated by AMPK, as occurs with metformin treatment,
malonyl-CoA levels are reduced, leading to the suppression of de novo
lipogenesis and the reduction of hepatic lipid content and insulin
resistance [31,42]. However, we observed no differences between
wildtype and ACC DKI mice in response to FGF21 administration over
two weeks. These data indicate that FGF21 does not share a similar
mechanism to metformin for the amelioration of lipid content and in-
sulin sensitivity [31].
In conclusion, we report that FGF21 improves metabolic homeostasis
in HFD-fed mice, effects that are independent of adipocyte AMPK or its
downstream substrate ACC, and which were not associated with in-
creases in BAT or WAT browning. These data suggest that combina-
torial treatment of obesity and diabetes with FGF21 and AMPK
activators [31,43] may have enhanced efficacy since they function
through different signaling pathways. Future work is required to
determine whether FGF21 mediates its effects via UCP1-independent
futile cycling pathways, such as greater lipid turnover [44] or a crea-
tine substrate cycle [45].
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