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Abstract. Dementia is a debilitating and life-altering disease which leads to both memory impairment and decline of normal
executive functioning. While causes of dementia are numerous and varied, the leading cause among patients 60 years and older
is Alzheimer’s disease. The gold standard for Alzheimer’s diagnosis remains histological identification of amyloid plaques and
neurofibrillary tangles within the medial temporal lobe, more specifically the entorhinal cortex and hippocampus. Although no
definitive cure for Alzheimer’s disease currently exists, there are treatments targeted at preserving cognition and memory while
delaying continued loss of function. Alzheimer’s disease exists along a spectrum of cognitive decline and is often preceded by
Mild Cognitive Impairment (MCI). Patients with MCI demonstrate memory loss and cognitive impairment while still continuing
normal activities of daily living, and are considered to be at increased risk for developing Alzheimer’s Dementia. Identifying
patients with prodromal states of Alzheimer’s dementia such as MCI may allow initiation of appropriate treatment planning
and delay of cognitive decline. Therefore, the need for a non-invasive early biomarker for the detection of Alzheimer’s disease
has never been greater. Multiple neuroimaging methods utilizing visual rating scales, volumetric measurements, and automated
methods have been developed to identify, quantify, and track anatomic sequelae of Alzheimer’s Disease.

1. Introduction

Alzheimer’s disease is a gradually progressive illness
that is often preceded by a prodromal condition known
as Mild Cognitive Impairment (MCI), in which mem-
ory loss and other cognitive functions are impaired,
even though the patient may continue to perform nor-
mal activities of daily living adequately [26]. Patients
with MCl are considered to be at significantly increased
risk for developing AD within three to five years [27].
Identifying patients with MCI or prodromal states of
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Alzheimer’s dementia becomes critical as initiation of
pharmacological and immunotherapy treatment may be
most efficacious during the earliest stages of AD. Al-
though currently no decisive cure for AD exists, thera-
pies are being developed for preservation of cognition
and memory while delaying continued loss of function.

For elderly patients it would be optimal to devel-
op early, non-invasive biomarkers for detecting or pre-
dicting onset of AD. Although a definitive diagnosis
of AD requires post-mortem histological confirmation
by identifying amyloid neuritic plaques and neurofib-
rillary tangles within the neocortex, the earliest patho-
logical changes of this disease occur in medial tem-
poral lobe structures, specifically the entorhinal cortex
(ERC) and hippocampus (HPC) [5]. Atrophy of the
HPC, documented by antemortem magnetic resonance
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images (MRIs) has been shown to correlate with sever-
ity of AD-related neuropathological changes [15,18].
On average, subjects diagnosed with mild cognitive im-
pairment (MCI) show more atrophy of medial temporal
lobe structures than cognitively normal subjects of the
same age [12,27], and MRI studies of MCI subjects
indicate that atrophy in the ERC and HPC predicts con-
version to AD [17]. The forgoing suggests that neu-
roimaging may be an important tool in the diagnosis of
prodromal AD.

2. Visual rating methods assessing brain MRI's

Neuroimaging methods that utilize visual rating
scales, automated software, and volumetric measure-
ments have been developed to identify, quantify, and
track medial temporal lobe atrophy (MTA). Although
volumetric analysis software is readily available, in a
clinical setting diagnosis generally relies on the visu-
al assessment of two dimensional MRI scans. Major
reasons for this include the following: (1) Volumet-
ric analysis of brain scans requires pre-processing of
data in order to meet requirements of the volumetric
program; this typically requires specific expertise and
additional time; (2) about 5 to 10% of scans that can
be analyzed by semiquantitative visual rating methods
are not suitable for volumetric studies, as they include
movement or other artifacts, or were created using inad-
equate acquisition methodologies; (3) many volumetric
methods measure pre-programmed and fixed regions,
whereas measuring volumes of specific regions that
may be affected during early stages of AD may require
the manual tracing of brain structures by a trained neu-
roanatomist, or development of customized computer
programs; (4) volumetric methods cannot assess var-
ious anatomical and qualitative pathological changes
that occur during the course of AD, such as gray-white
matter distinction, which is an independent measure of
pathological change.

Scheltens and colleagues [30] have developed a visu-
al rating method to perform semi-quantitative measure-
ments of atrophy severity, for the entire medial tempo-
ral region on each side of the brain, using coronal slices
of brain MRI scans. This group demonstrated that vi-
sual rating of MTA on MRIs is an efficient method,
which does not require extensive personnel training,
expensive equipment, or the preparation of imaging da-
ta that is associated with volumetric analysis [10,30,35,
40]. The visual rating method was shown to be capable
of distinguishing early AD subjects from those with

no cognitive impairment (NCI), and predicting which
subjects would convert from MCI to AD [40]. Inter-
and intra-rater reliability for assessing atrophy in the
entire medial temporal region proved to be adequate,
although rating of individual medial temporal struc-
tures was found to be less than optimal [30]. Wahlund
et al. [40] compared qualitative visual rating of MTA,
using a 0 to 4 scale, with “no atrophy” rated as “0,” and
“severe atrophy” rated as “4”, to volumetric analysis of
the hippocampus. They showed that visual ratings of
MTA demonstrated greater overall sensitivity (95%),
specificity (98%), and correct classification (96%), than
volumetric analysis (93% correct classification), in sep-
arating AD from non-dementia patients [40]. This vi-
sual rating method also performed better than volumet-
ric analysis in discriminating AD from other demen-
tias [40]. Moreover, Visser et al. [39] demonstrated that
Scheltens’ visual rating method for MTA was a better
predictor of delayed recall performance, in comparison
to volumetric analysis of the parahippocampal gyrus.
The scope and utility of Scheltens’ system was ex-
panded by Urs et al. [35] and Duara et al. [10], to pro-
vide reliable visual ratings of individual medial tempo-
ral lobe (MTL) structures, i.e., hippocampus (HPC), en-
torhinal cortex (ERC) and perirhinal cortex (PRC). Vi-
sual ratings were performed on 1.2 mm to 1.5 mm thick
coronal slices positioned perpendicular to the AC-PC
line and intersecting the mammillary bodies. To enable
high reliability, a Visual Rating System (VRS) program
was developed, which includes reference images to pro-
mote standardization among users, improves accuracy
in atrophy ratings, and increases inter-rater and intra-
rater reliability [35]. In a study of 261 community-
dwelling subjects, aged 65 and older, a minority of
whom were enrolled at memory disorder clinics in Mi-
ami and Tampa, VRS was used to assess MTA on
structural brain MRIs. The subjects were diagnosed
to have no cognitive impairment (NCI), non-amnestic
MCI (rarely a precursor to probable AD), amnestic
MCI (often a precursor to probable AD), and probable
AD [10]. The optimal predictive power for VRS was
obtained by averaging the scores of three medial tempo-
ral structures on each side. This provided a sensitivity
of 85% and specificity of 82%, for diagnosing Probable
AD, and a sensitivity of 80% and specificity of 82%,
for diagnosing amnestic MCI [10]. MTA scores also
distinguished Probable AD and aMCI subjects, from
naMCI and NCI subjects, and predicted transition from
NCI to MCI, and from MCI to probable AD.
Accuracy of the VRS in measuring MTA was
compared to a volumetric method (IBASPM, www.
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thomaskoenig.ch/Lester/ibaspm.htm) in the diagnosis
of AD. Inapreliminary study, participants in the Florida
Alzheimer Disease Research Center were diagnosed as
cognitively normal (NCI; n = 32), amnestic MCI (aM-
Cl; n = 45), or with Dementia (DEM; n = 30) [31].
Area under the receiver operating curve (aROC) for the
left hemisphere in DEM versus NCI groups was 0.80
for volumetry, and 0.83 for VRS (p = NS). Similar
results were obtained in the right hemisphere for the
same groups. ForaMCI versus NCI, aROC for the right
hemisphere was 0.73 for VRS, and 0.61 for volumetry
(p = 0.05). Correlations of right and left MTA with
scores on an episodic memory test (r = 0.55and r =
0.55) were slightly higher with VRS, in comparison to
volumetric measures (r = 0.51 and r = 0.44) [31].

3. Volumetric analysisof brain MRIs

Methodology for whole brain and regional volumet-
ric analysis is widely available. One such method,
the Individual Brain Atlas and Statistical Parametric
Mapping (IBASPM) (www.thomaskoenig.ch/Lester/
ibaspm.htm) is an extension of SPM5 (Welcome De-
partment of Cognitive Neurology, London, UK), and
is a freely available MRI software package execut-
ed in MATLAB (Natick, MA). In IBAPSM, the vol-
ume of brain structures is calculated after normalization
or spatial transformation to templates obtained from
the Montreal Neurological Institute (MNI) website
(http://www.bic.mni.mcgill.ca/brainweb/). The scans
are segmented into three types of tissue in each hemi-
sphere: gray matter, white matter, and cerebral spinal
fluid. An individual brain atlas for each subject is
created with the transformation matrix obtained from
the normalization step, and anatomical automatic label-
ing (AAL) ( http://www.cyceron.fr/freeware/) to spec-
ify 116 structures. The structures measured include
the hippocampus, parahippocampal gyrus, and amyg-
dala in the medial temporal lobe, where atrophy has
been strongly correlated to neurodegenerative changes
during AD. In different studies, manual outlining of
serial coronal images to capture the entire volume of
a structure has provided volumetric data for the hip-
pocampus, putamen and thalamus, entorhinal cortex,
perirhinal cortex, and posterior parahippocampal cor-
tex. In these studies, a trained operator is required to
manually segment the regions of interest, rendering this
method expensive and time-consuming. Excellent dis-
crimination between cognitively normal, MCI and AD
subjects is possible using these volumetric methods [2,

8,9,12,29,33]. An alternative efficient, albeit relative-
ly expensive program for automatic volumetric analy-
sis of brain MRIs has been developed by NeuroQuant
(CorTech Labs, La Jolla, CA).

Entorhinal cortex and hippocampal volume loss on
MRI scans are highly correlated with progression rate
of MCI to AD. Smaller hippocampal and entorhinal
cortical size on MRIs have been related to memory im-
pairment in normal aging and subjects at risk for future
AD [17]. The presence of MCI or mild dementia, ver-
sus normal cognition has been associated specifically
with atrophy of the left hippocampus, parahippocampal
gyrus, and amygdala [4,19]. Even among subjects who
are cognitively normal, those with subjective symp-
toms of cognitive impairment were found to have lower
hippocampal volume [36]. The histopathological cor-
relate of imaging findings appears to be accumulation
of neurofibrillary tangles, neuritic plaques, and loss of
neurons and dendritic arbor in the trans-entorhinal and
hippocampal cortex [4,15,18]. Presence of medial tem-
poral atrophy is not specific for AD, as fronto-temporal
lobar dementia (FTLD), vascular dementia, and hip-
pocampal sclerosis may demonstrate brain atrophy in
these regions.

A conceptual point to be made is what additional
variables shown to be associated with increased risk, or
increased probability of progression from normal cog-
nition to MCI, include age, memory scores, hyperten-
sion, and ApoE 4 genotype. Some of these are true
risk factors, in the sense of participating in a causal
pathway, while others appear to be epiphenomena, or
effects of the disease process. Association with an el-
evated probability does not necessarily translate into
improving sensitivity, specificity, or predictive value of
diagnosis. Conceptually, certain factors are less suited
to being considered as diagnostic.

4. Support vectorsmachinesfor automated
classification of brain MRIs

Support vector machines (SVMs) are software pro-
grams designed to automate the classification of data.
Computer-based, fully automated support vector ma-
chines (SVMs) have been designed to evaluate struc-
tural brain MRIs in the diagnosis of AD [24], nor-
mal aging, and frontotemporal lobar degeneration [22].
Such SVMs employ a set of related supervised learning
tools for the regression analysis and classification of
MRI data; SVMs “maximize” the separation between
two data groups, and classify novel data into either
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group [22]. Specifically, SVMs use a complex algo-
rithm on well-characterized data to discriminate the dif-
ferences between groups. For example, during the first
step the SVM can “learn” and document the differences
in digitalized brain MRIs of two diagnostic groups, e.g.,
AD and healthy controls. Then, the SVM applies its
“knowledge” to assign new cases to diagnosis groups.
A caveat is that separation must be based on disease-
related changes [22]. Kloppel and colleagues [22] re-
ported high sensitivity (95-100%) and specificity (86—
95%) generated by SVM, in comparison to radiolo-
gists’ reports in the diagnosis and differentiation of AD
and MCI from normal subjects.

The SVM may be a useful adjuvant tool; it is quite
accurate, requires minimal supervision, and a small
amount of user training. However, while SVMs can
discriminate between normal aging and AD, or MCI
groups, it is not certain whether SVMs work well to dif-
ferentiate patients with common metabolic or structural
abnormalities, from AD or MCI patients. Severe invo-
lutional changes, hydrocephalus, brain infarcts, post-
surgical changes, hemorrhages, and neoplastic disor-
ders are only a few examples that can easily produce al-
teration in the brain anatomy, and in these cases, SVM
would likely not yield an accurate result. On the oth-
er hand, such concerns would not challenge a trained
radiologist who would spend very little time using a
visual rating method to diagnose MCI or AD.

Li and colleagues [23] have built an effective SVM
classifier trained to detect changes in hippocampal sub-
regions that are significant in discriminating AD pa-
tients and healthy control subjects. In this study, accu-
racy in classifying subjects based on SVM assessment
of the bilateral hippocampal subregions was greater
than 80%. Magnin and colleagues [25] have devel-
oped an SVM classifier of whole-brain anatomy that
is recorded on MRIs, to discriminate AD patients and
elderly control subjects. This SVM was designed to
perform a histogram analysis of voxel intensities for
each region of interest (ROISs) on the brain MRI. Next,
a parameter that characterizes relative weight of gray
matter, compared to white matter and cerebrospinal flu-
id is extracted. Then, the SVM sums extracted param-
eters for all ROIs of the whole brain MRI and clas-
sifies the subject using a complex mathematical algo-
rithm. With this SVM, Magnin and colleagues obtained
94.5% correct classification of AD and control subjects,
with 96.6% specificity, and 91.5% sensitivity. Kloppel
and colleagues [22] utilized SVM to classify mild AD,
FTLD, and control subjects. This SVM was used to
evaluate volumes of gray matter for the whole brain,

or for the anteromedial lobe volume only, as the input
feature of the SVM classifier. In this study, up to 96%
of pathologically verified AD patients were correctly
classified using the whole brain images.

5. White matter hyperintensities( WMHs), MTA
and AD

White matter hyperintensities (WMHs) appear as
bright foci on T2-weighted MRI scans, [19] and may be
observed in elderly subjects who are cognitively nor-
mal, diagnosed with MCI, or a variety of dementias
including AD [12] [13,14,28]. Etiology of WMHs is
commonly ascribed to normal aging and cerebrovascu-
lar disease, even among subjects diagnosed with prob-
able AD [14,34]. Yet growing evidence indicates neu-
rodegenerative processes, such as gliosis, microglial
infiltration, inflammation, and amyloid angiopathy can
generate WMHSs [3,7,11,16,41]. Diverse etiologies and
underlying neuropathologies [16], as well as coexist-
ing and mutually synergistic effects of vascular and de-
generative disease [6,21,37] may confound efforts to
characterize a relationship between WMHs, MTA, and
AD. The distinction between degenerative and vascular
disease in the brain has become increasingly blurred at
a pathological and clinical level, so that WMHs in the
brain should be generally considered a manifestations
of both disease processes [38].

In a study of more than 3000 subjects, Longstreth
et al. [24] reported significant relationships between
WMHs, demographic variables, cardiovascular risk
factors, and found that cognitive performance was
closely associated with severity of WMHs. On the
other hand, although Staekenborg and colleagues [33]
documented a clear association of MTA with WMHSs
on visually rated brain MRIs of AD patients, this group
reported “no differences in behavior or psychological
symptoms according to MTA or WMHSs.” Neverthe-
less, most studies have demonstrated a relationship be-
tween WMHSs and current cognitive status and/or risk
for future cognitive decline. Recently, Van Straaten
and colleagues [37] used Scheltens’ standardized visu-
al rating scale to assess brain MRIs of 182 subjectsin a
longitudinal study, and found that periventricular white
matter hyperintensities were related to increased risk of
AD within three years. Convincingly, in a longitudinal
study of cognitively normal adults who were assessed
with volumetric analysis of brain MRIs, Rosano and
colleagues [28] found that MTA and WMHSs were “in-
dependently and significantly associated” with a greater
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Fig. 1. Examples of reference images for the MB slice. The three regions of interest are outlined in the right hemisphere in color (HPC = red;
ERC = blue; PRC = green). In Fig. 1 all three structures have no atrophy (Score = 0) in both hemispheres; In Fig. 2 all three structures have
minimal (Score = 1) to mild (Score = 2) atrophy; in Fig. 3 all three structures have moderate (Score = 3) atrophy, although the left HPC is more
atrophic than the right; in Fig. 4 all structures have severe atrophy (Score = 4), with the exception of the right PRC, which has moderate atrophy.
(Note: a useful marker distinguishing mild from moderate atrophy is the loss of gray-white matter distinction in the ERC and the PRC).

risk to develop AD within 5 years. Furthermore, in this
study it was found that coincidence of both MTA and
WMHs “increased risk of developing AD by seven-
fold” [28].

Appel and colleagues [1] rated MTA and white mat-
ter hyperintensities (WMHSs) in 192 elderly subjects
that were clinically and neuropsychologically diag-
nosed as cognitively normal, non-amnestic MCI (naM-
Cl), amnestic MCI (aMCl), and probable AD. Scores of
WMH and MTA were greater in subjects with probable
AD, relative to NCI and na-MCI subjects [1]. Over-
all correct classification rates of Probable AD versus
NCI, using VRS MTA scores was 81.8%, improving
to 86.5% when combined with WMH scores. WMHSs
were significantly related to MTA scores, but not to the
cardiovascular risk factor scores, suggesting that in this
cohort WMHSs on MRI scans were primarily associated
with neurodegenerative disease [1].

Insummary, it appears likely that MRI measures will
have continuing utility for research studies in dementia
and MCI syndromes. Volumetric measures that are cur-
rently most frequently employed for research studies,
have particular utility for determining changes in brain

morphology longitudinally. Support vector machines
may have particular applications for analyzing volu-
metric data. However, volumetric analysis has inade-
quacies in measuring small irregular structures such as
the ERC [35], which reduces its sensitivity and speci-
ficity for detecting morphological changes that occur
early in the course of Alzheimer’s disease. Further-
more, volumetry requires high image quality and well-
trained personnel to prepare and analyze the images,
and it is not unusual for scans to be found unsuitable
for volumetric analysis because of movement or other
artifacts. Semiquantitative measures using visual rat-
ing for measuring medial temporal atrophy may be a
more accurate method than volumetry, especially for
cross-sectional studies, when the goal is to validate the
diagnosis of AD. Semi-quantititative visual rating, es-
pecially using VRS, can detect atrophy in small irreg-
ular structures such as the ERC. At the same time the
criteria for image acquisition are much less stringent;
very few MRI scans are found unsuitable for visual rat-
ing because of artifacts, poor image quality or acquisi-
tion technique. Visual rating of MRI images can be in-
corporated into the routine radiological assessment of
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Fig. 2. White matter hyperintensities (WMHSs) and Visual Ratings. Figures show examples of WMHs in the bilateral Periventricular (PVM)
Frontal regions on a FLAIR axial brain MRI that would be visually rated at a level of 0 (), 1 (b), 2 (c), 3 (d), and 4 (e). Examples of WMHs in
the bilateral PVM Posterior regions are shown in Fig. 2 (d), (e); these WMHs would be rated at a level of 3, excepting the right posterior WMH

region in (e), which would be rated at a level of 2.

MRI brain scans, adding very little additional reading
time for a trained radiologist or technician. It is likely
that semiquantitative visual rating will become a con-
venient and cost-efficient method to aid in the diagnosis
of Prodromal AD and Probable AD.
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