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ABSTRACT HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT muta-
tions that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical
use. Q151TM and four associated mutations, A62V, V75I, F77L, and F116Y, were de-
tected in patients failing therapies with dideoxynucleosides (didanosine [ddl], zalcita-
bine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to
as the Q151TM complex (Q151Mc), and an RT or virus containing Q151Mc exhibits
resistance to multiple NRTIs. To understand the structural basis for Q151M and
Q151Mc resistance, we systematically determined the crystal structures of the wild-
type RT/double-stranded DNA (dsDNA)/dATP (complex 1), wild-type RT/dsDNA/ddATP
(complex 1), Q151M RT/dsDNA/dATP (complex Ill), Q15TMc RT/dsDNA/dATP (com-
plex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The struc-
tures revealed that the deoxyribose rings of dATP and ddATP have 3’-endo and 3'-
exo conformations, respectively. The single mutation Q151M introduces conformational
perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the
mutated pocket may exist in multiple conformations. The compensatory set of muta-
tions in Q15TMc, particularly F116Y, restricts the side chain flexibility of M151 and
helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-
binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a
switched conformation for the key conserved residue R72 compared to that in wild-
type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase,
the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-
type HBV polymerase as residues R41, Y89, M171, and M204, respectively; function-
ally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside ana-
logs.

KEYWORDS antivirals, compensatory mutation, DNA polymerase, human
immunodeficiency virus, antiviral agents, hepatitis B virus

IV-1 infections are treated with combinations of multiple drugs. Currently ap-

proved anti-HIV-1 drugs target key steps of the viral life cycle, namely, viral
entry/fusion, reverse transcription, integration of viral DNA into the chromosome of
infected cells, and maturation of newly released immature viral particles. The enzyme
reverse transcriptase (RT) of HIV-1 is responsible for copying the viral single-stranded
RNA genome into double-stranded DNA (dsDNA) in the cytoplasm after a virus has
fused with a host cell. This copying process is accomplished by RNA- and DNA-
dependent DNA polymerization, carried out by the polymerase activity and degrada-
tion of the RNA strand from an RNA/DNA duplex intermediate by the RNase H activity
of RT. The DNA polymerization activity of RT is targeted by 13 approved drugs, of which
8 are nucleoside/nucleotide RT inhibitors (NRTIs) and 5 are nonnucleoside RT inhibitors

June 2017 Volume 61 Issue 6 €00224-17 Antimicrobial Agents and Chemotherapy

ANTIVIRAL AGENTS

L)

Check for
updates

Received 2 February 2017 Returned for
modification 5 March 2017 Accepted 28
March 2017

Accepted manuscript posted online 10
April 2017

Citation Das K, Martinez SE, Arnold E. 2017.
Structural insights into HIV reverse
transcriptase mutations Q151M and Q151M
complex that confer multinucleoside drug
resistance. Antimicrob Agents Chemother
61:€00224-17. https://doi.org/10.1128/AAC
.00224-17.

Copyright © 2017 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Eddy Arnold,
arnold@cabm.rutgers.edu.

* Present address: Kalyan Das and Sergio E.
Martinez, Rega Institute for Medical Research
and Department of Microbiology and
Immunology, KU Leuven, Leuven, Belgium.
K.D.and S.E.M. contributed equally to this
article.

aac.asm.org


https://doi.org/10.1128/AAC.00224-17
https://doi.org/10.1128/AAC.00224-17
https://doi.org/10.1128/ASMCopyrightv1
mailto:arnold@cabm.rutgers.edu
http://crossmark.crossref.org/dialog/?doi=10.1128/AAC.00224-17&domain=pdf&date_stamp=2017-4-10
http://aac.asm.org

Das et al.

(NNRTIs); for simplicity, we also refer to the nucleotide analogs as NRTIs in this paper.
NNRTIs are allosteric inhibitors, whereas an NRTI is a nucleoside (or nucleotide) analog
in which the deoxyribose ring is chemically or structurally altered, and the nucleotide
bases are sometimes modified in NRTIs. An NRTI is converted into its triphosphate form
(NRTI-TP) intracellularly, and an NRTI-TP binds RT as a deoxynucleoside triphosphate
(dNTP) substrate analog. The catalytic reaction of DNA polymerization by RT cleaves off
the pyrophosphate (B-y phosphates) and incorporates the drug into the growing viral
DNA primer strand. Once it is incorporated as a nucleotide mimic by RT, an NRTI blocks
the addition of the next nucleotide and thereby inhibits the production of viral DNA.

Even though an NRTI functions as a chain terminator rather than a competitive
inhibitor of the viral enzyme, RT mutations emerge, resulting in the development of
resistance to NRTIs. Following the clinical detection of RT mutations, extensive virology,
biochemical, and structural studies have helped provide an understanding of the
distinct molecular mechanisms by which mutant RTs confer resistance to NRTIs (1, 2).
RT mutations result in the development of resistance to NRTIs either by discrimination
(exclusion) or by excision. RT can reverse the direction of the catalytic reaction from
polymerization to pyrophosphorolysis for unblocking the 3’ end of the DNA primer (3,
4). This mechanism of resistance by excision is enhanced when RT acquires excision-
enhancing mutations (EEMs)/thymidine analog mutations (TAMs) to bind an ATP
molecule as the pyrophosphate donor to improve pyrophosphorolysis (5, 6). In con-
trast, the exclusion mechanisms of resistance by RT are conferred by acquiring muta-
tions primarily in the vicinity of the dNTP-binding site, extending from the flexible
B3-B4 fingers loop region to the catalytic YMDD moiety. Among the predominant
mutations, (i) M184l/V helps discriminate the B-L-pseudoribose ring of lamivudine
triphosphate (3TC-TP) (or emtricitabine triphosphate) (7, 8), (i) K65R discriminates
tenofovir diphosphate from dATP (9, 10), and (iii) a B3-B4 fingers loop insertion or
deletion has various effects, such as multidrug resistance and an enhanced excision
capability of RT containing exclusion mutations (11, 12).

The mutation Q151M was detected primarily in association with four other RT
mutations, A62V, V75I, F77L, and F116Y, in patients failing treatment with dideoxy-
nucleosides (didanosine [ddl], zalcitabine [ddC]) and zidovudine (AZT) (13); the collec-
tion of the five mutations is referred to as the Q151M complex (Q151Mc). Subsequently,
the Q151M mutation was found to confer high-level resistance to all dideoxynucleoside
drugs and lower-level resistance to abacavir (ABC) (14, 15). Some of the major concerns
with the Q151TM mutation are that (i) first-line stavudine (d4T)-containing antiretroviral
therapy selects Q151M as a primary drug resistance mutation (16, 17), (ii) the presence
of the Q151M mutation appears to lead to a higher mortality rate (18), and (iii) HIV-1
harboring the Q151M mutation is capable of mother-to-child transmission (19).

The Q151M mutation surfaces first in vivo, followed by the acquisition of the F77L
and F116Y mutations, and subsequently, the set of five Q151Mc mutations emerges
(13). A single-genome sequencing study suggested the sequential selection of A62V,
V75l, and Q151M mutations in patients failing therapy with NRTIs (20). The Q151M
mutation alone can confer NRTI resistance; however, viral fitness and drug resistance
are enhanced with the coemergence of the F77L/F116Y/Q151M combination. Viral
fitness and drug resistance are enhanced further with the acquisition of the set of
Q151Mc mutations (21). Q151M in association with other exclusion mutations, as
discussed below, enhances the ability of RT to discriminate other NRTIs besides
dideoxynucleosides (ddNs). Q151Mc accompanied by the K70S/T/Q mutation confers
high-level resistance to tenofovir (22, 23). Q151M with K65R or M184V causes high-level
resistance to both lamivudine and zidovudine in patients infected with HIV-2, and the
combination of K65R, Q151M, and M184V confers resistance to all NRTIs (24). An
investigational nucleotide, GS-9148, selects for the rare Q151L mutation rather than
Q151M (25). While the Q15TM mutation helps discriminate against NRTIs, the mutant
RTs have a decreased ability for NRTI excision (26); the accompanying mutation V75l
further reduces the ability of RT for excision (27).
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FIG 1 Ternary complexes of wtRT, Q151M RT, and Q151Mc RT in complexes with DNA and dATP (or
ddATP). (Top) Relative locations of the Q151Mc mutations with respect to the polymerase active site in
RT/DNA/dATP (or analog) ternary structures. (Bottom) Complexes for which the structures are reported
in the current study; the resolutions of the structures are in parentheses.

A recent crystal structure of a Q151M mutant RT that contained no nucleic acid did
not reveal significant structural perturbations that would account for the resistance
mechanism by the Q151M mutation (28). Residue Q151 is located in the palm sub-
domain of RT, and Q151 is primarily exposed to solvent in all structures of RT except in
the structures of RT/nucleic acid/dNTP ternary complexes. Upon binding of a dNTP to
the RT/nucleic acid binary complex structure (29), the region undergoes significant
rearrangement; Q151 is buried inside as a part of the dNTP-binding pocket in the
structure of the RT/DNA/dTTP ternary complex (7). Residue Q151 in the RT/DNA/dTTP
ternary complex is surrounded by residues A62, R72, Y115, and F116, as well as the
incoming dNTP (Fig. 1, top). The side chain of buried Q151 interacts with a highly
conserved residue R72, which is critical for dNTP binding and incorporation (10, 30).
Thereby, Q151 is expected to play a critical role in dNTP binding and nucleotide
incorporation. For a systematic evaluation of the structural impact of Q151M and
Q151Mc mutations, we determined the crystal structures of five ternary complexes of
wild-type RT (wtRT), Q151M RT, and Q151Mc RT (Fig. 1, bottom). All of the structures
reported here were determined in one crystal form, which minimizes any potential
influence of crystal contacts, and thereby, the observed structural differences may be
attributed to the molecular mechanisms of Q151M and the accompanying mutations.

RESULTS AND DISCUSSION

Binding of dATP versus ddATP to wtRT/DNA complex. At the enzyme level,
wild-type RT (wtRT) has comparable binding affinities for both dideoxynucleoside
triphosphates (ddNTPs) and dNTPs (26). This pre-steady-state kinetics study found that
RT incorporates dideoxynucleoside triphosphates (ddNTPs) at a lower rate (k) than
dNTPs and the rate is further reduced for Q151M and Q151Mc RTs. This difference in the
rate of incorporation appears to be responsible for the discrimination of ddNTPs from
dNTPs by RTs. For evaluation of the structural basis for the resistance, comparison of the
modes of dNTP and ddNTP binding to wtRT/DNA and the mutant RT/DNA complexes
is essential.

We determined the crystal structures of the wtRT/DNA/dATP (complex 1) and
WtRT/DNA/ddATP (complex II) ternary complexes at 2.5- and 2.7-A resolutions, respec-
tively (Table 1). A previously studied crystal form of the RT/DNA complexes (31), which
allows for considerable flexibility of RT molecules in crystals to permit the binding of a
dNTP (or analog) in a catalytically competent mode, was employed for obtaining the
structures of both ternary complexes. Crystals of an RT/DNA cross-linked binary com-
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TABLE 1 Crystallographic data and refinement statistics

Antimicrobial Agents and Chemotherapy

Value(s) forb:

Q151M Q151Mc Q151Mc
Parameter? wtRT/DNA/dATP wtRT/DNA/ddATP RT/DNA/dATP RT/DNA/dATP RT/DNA/ddATP
Complex | Il 1l \% Vv
PDB accession no. 5TXL 5TXM 5TXN 5TXO 5TXP
Data collection date September 2010 September 2010 March 2013 June 2013 February 2013
Data collection source NSLS X25 NSLS X25 CHESS F1 CHESS F1 CHESS F1
Data collection statistics

Space group P2, P2, P2, P2, P2,

Unit cell dimensions

a b, c ) 90.38, 133.85, 139.34 90.34, 133.95, 139.40 90.04, 133.63, 139.20 89.99, 132.93, 131.12 89.95, 133.27, 139.06

a, By () 90, 97.3, 90 90, 97.71, 90 90, 97.88, 90 90, 97.38, 90 90, 97.59, 90
Resolution (A) 50-2.5 50-2.7 50-2.55 50-2.55 40-2.7
Highest-resolution cell (A) 2.54-2.5 2.75-2.7 2.59-2.55 2.59-2.55 2.75-2.7
Rimerge 0.067 (0.53) 0.065 (0.570) 0.095 (0.746) 0.091 (0.646) 0.098 (0.687)

meas 0.076 (0.634) 0.074 (0.679) 0.106 (0.855) 0.104 (0.765) 0.112(0.831)
No. of unique reflections 111,859 (4,966) 87,794 (4,104) 106,245 (5,251) 104,998 (5,256) 89,232 (4,362)
Completeness 98.7 (88.1) 97.4(91.1) 98.1(97.0) 99.2 (99.0) 99.4 (97.8)
Multiplicity 4.1(2.7) 4.2(3.1) 5.0 (4.1) 3.9(3.3) 3.9(2.9)
/o (I) 15.6 (1.6) 12.9(1.6) 9.0(1.7) 9.3(1.8) 8.8(1.4)
Refinement statistics

Resolution (A) 48.1-2.5 46.0-2.7 36.35-2.55 46-2.55 37.6-2.7
Cutoff criteria F <137 a(F) F < 1.38 o(F) F < 1.39 o(F) F <00 F < 1.37 ofF)
No. of reflections (R set) 111,811 (3,349) 87,934 (2,621) 104,270 (3,048) 104,909 (3,135) 89,184 (1,788)
Ruori/Revee 0.193/0.225 0.184/0.223 0.196/0.226 0.191/0.228 0.195/0.238
No. of atoms

Nonsolvent 17,761 17,626 17,745 17,759 17,767

Solvent 219 187 195 169 101
Stereochemistry (RMSDs)

Bond length (A) 0.006 0.009 0.007 0.007 0.007

Bond angle (°) 0.899 1.020 0.882 0.956 0.769

al, intensity of a reflection; RMSD, root mean square deviation.
bThe values in parentheses represent the highest-resolution shell.

plex were grown; the first template overhang was selected as a thymidine for the
binding of a dATP as the incoming nucleotide, and dATP (or ddATP) molecules were
soaked into the crystals of the RT/DNA complex for the formation of the respective
ternary complexes (Fig. 2A and B). The adenine bases of dATP and ddATP superim-
posed well and maintained the conserved (i) base pairing with the first template
overhang, (ii) base stacking with the template-primer, and (iii) interactions with sur-
rounding RT residues, such as R72 and Y115. However, the sugar moiety of ddATP had
a conformation that was different from that of dATP (Fig. 2C). The deoxyribose ring of
dATP was structurally constrained to 3'-endo, which positions the 3’-OH group appro-
priately to form a hydrogen bond with the main chain amino group of Y115. Thereby,
a dNTP is assumed to bind RT at the N site with its deoxyribose ring in the 3'-endo
conformation and maintains the 3’-endo conformation at the P site following incor-
poration and translocation. The 3’-endo conformation of the deoxyribose ring of the
DNA primer 3’-terminal nucleotide is essential for the catalytic incorporation of the next
nucleotide; previously reported structures of catalytically active RT/DNA/ANTP ternary
complexes confirmed a 3’-endo conformation of the nucleotide at the primer terminus
that enabled the incorporation of an incoming nucleotide (32).

The conformation of the sugar ring of a ddATP that lacks the 3’-OH group is
relatively flexible compared to that of dNTP. In the current RT/DNA/ddATP structure
(complex Il), the dideoxyribose ring of ddATP at the N site and of the terminal ddGMP
at the P site have 3’-exo conformations (Fig. 2C), even though a 3’-endo conformation
of a dideoxyribose ring can be accommodated at both sites. In fact, the 3'-terminal
nucleotide of the DNA primer in almost all reported RT/DNA cross-linked ternary
complexes terminated with a ddGMP, which was catalytically incorporated into the
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‘ dATP (3"-endo)
3 ddATP (3'-exo)

FIG 2 Binding of dATP versus ddATP to the HIV-1 RT/DNA complex. The positioning of dATP (green) (A) and ddATP (blue) (B), the
surrounding amino acid residues (gray carbon), and the DNA template/primer (yellow carbon) in the crystal structures were
ascertained by difference Fourier (F, — F.) maps calculated prior to inclusion of the dATP (or ddATP) into the refinement and are
displayed at 3o (F, and F_ are the amplitudes of observed and calculated structure factors, respectively). The chelation of the catalytic
metal ion B is shown as thin solid lines, and hydrogen bonds are shown as dashed lines. Like in most published RT/DNA ternary
complexes (10, 31, 51, 52), dATP (or ddATP) molecules in the current structures chelate one Mg?* ion (metal B) with a superimposable
coordination geometry involving one oxygen each from the three («, 8, and y) phosphates. lon B also chelates the main chain carbonyl
oxygen of V111 and one carboxyl oxygen of the catalytic residues D110 and D185 to complete an octahedral coordination. This
coordination environment is invariant in all available structures of RT/DNA/dNTP ternary complexes (7). The images in panels A and
B are in stereo. (C) An active-site superposition of the two structures reveals 3’-endo and 3’-exo conformations of RT-bound dATP and
ddATP, respectively. (D and E) The hydrophobic interactions of dATP (D) and ddATP (E) with Y115 shows that the lack of the 3’-OH
in ddATP is partly compensated for by the 3’-exo conformation of the sugar ring.

primer strand by RT (7, 33); the terminal ddGMP assumed either of the conformations.
The difference of the 3’-exo versus the 3’-endo conformations of the sugar rings of
ddATP versus dATP apparently was not discriminatory at the dNTP-binding state;
however, the difference may be imperative for the slower incorporation of ddATP by RT.
There is the possibility that the more flexible sugar ring of ddATP may either (i)
maintain the 3’-exo conformation or (ii) switch between the 3’-exo and 3’-endo
conformation, whereas the ring of dATP has a single 3’-endo conformation. wtRT has
a slightly (~5-fold) decreased rate of incorporation (k) for ddNTP than for dNTP, as
observed by pre-steady-state kinetic studies (25, 34, 35). Further, in agreement with the
kinetic data demonstrating that the binding constant (K,) of ddNTP versus that of dNTP
for binding to RT is not significantly altered, both ddATP and dATP in the respective
ternary complex structures have highly superimposable binding locations and interac-
tions with RT, nucleic acid, and metal ions. The loss of the 3’-OH interaction with the
main chain amino group of Y115 for ddATP, which is not lost in the complex with dATP,
appears to be partly compensated for by the enhanced hydrophobic contacts between
the 3’-exo sugar ring of ddATP and the aromatic side chain of Y115 (Fig. 2D and E).
Structure of the Q151M RT/DNA/AATP complex. We determined the crystal
structure of the Q151M RT/DNA/dATP complex (complex Ill) at a 2.55-A resolution
(Table 1). The metal chelation, base pairing, and deoxyribose ring conformation of dATP
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FIG 3 Conformation of M151 in the Q151M RT/DNA/dATP complex. (A) A stereo view showing the
position and location of mutated residue Q151M in the structure of complex Ill defined by electron
density (blue mesh). The Q151M mutation altered the side chain torsion of conserved residue R72. The
van der Waals surfaces of R72 and M151 show the complementarity in the positioning of the two
residues in the dNTP-binding site of the Q151M ternary structure. (B and C) van der Waals surfaces (in
gray) surrounding Q151 (B) and M151 (C) in the structures of wtRT and Q151M complexes indicate that
the flexible M151 side chain, unlike the Q151 side chain in wtRT, may alter the position of its C-e atom
by varying the torsion x3 and perturbing the conformation of dNTP binding.

are highly superimposable with those in the wtRT/DNA/dATP complex (complex I). In
wtRT, residue Q151 is a part of the dNTP-binding pocket, and Q151 forms a hydrogen
bond with the guanidinium moiety of the highly conserved residue R72 (Fig. 2A and B);
R72 interacts with the base and a-phosphate of dNTP and apparently plays a critical
role in the process of dNTP binding and incorporation (10, 30). Q151 in coordination
with R72 seemingly assists the binding and positioning of a dNTP for catalysis. The
Q151M mutation breaks the hydrogen bond with R72, and the mutation introduces the
flexible unbranched side chain of M151. Similarly, as with Q151, the side chain of M151
is buried, and thereby, the rotameric state of the residue is somewhat constrained.

In the structure of complex Ill (Fig. 3A), the side chain conformation of R72 is altered
compared to that in the structures of complexes | and Il with wtRT; the guanidinium
group of R72 is switched via alteration of the side chain torsions x3 and x4. The side
chain torsion angles x1, x2, and x3 of Q151 in the structures of wtRT ternary complexes
I and Il are about 60, 180, and 180°, respectively, and Q151 forms a hydrogen bond with
R72 (Fig. 3B). In the structure of complex lll, the side chain of M151 remains buried
analogously to that of Q151 in the structures of complexes | and Il, and the y angles are
very similar for both M151 and Q151. The Q151M substitution eliminates the branching
at C-8 and the hydrogen bond with R72. The flexible unbranched side chain of M151
and the conformational change of R72 may permit M151 to have more than one
conformation via variation of x3 (Fig. 3C). This possibility of the existence of multiple
conformational states in the Q151TM mutant RT compared to a single conformation of
the pocket in wtRT may be a factor contributing to the reduced polymerase activity of
the Q151M mutant (26).
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FIG 4 Ternary structures of Q151Mc RT complexes with dATP and ddATP. (A) A stereo view of dATP
binding to the Q151Mc RT/DNA complex (complex IV); the two mutated residues F116Y and Q151M are
in cyan, dATP is in green, and some of the key hydrogen-bonding interactions are shown as dotted lines.
The hydrogen bond between F116Y and K73 appears to stabilize an alternate conformation of the
dNTP-binding pocket in Q151Mc RT. (B) A comparison of the dNTP-binding pocket conformations of
Q151Mc RT (cyan) and wtRT (gray). The side chain orientations of Q151 and M151 are very similar;
however, the chemical alteration of the side chain by the Q151M mutation repositions the guanidinium
group of R72 (indicated by the arrow). (C) A structural superposition of wtRT (gray) and Q151Mc RT
(yellow and cyan for mutated side chains) structures. The mutated side chains are in cyan. All of the
mutated side chains except A62V are parts of a hydrophobic core of the fingers subdomain, and the
mutations maintain the hydrophobicity of the core.

Q151Mc RT/DNA ternary complexes. The crystal structures of the Q151Mc RT/DNA
complexes with dATP and ddATP were determined at 2.55- and 2.7-A resolutions,
respectively, and are referred to as the structures of complexes IV and V, respectively
(Table 1). As in the wtRT complexes, the deoxyribose and dideoxyribose rings main-
tained 3’-endo and 3'-exo conformations for dATP and ddATP, respectively, and the
remaining parts of both complexes were also highly superimposable.

The structures reveal that the Q15TMc mutation F116Y extends the aromatic side
chain by the addition of an O-n atom, which introduces an O-H...O-type hydrogen
bond with the main chain carbonyl of K73 (Fig. 4A). The structural restraint from the
F116Y mutation in Q151Mc restricts the M151 side chain to only one conformation,
whereas there is the possibility of the existence of multiple conformations in Q151M RT.
This structural finding is consistent with the findings of previously reported biochemical
studies and explains that the accompanying mutation (F116Y) improves the polymer-
ization fitness by restricting the dNTP-binding pocket to a single conformational state
(Fig. 4B). The sites of compensatory mutations V75, F77, and F116 and residue Y146 are
parts of a hydrophobic core responsible for the folding of the fingers subdomain, and
the hydrophobicity of this core is preserved in the Q151Mc RT. The mutations V75| and
F77L appear to help stabilize the positioning of the mutated side chain of F116Y to
maintain the hydrogen bond with the carbonyl of K73 (Fig. 4C). Conceivably, the
compensatory mutations V75I, F77L, and F116Y help in defining and stabilizing the
dNTP-binding site in the complexes containing Q151Mc (complexes IV and V), whereas
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Wild-type RT Q151M RT Q151Mc RT

FIG 5 The Q151M mutation alters the dNTP-binding pocket by switching the side chain conformation of
the conserved residue R72, and the altered conformation is further stabilized in the Q151Mc ternary
complex.

there is the possibility that the Q151M RT/DNA/dATP complex (complex lll) has
additional structural states. This difference may explain a role of the compensatory
mutations in improving the fitness of RT or virus containing Q151Mc over that of RT or
virus containing Q151M. The mutation A62V is located at a distance of ~10 A away
from the Q151M site. A62 is located at the base of the fingers 83-B4 hairpin and is
proximal to the template strand. Presumably, the A62V mutation helps to reposition the
template strand, and the repositioned template might help in discriminating a ddNTP
from dNTP in the process of polymerization by Q151Mc mutant RT.

Implications for HBV polymerase. Hepatitis B virus (HBV) polymerase appears to
contain a dNTP-binding site/polymerase active-site architecture similar to that of HIV-1
RT (36). The nucleoside analog anti-HIV-1 drugs, such as the B-L-oxathiolane ring-
containing lamivudine (3TC) and acyclic tenofovir (or adefovir), are effective inhibitors
of HBV polymerase and are used clinically to treat HBV-infected individuals (37, 38).
Analogous nucleoside drug resistance mutations emerge in HBV polymerase and in
HIV-1 RT under specific drug pressure; e.g., HIV-1 RT mutation M184V and HBV
polymerase mutation M204V emerge in the YMDD loop in response to 3TC treatments
(39). Interestingly, the positional analog for HIV-1 RT Q151 is a methionine (M171) in
wild-type HBV (wtHBV) polymerase; residues R72, Y116, and M151, which are observed
to be responsible for altering and stabilizing the conformational state of the dNTP-
binding pocket of Q151Mc HIV-1 RT, are also conserved as amino acid residues
R41, Y89, and M171, respectively, in wtHBV polymerase. Thereby, it may be con-
ceivable that wtHBV polymerase has a dNTP-binding site conformation closely related
to that observed in Q15TMc structures rather than the conformation observed in
wtHIV-1 RT structures. Mechanistically, dideoxynucleoside drugs like dideoxyinosine
(ddl), dideoxycytosine (ddC), and stavudine (d4T), which have reduced efficacy against
Q151Mc mutant HIV-1 RT, are also not used to treat HBV infections; L-nucleosides are
relatively effective against HBV polymerase (40).

Conclusions. In dNTP-bound ternary complexes, the dNTP-binding pocket of
Q151Mc RT has structural differences from wtRT, particularly the side chain conforma-
tions of R72 and Q151M (Fig. 5). The RT-bound ddATP and dATP have 3’-exo versus
3’-endo conformations for their respective sugar rings; however, the flexible sugar ring
of a ddNTP also has a 3’-endo conformation, particularly in high-resolution RT/nucleic
acid complexes in which both of the catalytic Mg2™ ions are present at the polymerase
active site (41, 42). The dNTP-binding pocket would undergo a series of structural
transitions in the process of nucleotide incorporation starting from the structurally
observed dNTP-bound state. Presumably, the altered conformation of the dNTP-
binding pocket in Q15TMc is able to discriminate the flexible sugar ring of a ddNTP
from the 3'-endo dNTP during the process of catalytic incorporation. Recent kinetic
studies revealed that the lower rate of pyrophosphate (PPi) release by RT could decrease
the rate of polymerization (43). Our recent structure of the drug foscarnet (PFA), a pyro-
phosphate analog, in complex with RT/DNA showed that R72 directly interacts with PFA
(32), and the interaction likely plays an important role in PPi release. Thereby, residue R72
in Q151M (or Q151Mc) RT may slow down the rate of release of PPi for ddNTP incorporation
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versus that for dNTP incorporation and contribute to ddNTP discrimination. While biochem-
ical and structural information helps provide an understanding of the phenotypic charac-
teristics of drug resistance mutations, there are several complex factors, such as the
distribution of infected cell types and evolutionary dynamics, that influence infectivity,
the effects of drug resistance, and compensatory mutations (44); statistical analysis of the
fitness of a large number of HIV variants demonstrated the existence of epistasis in HIV (45).
The Q151M mutation provides a strong example of a primary mutation that leads to fitness
defects in HIV-1 RT, as reflected by deleterious effects on polymerase catalysis and the viral
replication rate, that become entrenched upon accompaniment by the compensatory
mutations A62V, V75I, F77L, and F116Y in Q151Mc to restore enzymatic and viral fitness.
Our results provide an explanation of the structural basis for entrenchment of the
multidrug-resistant Q151M mutant by the emergence of the Q151Mc set of mutations in
the dNTP-binding region of HIV-1 RT through essentially an evolutionary annealing of the
local environment of M151.

The structure of HBV polymerase has not been available, and the structure of HIV-1
RT has been used as a surrogate for understanding the structure, function, and drug
resistance of HBV polymerase (36). The Q151Mc HIV-1 RT and wtHBV polymerase share
key conserved structural elements that are involved in dNTP binding and incorporation
and in reducing the sensitivity to dideoxynucleoside analogs. The current study pro-
vides a structural basis for understanding the molecular mechanism of Q151M and
Q151Mc resistance mutations and the resilience of the mutant HIV-1 RT and wtHBV
polymerase to dideoxynucleoside drugs. This information may be exploited in design-
ing new inhibitors of viral DNA polymerases, including those of HIV and HBV.

MATERIALS AND METHODS

RT expression, RT/DNA cross-linking, purification, and crystallization. A previously described
WERT construct, RT127A, was used in the structural studies of complexes | and Il (31); the construct has
a D498N mutation added to inactivate the RNase H activity. The D498N mutant RT has polymerase
activity comparable to that of wtRT (46). The Q151M and Q151Mc mutations (A62V, V75I, F77L, F116Y,
and Q151M) were introduced using the methods described for RT127A (31). All three RT constructs were
expressed and purified using a previously described protocol (47).

The 27-mer DNA template (5'-ATGGTCGGCGCCCGAACAGGGACTGTG-3") was synthesized by Inte-
grated DNA Technologies. The 20-mer primer (5'-ACAGTCCCTGTTCGGGCGCC-3') with a cross-linkable
thiopropyl group (at N-2 on G in the primer strand) was custom synthesized, annealed, and cross-linked
to the three RT constructs to generate the posttranslocation complex, which was purified and crystallized
as reported previously (31). During the cross-linking reaction, the primer was extended with a 2’,3'-
dideoxyguanosine at the 3’ end. For growing the crystal of Q151Mc in complex with bound ddATP, drops
were set up with 1 wl of 10 mg/ml RT/DNA, 1 ul of well solution, and 1 ul of 2 mM ddATP. After 3.5 weeks,
the drops were seeded and crystals grew; the microseeds were of the RT127A binary complex, as
described above, except that the fifth and sixth template bases were TT and the primer was terminated
with dTdT to generate the pretranslocation complex.

Crystal soaking and freezing. (i) dATP (complex I) or ddATP (complex Il) soak. An RT/DNA
(ddG-terminated primer) binary complex crystal with a size of 240 by 80 by 50 um3 was transferred to
50 ul of a stabilization solution containing 2 mM dATP, 12% (wt/vol) polyethylene glycol 8000, 5%
(vol/vol) glycerol, 5% (wt/vol) sucrose, 100 mM (NH,),SO,, 20 mM MgCl,, and 50 mM bis-Tris propane, pH
7.2, for 4 min. The crystal was soaked for 30 s in 50 ul cryoprotective solution in which the amount of
glycerol was raised to 20% (vol/vol) and flash-cooled in liquid N,. The 2 mM ddATP soak was prepared
similarly with a crystal with dimensions of 160 by 80 by 30 um?3.

(ii) dATP soak and RT127A with Q151M (complex Ill) or Q151Mc (complex IV). For the single
Q151M mutation, an RT/DNA (ddG-terminated primer) binary complex crystal with a size of 160 by 120
by 60 um? was frozen as described above but at pH 7.0 with 2 mM dATP and 10% (vol/vol) glycerol in
stabilization solution for 24 min and 1 min in the 20% (vol/vol) glycerol-containing cryoprotective
solution. For the Q151M complex, a crystal with a size of 320 by 120 by 80 um?3 was prepared similarly
at pH 7.4 with a 13-min soak in 10% (vol/vol) glycerol and 1 min in the 20% (vol/vol) glycerol-containing
cryoprotective solution.

(iii) ddATP soak to Q151Mc (complex V). An RT/DNA (ddG-terminated primer) ternary complex crystal
with a size of 160 by 120 by 80 um?3 was cryo-cooled as described above for the Q151M single mutant but
with 2 mM ddATP and for 7 min in the stabilization solution and 1 min in the cryoprotective solution.

X-ray crystallography. X-ray diffraction data sets were collected from the crystals of complexes | to
V using synchrotron sources: the F1 beamline at the Cornell High Energy Synchrotron Source (CHESS)
and the X25 beamline at Brookhaven National Laboratory (BNL). The data were processed and scaled
using the HKL2000 software application (48), as summarized in Table 1. The structures were solved by
molecular replacement, using protein atoms in the crystal structure of the RT/DNA/AZT triphosphate
complex (PDB accession no. 3V4l) (31), and the subdomains were positioned by rigid-body refinements
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in which each RT molecule was divided into 13 segments. Each crystal structure had two RT complexes
per asymmetric unit; however, the first copy (chains A and B) was used in the analysis, unless otherwise
specified. Individual structures were refined using the Phenix system (49), and the model building was
carried out using Coot software (50). The figures showing structural information were generated using
the PyMOL molecular graphics system (http://www.pymol.org/).

Accession number(s). The coordinates and structure factors for the crystal structures of wild-type

RT/dsDNA/dATP (complex 1), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex
1), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes
are deposited in the Protein Data Bank (PDB) under accession numbers 5TXL, 5TXM, 5TXN, 5TXO, and
5TXP, respectively.
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