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ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomy-
cin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving
a VAN area under the curve/MIC ratio (AUC/MIC) of �400 against three methicillin-
resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs
in an experimental endocarditis model. The valve vegetation bacterial counts after
48 h of VAN therapy were compared, and no differences were observed between
the two treatment groups for any of the three strains tested. Overall, for VAN-SD
and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%)
(P � 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vege-
tation were 2 (0 to 6.9) and 2 (0 to 4.5) (P � 0.384), respectively. In conclusion, this
VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin ef-
ficacy in MRSA experimental endocarditis.
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Despite the high rates of treatment failure described in the literature, vancomycin
is still recommended against methicillin-resistant Staphylococcus aureus (MRSA) in

infective endocarditis (1–3). To date, no alternative antibiotic or combination with
vancomycin has demonstrated a superior effectiveness with respect to vancomycin in
MRSA endocarditis in a clinical trial (4–6).Vancomycin failure in infective endocarditis
has been attributed to limited in vitro killing activity against S. aureus (7) and poor
penetration of cardiac vegetations (8–10).

The area under the curve/MIC ratio (AUC/MIC) has been identified as the best
predictor of vancomycin activity against S. aureus (11). Achieving an AUC/MIC equal to
or higher than 400 or a minimum blood plasma concentration (Cmin) of 20 mg/liter
during vancomycin therapy has been associated with better clinical responses to
vancomycin in S. aureus lower respiratory tract infections and bacteremia (12, 13).
However, these pharmacodynamic indexes have not been validated for infective
endocarditis. In addition, the increased risk of nephrotoxicity and ototoxicity associated
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with vancomycin at the high doses required to achieve these targets (11, 14) limits the
viability of this therapeutic approach in many clinical situations.

We aimed to compare the efficacy of vancomycin at standard doses (VAN-SD) to that
of vancomycin at adjusted doses (VAN-AD) to achieve the pharmacodynamic target of
an AUC/MIC of �400 for the treatment of experimental endocarditis caused by MRSA
strains with different susceptibilities to vancomycin.

(This study was presented in part at the 52nd Interscience Conference on Antimi-
crobial Agents and Chemotherapy [15].)

The strains had the following microdilution vancomycin MICs/minimum bactericidal
concentrations (MBCs): MRSA-196, 0.5/8 mg/liter (Etest, 0.5 mg/liter); MRSA-572, 1/1
mg/liter (Etest, 1.5 mg/liter); and MRSA-277, 2/2 mg/liter (Etest, 2 mg/liter), respectively.
Their clonal complex, biofilm production, and agr expression studies are shown in Table
S1 in the supplemental material. After randomization, the following treatment groups
were obtained: (i) for all three strains, a control group of untreated animals (n � 15); (ii)
for the MRSA-196 strain, VAN-SD (n � 15) and VAN-AD 1.25 g/8 h (n � 16); (iii) for the
MRSA-572 strain, VAN-SD (n � 15) and VAN-AD 1.25 g/8 h (n � 17); and (iv) for the
MRSA-277 strain, VAN-SD (n � 15) and VAN-AD 1 g/6 h (n � 16). Table 1 summarizes
the pharmacodynamic profiles for the different strains and dosage regimens. The Cmins
(minimum value � standard deviation) obtained after 48 h of treatment with the
different regimens were 3.05 � 1.78 �g/ml for VAN-SD, 10.16 � 5.49 �g/ml for VAN-AD
1.25 g/8 h, and 21.75 � 6.97 �g/ml for VAN-AD 1 g/6 h.

The treatment results are shown in Table 2. As observed, all treatment regimens
reduced bacterial counts in the aortic valve vegetation compared with their respective
nontreatment group. However, significant differences between VAN-SD and VAN-AD
regimens were not observed for any of the three strains, with similar numbers of
vegetations under the two regimens becoming sterilized. Notably, the target index of
AUC/MIC of �400 was not achieved in the VAN-AD regimen with MRSA-277, which had
a vancomycin MIC of 2 mg/liter, although Cmin in this experiment was 20 mg/liter.
When comparing the groups treated with VAN-SD and VAN-AD, VAN-SD sterilized
15/45 (33.3%) vegetations, while VAN-AD sterilized 21/49 (42.8%) (P � 0.343). The
median log10 CFU (interquartile range [IQR]) per gram of vegetation was 2 (0 to 6.9) for
VAN-SD regimens and 2 (0 to 4.5) for VAN-AD regimens (P � 0.384).

This is the first study to evaluate the relationship between the achievement of a
pharmacodynamic target (AUC/MIC of �400) and the efficacy of vancomycin at ster-
ilizing infected valves in MRSA experimental endocarditis. Since Moise-Broder et al.
observed that outcomes of patients with methicillin-resistant S. aureus pneumonia
treated with vancomycin were better when an AUC/MIC value of 400 was achieved (12),
this breakpoint has been accepted as a predictor in S. aureus infections by some

TABLE 1 Pharmacodynamic profile and dosage regimens for the three strains obtained
from patients admitted to the Hospital Clinic in Barcelona, Spain, and diagnosed with
infective endocarditisa

Treatment group for
strain

VAN MIC
(mg/liter) by
Etest/MD

Cmax/Cmin

(mg/liter) AUC/Etest MIC AUC/MD MIC

MRSA-196 0.5/0.5
VAN-SD (1 g/12 h) 56/6 299/0.5 � 598 299/0.5 � 598
VAN-AD (1.25 g/8 h) 96/17 621/0.5 � 1,242 621/0.5 � 1,242

MRSA-572 1.5/1
VAN-SD (1 g/12 h) 56/6 299/1 � 299 299/1.5 � 199
VAN-AD (1.25 g/8 h) 96/17 621/1 � 621 621/1.5 � 414

MRSA-277 2/2
VAN-SD (1 g/12 h) 56/6 299/2 � 149.5 299/2 � 149.5
VAN-AD (1 g/6 h) 60/20 666/2 � 333 666/2 � 333

aAbbreviations: VAN MIC, vancomycin MIC; MD, microdilution; AUC, area under the curve; VAN-SD,
vancomycin standard doses; VAN-AD, vancomycin adjusted doses.
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authors. However, it has never been specifically evaluated for infective endocarditis.
Moreover, other studies that analyzed the existence of a relationship between phar-
macodynamic parameters and outcomes in patients with S. aureus infections either
presented discordant results or did not find any association (11, 13). As a result, the
recent 2015 guidelines issued by the American Heart Association (AHA) (1) and the
European Society of Cardiology (ESC) (2) differed in their recommendations on the most
appropriate vancomycin regimen for MRSA endocarditis. The ESC guidelines pointed
out the recommendation for adjusting doses for the pharmacodynamic target of
AUC/MIC of �400, while the AHA guidelines did not (1, 2).

In our study, we did not observe a significant benefit from increasing vancomycin
doses to achieve the desired target, as the bacterial density in the vegetations was
similar to that following a standard dosage therapy. Our results may be better under-
stood by considering poor vancomycin diffusion within the vegetations (10, 12, 16).
Endocardial vegetations mainly develop as biofilm-forming bacteria surrounded by a
glycopeptidic layer with fibrin and platelets, which protects them from antibiotics,
especially those with higher molecular weights, such as vancomycin. In addition, some
of these bacteria express changes in their metabolism, allowing them to live in a
nonreplicative stationary state (17, 18). Moreover, as Sakoulas et al. recently described,
in endovascular staphylococcal infections, vancomycin lacks the synergy with host
innate immunity observed with beta-lactams (19). Beta-lactam sensitization of host
cationic peptides may be crucial in the superior activity of the vancomycin-oxacillin
combination compared to vancomycin alone, as observed in our MRSA experimental
endocarditis model (data not published). As a result of these shortcomings, vancomycin
and other antibiotics fail to sterilize vegetations (20), and persistent infection is ob-
served (21).

In a model similar to ours, Levine et al. treated infective endocarditis with contin-
uous infusion of vancomycin to obtain the target of a steady-state serum level of at
least 20 mg/liter. Like us, they did not observe low MICs predicting better outcomes,
concluding instead that early in vivo results do not seem to be influenced by in vitro
parameters (22).

In our experience, the target of AUC/MIC of �400 is not easily achievable with
conventional doses, especially as microorganism MIC increases. This is especially rele-

TABLE 2 Results after vancomycin therapy for the three strains and dosage regimensa

Treatment group for
strain

No. of sterile
vegetations/
no. of total
vegetations (%) P value

Median (IQR) log10

CFU/g vegetation P value

MRSA-196
Control 0/15 8.8 (7.9–9.5)
VAN-SD (1 g/12 h) 6/15 (40) 2.6 (0–4.5)
VAN-AD (1.25 g/8 h) 10/16 (62) 0.21 0 (0–3.4) 0.38

MRSA-572
Control 0/15 10 (9.6–10)
VAN-SD (1 g/12 h) 4/15 (27) 7 (1–7.9)
VAN-AD (1.25 g/8 h) 3/17 (13) 0.54 5 (3–8) 0.73

MRSA-277
Control 0/15 9 (8.6–9.3)
VAN-SD (1 g/12 h) 5/15 (33) 2 (0–5.6)
VAN-AD (1 g/6 h) 8/16 (50) 0.35 1 (0–2.2) 0.37

All strains
Control 0/45 10 (9–10.1)
VAN-SD 15/45 (33) 2 (0–6.9)
VAN-AD 21/49 (43) 0.34 2 (0–4.5) 0.38

aAbbreviations: IQR, interquartile range; VAN-SD, vancomycin standard doses; VAN-AD, vancomycin adjusted
doses.
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vant provided that only 4.3% of methicillin-susceptible S. aureus (MSSA) and 8% of
MRSA strains causing infective endocarditis at our institution during the period 1995 to
2012 (unpublished data) have a vancomycin MIC as high as 1 mg/liter. The achievement
of this pharmacodynamic parameter may be limited by vancomycin’s side effects,
which increase at higher doses (23). An additional challenge in clinical practice is VAN
MIC interpretation. This is due to the known low correlation between the two recom-
mended methods of measurement, Etest and microdilution (24). Mention must also be
made of the difficulties in measuring or targeting AUC/MICs in humans, especially in
patients on hemodialysis or otherwise renally impaired, which therefore limit the use of
this strategy in clinical practice. Last, another limitation is that our study focused on
bacterial growth in only aortic valve vegetations and not other tissues, such as the
kidney or spleen.

In summary, these findings suggest that the pharmacodynamic targets predicting
outcome in MRSA bacteremia and pneumonia are less useful in MRSA experimental
endocarditis, probably due to the poor diffusion of VAN within the vegetations.

Strains. Three strains of MRSA (MRSA-196, MRSA-572, and MRSA-277) isolated from
patients diagnosed with infective endocarditis in our center were selected for the in
vivo studies.

Antibiotics. VAN powder was purchased from Sigma (St. Louis, MO, USA) and was
reconstituted according to the Clinical and Laboratory Standards Institute (CLSI) rec-
ommendations (25) for all experiments.

Susceptibility testing. VAN MIC and minimum bactericidal concentration (MBC)
were determined by the microdilution method using cation-adjusted Mueller-Hinton
broth (BMD) also according to the current CLSI recommendations (25) and by the Etest
method according to the manufacturer’s recommendations.

In vivo studies. (i) Animals. New Zealand White rabbits (body weight, 2.2 kg)
obtained from San Bernardo Farm (Pamplona, Spain) were housed in the Technological and
Scientific Center (CCiT) animal facilities of the University of Barcelona as previously de-
scribed (26). This research project fulfilled the requirements stipulated in Spanish Royal
Decree 223/1988 on the protection of animals used in experiments. The Ethical Committee
on Animal Research of the University of Barcelona approved the animal studies.

(ii) Human-like pharmacokinetics studies. In the model for human-like pharma-
cokinetics studies, vancomycin was administered by using a computer-controlled
infusion pump system designed to reproduce human serum antibiotic levels in rabbits
after an intravenous (i.v.) infusion. Pharmacokinetics studies with vancomycin have
been previously described (26). To determine the animal antibiotic doses needed to
simulate the human profiles of vancomycin, the AUC/MICs were calculated for the
different groups using different dosing simulations. Standard (VAN-SD, 1 g/12 h) or
adjusted doses to achieve the pharmacokinetic/pharmacodynamic (PK/PD) parameter
AUC/MIC of �400 (VAN-AD, 1.25 g/8 h or 1 g/6 h, depending on the infective strain).
In order to check VAN serum levels after 48 h of therapy, a blood sample was obtained
from animals receiving three different regimens (n � 13 for VAN-SD 1 g/12 h, n � 14
for VAN-AD 1.25 g/8 h, and n � 12 for VAN-AD 1 g/6 h).

(iii) Endocarditis model. The experimental aortic valve endocarditis model was used
as described elsewhere (26). In brief, each animal was inoculated with one of the selected
MRSA strains. Sixty-four hours after the animals were infected, antibiotic therapies started
and animals were treated for 48 h. The animals were treated for 48 h with an antibiotic
regimen chosen by randomization. After the completion of treatment, aortic valve vege-
tations were obtained and qualitative cultures were performed (26).

Treatment groups. The infected rabbits were randomized to one of the different
treatment arms simulating either a vancomycin human dose of 1 g/12 h (VAN-SD) or
doses adjusted to achieve the pharmacodynamic target of AUC/MIC of �400 (VAN-AD),
1.25 g/8 h or 1 g/6 h, depending on the infecting strain.

Statistics. The median and interquartile range (IQR) of the number of log10 CFU per
gram of vegetation were calculated for the different treatment groups and strains. The
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Mann-Whitney U test was used to compare the obtained medians. The Fisher exact test
was used to compare the proportion of sterile vegetations.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.02486-16.
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