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SUMMARY

iPSCs show variable methylation patterns between lines, some of which reflect aberrant 

differences relative to ESCs. To examine whether this aberrant methylation results from genetic 

variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to 

investigate how genetic background, clone, and passage number contribute. We found that 

aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein 

motifs and affect gene expression. We classified differentially methylated CpGs as being 
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associated with genetic and/or non-genetic factors (clone, passage) and found that aberrant 

methylation preferentially occurs at CpGs associated with clone-specific effects. We further found 

that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites 

across different studies. Our results argue that a non-genetic biological mechanism underlies 

aberrant methylation in iPSCs, and that it is likely based on a probabilistic process involving MYC 

that takes place during or shortly after reprogramming.

Graphical abstract

INTRODUCTION

Induced pluripotent stem cells (iPSCs) and their derived cell types are a powerful tool to 

model and potentially treat human disease. However, the epigenetic differences between 

iPSCs and embryonic stem cells (ESCs) present after reprogramming are still not well 

understood. During the past decade, studies have observed that CpG sites differ in 

methylation status between individual iPSC lines (methylation variation), as well as CpG 

sites that differ in methylation status between iPSCs and ESCs (methylation aberrancy) 

(Deng et al., 2009; Doi et al., 2009; Lister et al., 2011; Nazor et al., 2012; Ruiz et al., 2012). 

Aberrantly methylated CpG sites are further classified relative to their methylation status in 

the parental tissue of origin, and iPSCs can show loss of methylation, gain of methylation, or 

retain patterns similar to the tissue of origin (somatic memory). Some studies have identified 

aberrant CpG sites that are clone-associated or disappear with extended passage (Hussein et 

al., 2014; Kim et al., 2010; Nazor et al., 2012; Ohi et al., 2011). Other studies have 

suggested that genetic variation is an important regulator of gene expression and DNA 

methylation, as well as aberrant methylation in iPSCs (Burrows et al., 2016; Kyttala et al., 

2016; Rouhani et al., 2014). However, previous studies aimed at identifying factors 

contributing to aberrant methylation have had limitations in part because they did not 

simultaneously examine the relative contributions of genetic (DNA variation) and non-

genetic (i.e. clonality and passage) factors, or take into account the background rates of these 

factors. Thus, the mechanisms driving methylation aberrancy in iPSC lines are unclear and 
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the relative importance of genetic versus non-genetic factors in this phenomenon has not yet 

been determined.

Genetic and non-genetic factors can potentially affect the methylation status of a large 

proportion of CpGs in iPSCs; therefore, aberrantly methylated CpGs can be associated with 

these factors by chance if background rate is not taken into consideration. Thus, it is 

necessary to first estimate how methylation levels at CpG sites across the genome associates 

with these factors. A study design using multiple pairs of monozygotic twins could be used 

to partition differentially methylated CpG sites across the genome based on association with 

genetic background, clone, or passage. Methylation variation associated with genetic 

variants will tend to look similar in all clones derived from either individual in a pair of 

monozygotic twins, but will vary between individuals in different twin pairs. Clone-specific 

variation that arises in a random or probabilistic manner, however, will show consistency 

within a specific clone at different passages, or between multiple clones across individuals 

from different genetic backgrounds, but won’t tend to cluster consistently by genetic 

background. Passage-associated variation will be consistently different in multiple clones 

between early and late passages, but won’t show biases for specific clones or genetic 

backgrounds. To establish that these associations are biologically meaningful, enrichments 

of the CpG sites for functional annotations such as the proximity of genetic variants, overlap 

with epigenetic regulatory regions and transcription factor motifs, and gene ontologies can 

be conducted, while correlated gene expression changes can be used to identify potential 

functional consequences of methylation. Thus, across the genome, differentially methylated 

CpGs can be classified according to their associations with genetic background, clone, and 

passage, as well as functional annotations.

Here, we generated 22 iPSC clonal lines from six individuals (3 pairs of older monozygotic 

twins). We profiled the 22 iPSC lines at early (passages 5 (p5) and 9 (p9)) and late (passage 

20 (p20)) passages as well as fibroblasts (tissue of origin) using genome-wide methylation 

arrays and RNA-seq data. We estimate aberrant methylation of the iPSCs relative to ESCs 

and show that aberrant methylation affects gene expression and is enriched for CpGs 

associated with MYC and MYC-related protein motifs. We then identify genome-wide 

associations between CpG methylation variation and genetic background, clone, and passage 

and show that these associations likely result from relevant biological processes. We 

examine whether aberrant CpGs are enriched for CpGs associated with genetic and non-

genetic effects and show that aberrant methylation preferentially occurs at CpGs showing 

clone-associated effects and is less enriched at sites associated with genetic background. Our 

study shows that non-genetic regulatory mechanisms associated with clone-specific effects 

most strongly underlie iPSC aberrancy.

RESULTS

Methylation and RNA-seq profiling of fibroblasts and iPSCs from identical twins

We generated 22 iPSC lines from fibroblasts obtained from 3 pairs of monozygotic twins (all 

female, Caucasian, >50 years of age) to examine and distinguish the roles of genetic 

background, clonal lines, and passage on iPSC methylation. iPSC lines from each twin set 

group were derived and cultured under parallel conditions, and all iPSC lines were 
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characterized using standard criteria (Figure S1A–E). Samples were collected for analysis at 

p5, p9, and p20 (for a total of 51 iPSC samples) (Figure 1A). We successfully determined 

genome-wide patterns of DNA methylation of fibroblast parental populations and respective 

derived iPSC lines using the Illumina 450K HumanMethylome BeadChip for 49 of these 

samples. To examine if observed methylation changes were associated with altered gene 

expression, we also generated RNA-seq data for the 44 samples at passages 9 and 20 (Figure 

1A). Finally, to examine whether DNA methylation patterns that were similar within twins 

were associated with genetic variants, we performed whole genome sequencing (WGS) of 

blood samples from the six participants (Figure 1A). To determine if fibroblast samples from 

the same genetic background showed similar DNA methylation profiles, we examined the 

methylation patterns in the fibroblast parental populations of each individual twin, and 

compared these to previously established methylation profiles of 62 fibroblasts from 

unrelated individuals (Wagner et al., 2014). Hierarchical methylation clustering showed the 

individual twin fibroblast lines interspersed randomly between the 62 unrelated individuals 

(Figure 1B), in agreement with previous studies demonstrating epigenetic divergence in 

aging twins (Fraga et al., 2005; Wong et al., 2010). Of note, the fibroblasts did cluster by 

twin set when analyzing 65 SNPs that are present on the methylation array, confirming they 

are correctly genetically matched (Figure 1C). These results show that fibroblast cells from 

individuals with the same genetic background show divergent DNA methylation, likely as a 

result of changes during the lifetime.

To examine methylation changes associated with reprogramming, we performed hierarchical 

clustering of the genome-wide methylation profiles of twin iPSCs. Unlike their parental 

somatic sources, the iPSCs clustered by twin set, and even showed interspersing of 

individual twins within the clustering of twin set groups (Figure 1D), demonstrating a strong 

role for genetic background in regulating their overall methylation status. Within these twin 

sets, there was also clustering based on clones, as well as by time in culture, indicated by 

passage number. When we included the fibroblast samples and focused on sites that were 

previously shown to distinguish pluripotent stem cells from somatic cell types (Nazor et al., 

2012), we observed that while there was very little variation among iPSCs, and the majority 

of methylation changes between iPSCs and the fibroblasts had occurred by p5, we still 

observed clustering according to genetic background, as well as clone and passage (Figure 

1E). Analysis of the RNA-seq data (hierarchical clustering of the 500 most variable genes) 

showed a similar pattern to the methylation data: iPSC lines clustered together based on 

genetic background as well as passage (Figure S1F). These combined results confirm 

previous findings that genetic background plays a large role in regulating overall CpG 

methylation (Burrows et al., 2016) (Kyttala et al., 2016) and gene expression differences 

between iPSC lines during reprogramming (Rouhani et al., 2014), and support previous 

studies showing that non-genetic factors including clone and passage also contribute to these 

differences (Nazor et al., 2012; Ruiz et al., 2012).

Aberrant CpG methylation is recurrent and varies by regulatory region

We next characterized aberrant methylation at CpG sites in each of the 49 iPSC samples in 

our study by whether they differed from ESCs. Sites classified as aberrant required a CpG to 

be different from a panel of 15 ESCs (Nazor et al., 2012) by an absolute methylation value 
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of 0.2 as well as by a Z-score that corresponded to a 1% FDR across a single iPSC sample 

(see STAR Methods). In addition, because genetic variants near the single base extension 

(SBE) of the probe can produce assay artifacts (Chen et al., 2013) (see below), we removed 

6,093 sites associated with these variants. This resulted in an average of 1,300 CpGs being 

called aberrant in each sample (Figure 2A). We also classified aberrant sites into three 

aberrant CpG classes according to how the iPSC methylation level related to the paired 

fibroblast sample: 1) within 0.2 of the paired fibroblast methylation level - somatic memory; 

2) more than 0.2 higher - iPSC gain; and 3) more than 0.2 lower - iPSC loss. We identified 

on average 533 somatic memory, 168 iPSC loss and 436 iPSC gain sites per sample. In total, 

we identified 9,310 sites that were aberrant in one or more iPSC sample, of which 7,372 

sites (79%) were aberrant in either one sample or had consistent classification across 

multiple samples, and 1,938 sites (21%) that were aberrant in multiple samples but with 

different classifications (Figure 2B, Table S1A). A total of 466,154 sites were not considered 

aberrant in any iPSC sample. In general, aberrant sites were present in one (3,794; 41%) or a 

few (2–5, 2926; 31%) samples, but in some cases, sites were aberrant in 10 or more samples 

(1749; 19%). Thus, while only 0.3% of CpGs are aberrantly methylated in a given sample, 

the same sites are recurrently aberrant across multiple samples, suggesting that the process 

underlying methylation aberrancy is not random.

We investigated the distribution of aberrant sites across the genome to determine if they 

preferentially occurred in functional elements or were associated with gene annotations. We 

tested if the three different classes of aberrant sites were enriched in any of 25 chromatin 

states based on imputed data in 127 reference epigenomes (Ernst and Kellis, 2015) using a 

hypergeometric test. We observed that iPSC loss sites were associated with repressed 

regions bound by polycomb, quiescent regions (not bound by protein), and weak 

transcription regions in the majority of tissue-types, but were also associated with active 

enhancers and active enhancer flanking regions in a few of the ESC and iPSC samples 

(Figure 2C). Somatic memory sites showed strong enrichment for quiescent regions, as well 

as being enriched for repressed polycomb regions and heterochromatin across a variety of 

tissue-types. iPSC gain sites were associated with bivalent promoters, repressed polycomb 

regions, promoters downstream of transcription start sites (TSS), and regulatory 

transcription regions across a variety of tissue and cell-types. In ESC and iPSC cell-types, 

the iPSC gain sites were also enriched in DNaseI sensitive sites, heterochromatin, and 

promoters downstream of TSS, but not in repressed polycomb regions. To examine 

enrichment of functional and regional gene annotations, we first identified genes that were 

enriched for specific subtypes of aberrant methylation relative to overall rates (Table S1B). 

We performed gene set enrichment on these gene lists using GOseq with Gene Ontology 

(GO) and the Molecular Signatures Database, which also includes chromosome region 

information, and although no functional gene annotations were observed, genes associated 

with either iPSC gain or any type of aberrant CpG showed enrichment at a telomeric region 

of chromosome 3 (chr3p26) (Table S2). These findings demonstrate that dependent on their 

classification (memory, gain or loss) aberrantly methylated sites in iPSCs are enriched in 

functionally distinct chromatin states and can show regional association in the genome.
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iPSC gain aberrant CpG sites affect expression of associated genes

We next investigated whether aberrant methylation affected the expression levels of 

associated genes. For each of the 42 iPSC samples (with methylation arrays at p9 and p20) 

(Figure 1A), we matched the DNA methylation data with normalized RNA-seq expression 

values for each gene and categorized the genes (none, iPSC loss, Somatic Memory, iPSC 

gain, multiple) according to the number and types of aberrant sites annotated to that gene in 

that sample. For each category, we pooled all gene expression levels (42 expression levels 

per gene) and after adjusting for sample, tested whether the categories showed overall 

differences in gene expression using multiple linear regression. We observed systematically 

lower gene expression values for iPSC gain aberrant methylation that correlated with the 

number of aberrant CpGs per gene (i.e. genes with more aberrant CpGs had lower 

expression) (Figure 2D), but did not see gene expression changes for other types of aberrant 

methylation (Figure S2A). These results show that aberrant methylation, and specifically 

iPSC gain aberrant methylation, is associated with gene expression changes.

To investigate altered transcription factor binding as a potential mechanism underlying the 

association between aberrant methylation and gene expression changes, we conducted a 

motif enrichment analysis. We observed that all three classes of aberrant methylation were 

enriched for short AT-rich motifs that did not match known transcription factor motifs (Table 

S3A). In addition, iPSC gain CpGs were enriched for transcription factor motifs including 

CXXC1 and MYC, as well as 10 other motifs that were similar to the MYC motif and 

shared at least four of the six central base pairs (CACGTG), which we defined as MYC-like 

motifs (Table S3A). The CpGs that contained MYC and MYC-like motifs tended to be 

intermediately methylated (Beta values between 0.2 and 0.8) and were on average higher in 

the iPSC lines compared to ESC lines (Figure 2E). Furthermore, genes near aberrantly 

methylated CpG probes overlapping MYC and MYC-like motifs had significantly lower 

expression levels compared with genes near non-aberrantly methylated probes (Figure 2F). 

Genes associated with two or three iPSC gain CpGs overlapping MYC and MYC-like sites 

showed on average 0.97 Z-score units lower expression than genes in iPSC samples with 

non-aberrantly methylated MYC and MYC-like CpGs. These data show that the iPSC gain 

aberrant methylation of CpGs consistently lowers the expression of associated genes 

potentially through the binding of regulatory proteins including MYC.

Genome-wide association of CpG methylation levels with genetic background, clone, and 
passage

We next identified differentially methylated CpGs associated with genetic and/or non-

genetic (clone, passage) factors in order to be able to test whether aberrant methylation 

occurs preferentially at CpGs associated with these effects above and beyond background 

rates. We first characterized how methylation variation at genome-wide CpGs (481,557 sites 

on the 450K BeadChip) was associated with these factors across the 49 iPSC samples. We 

performed two separate ANOVA analyses that varied according to: 1) genetic background, 

2) clone, and 3) passage. Statistical tests were performed on the 42 samples from p9 and p20 

to ensure that groups of samples were balanced across individuals, although we show 

examples including data from all passages. We then classified each CpG according to its 

association with genetic background, clone, passage, or a combination of these three factors 
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(hereafter referred to as the seven CpG predictor classes, Figure 3A, Table S1A). We 

expected strong genetic effects to be associated with both genetic background and clone 

because the multiple clones from each twin pair have the same genetic background. On the 

other hand, weak genetic effects were expected to show higher variability between clones 

from the same twin pair and thus only be associated with genetic background and not clone. 

We therefore named the CpGs associated with both genetic background and clone “strong 

genetic” and those associated with only genetic background “weak genetic”. Most sites 

associated with both genetic background and clone showed a proportional relationship 

between the −logP values of these two factors, consistent with a genetic effect (Figure S3A); 

but there was also a group of CpGs that showed higher clone association, which are likely 

clone-specific effects that were falsely associated with genetic background because the 

multiple samples (p9 and p20) have the same genetic background. Therefore, we applied an 

additional criterion to correctly classify the CpG sites that were more strongly associated 

with clone effects, specifically the CpGs with a stronger clone P-value were grouped with 

the other CpGs showing “clone-specific” effects. This resulted in 12,063 “strong genetic” 

and 2,903 “strong genetic + passage” CpGs moving respectively into the “clone-specific” 

and “clone-specific + passage” classes (see STAR Methods). In total, 154,724 (32.1%) of the 

CpG sites tested showed methylation variation associated with genetic background, clone, or 

passage across the iPSC lines (Figure 3A). Strong and weak genetic effects, with or without 

passage, were associated with 113,758 CpGs (73.5% of associated sites), while non-genetic 

effects were associated with 40,966 CpGs (26.5%), including those showing clone-specific 

(N=33,754), passage-specific (N=3,351), or both clone and passage (N=3,861) associations. 

We use these background rates of association between differentially methylated CpGs and 

genetic background, clone, and passage below when we examine factors influencing 

aberrant methylation; however, we first set out to confirm that the CpG predictor classes are 

biologically relevant and have functional consequences.

Specific genetic variants near and distal to CpG sites explain association with genetic 
background

To validate that the association of CpG methylation levels with genetic background was due 

to genetic variants and not to experimental artifacts such as batch effects, we examined the 

contribution of specific genetic variants. Using WGS (see STAR Methods, Table S4), we 

identified the nearest polymorphic variant to each CpG probe and compared whether CpG 

probes that were closer to a polymorphic variant were more likely to be associated with each 

of the seven CpG predictor classes (Figure 3B). We observed association between the 

distance of the polymorphic variant and the odds of being associated with genetic 

background predictors that peaked at the probe and extended up to ~200bp on either side. 

CpGs with a genetic variant at or near the position of the 3′ SBE were highly likely to be 

associated with strong genetic, strong genetic + passage, and weak genetic effects, consistent 

with genetic variants at the SBE disrupting the methylation assay. Because these are likely 

artifacts of the assay, we removed 6,093 sites associated with SBE variants (positions −1, 0, 

and 1) from further analyses (see italicized numbers in Figure 3A). The elevated enrichment 

up to ~200bp upstream and downstream from the probe (which has a length of 50 bp), 

however, suggests that nearby variants influence methylation at CpG sites. CpGs near 

monomorphic variants did not show this effect (Figure S3B). Previously identified 
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methylation quantitative trait loci (meQTL) were also enriched in strong and weak genetic 

classes (Figures S3C and S3D). Thus, CpG sites in genetic background predictor classes are 

more likely to be in close proximity and associated with functional genetic variants, while 

CpGs in clone and passage predictor classes tend to not be near genetic variants. This 

supports the use of the seven CpG predictor classes as a tool to differentiate genetic vs. clone 

and passage effects on aberrant methylation.

CpGs predictor classes are differentially enriched in regulatory regions and for 
transcription factors

To examine whether CpGs in different CpG predictor classes reflect different regulatory 

processes, we examined how CpGs in each of the seven CpG predictor classes associated 

with regulatory regions. First, we examined enrichment in regulatory elements, as defined by 

chromatin states in ESC and iPSC lines (Figure 3C). The 325,001 CpGs not associated with 

any of the CpG predictor classes (indicated as none in Figure 3C) were more likely to be in 

regions not targeted by regulatory proteins (protein-free quiescent regions and transcribed 

regions of genes), while associated CpGs tended to lie in transcription start sites, promoters 

and enhancers. Clone-specific CpGs were most associated with active TSS, but not 

associated with enhancers, while strong and weak genetic CpGs were more associated with 

promoters upstream of the TSS. We then examined transcription factor motifs and observed 

that genetic (both strong and weak) and clone-specific CpG predictor classifications were 

enriched for CG-rich motifs that did not match known transcription factors (Table S3B). 

However, CpGs in the passage-specific predictor class, as well as those in the combined 

genetic + passage classes (weak genetic + passage and strong genetic + passage), were 

enriched for a motif similar to the JUN/FOS motif. The CpGs associated with this motif 

tended to show decreased methylation between p9 and p20 (average decrease 0.054, Wilcox 

P=1×10−19: Figure S3E), which may be biologically important given that c-Jun suppresses 

the expression of pluripotent genes (Liu et al., 2015). Thus, changes at JUN/FOS targets are 

associated with changes during passaging, in a manner that may be modified by genetics. 

These results show that CpGs associated with different CpG predictor classifications occur 

in different regulatory regions and thereby suggest that genetic and non-genetic factors affect 

different regulatory processes.

Non-genetic factors are associated with methylation and expression of genes relevant for 
stem cell function

We next examined if genes associated with different CpG predictor classes showed gene 

expression changes consistent with that class. We analyzed the RNA-seq data (44 iPSC 

samples at p9 and p20) (Figure 1A) using the same ANOVA approach that we used for the 

methylation data and classified gene expression patterns according to seven RNA-seq 

predictor classes, resulting in 4,988 associated genes (Figure 3D, Table S1B). To enable 

gene-level comparisons with the methylation data, we generated gene-level CpG predictor 

classifications by identifying genes enriched for CpGs from each CpG predictor class using 

a hypergeometric test, identifying 1,147 genes enriched for any CpG predictor class (Table 

S1B, Figure S3F). Using a Fisher’s exact test, we then estimated the overlap between gene-

level CpG predictor class and RNA predictor class (Figure 3E). For most predictor classes 

(i.e. “clone-specific”), genes associated with the gene-level CpG class were enriched for 
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genes in the respective RNA predictor class. When we observed cross-category enrichment, 

this was generally in similar categories (e.g. clone+passage gene-level predictor class vs. 

passage-specific RNA predictor class). Strong genetic gene-level CpG effects showed the 

largest overlap with strong genetic + passage RNA effects, possibly indicating a delayed 

effect of methylation changes on RNA expression. Weak genetic gene-level CpG effects 

were not supported in the RNA data, but this could be due to low number of genes enriched 

for weak genetic CpG effects. Because clone-specific, clone + passage, and passage effects 

showed strong overlaps, we analyzed the list of genes that showed overlap between the gene-

level CpG and RNA predictor classes of these three classes (Figure S3G). Interestingly, this 

list contains genes that have been previously shown to be differentially methylated in iPSCs 

(e.g. TMEM132D, DPP6, and FAM19A5) (Lister et al., 2011; Ruiz et al., 2012). The long 

non-coding RNA gene MEG3 from the DLK1-D103 imprinting locus, which has been 

shown to affect pluripotent stem cell function (Benetatos et al., 2014; Carey et al., 2011; Mo 

et al., 2015; Stadtfeld et al., 2010) was also differentially expressed. These results show that 

the patterns of the CpG and RNA predictor classes are similar, and that non-genetic factors 

(e.g. clonality, passage), by affecting methylation variation, may alter expression of 

important genes relevant for stem cell function.

Functional characterization of genes enriched for CpG predictor classes

To further examine the functional implications of the CpG predictor classes, we conducted a 

gene set enrichment using GOseq for each of the seven gene-level CpG predictor classes 

(Table S1A, Figure S3F). We observed modest functional enrichment, with strong-genetic 

genes enriched for MHC protein complex and antigen presentation, clone-specific genes 

enriched for cell-cell adhesion and genes on the X-chromosome, and passage-related genes 

(passage-specific, clone + passage, and strong genetic + passage) associated with genes on 

the X-chromosome (Table S2). These results suggest that genes enriched for differentially 

methylated CpGs in specific predictor classes have similar functions, with genetic classes 

being associated with highly genetically variable loci, and clone and passage classes 

reflecting mechanisms relevant to reprogramming, such as X-chromosome reactivation. 

Taken together, these results suggest that the CpG predictor classes reflect physiological 

differences that are consistent with the class type (i.e. genetic, clone, or passage) and have 

downstream effects on gene expression.

iPSC gain aberrant CpG sites are associated strongly with clone-specific effects

To explore the relative contributions of genetic and non-genetic factors to aberrant 

methylation, we first performed hierarchical clustering of aberrant calls and examined how 

the samples clustered by these factors (Figure 4A). We observed that clones showed strong 

similarity to each other (only a few sets of iPSC samples did not cluster by clone) and that 

genetic background and passage showed some, but not complete, clustering (Figure 4A). Of 

note, sites with genetic variants near the SBE, when included, incorrectly drove clustering 

by genetic background because SBE sites appeared as strong somatic memory calls (see 

STAR Methods and Figure S4A–C). These results suggest that although SBE variation can 

cause a specific type of aberrant methylation artifact, when these sites are removed, 

aberrantly methylated CpGs are more similar between samples of the same clone than 

between samples with the same genetic background.
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Clustering patterns based on aberrant CpGs do not take into account the background rates of 

differentially methylated CpGs associated with genetic background, clone, and passage; 

therefore, we integrated the aberrant results with the CpG and RNA predictor classes and 

examined whether aberrant methylation was significantly enriched in these classes above 

background rates. We first calculated the overlap between the CpGs in the three aberrant 

CpG classes and those in the seven CpG predictor classes described in Figure 3A. For each 

classification of CpG predictor class and aberrant CpG class, we calculated whether the two 

groups overlapped relative to the “None” CpG predictor class and “Not Aberrant” aberrant 

class reference groups using a Fisher’s exact test (Figure 4B). We observed significant 

positive enrichment for almost all comparisons showing that aberrant methylation tends to 

be associated with genetic background, clone, and passage. The most strongly associated 

CpG predictor classes were clone + passage, clone-specific, strong genetic, and strong 

genetic + passage. We next examined overlap at the gene level. As described above for CpG 

predictor classes, we identified genes that were enriched for specific subtypes of aberrant 

methylation relative to overall rates (Table S1B). Using the genes that were enriched for 

aberrant CpGs or CpG predictor classes, we compared the overlap of genes across classes 

using a Fisher’s exact test (Figure 4C). Consistent with the single CpG site observations, we 

observed the highest overlap between aberrant genes and clone-specific, strong genetic, and 

strong genetic + passage genes. However, genes associated with iPSC gain showed 

particularly high enrichment for clone-specific genes (OR=93.4, P=6.9×10−111). Consistent 

with these observations, when we compared the gene-level aberrant CpG classes to the RNA 

predictor classes (from Figure 3D), we observed strong enrichment for clone-specific effects 

only (Figure 4D). Our findings suggest that the aberrant methylation is strongly associated 

with clone-specific effects, particularly for iPSC gain, and modestly associated with genetic 

effects.

Comparison of aberrant genes across studies supports non-genetic mechanisms

Because subsets of aberrantly methylated genes are reproduced across studies, we compared 

aberrant regions identified in this study to those in Lister et al. (Lister et al., 2011), and 

examined their associations according to genetic background, clone, and passage. Lister et 

al. reports “aberrant regions”, which we converted to gene-level aberrant annotations by 

labeling genes as aberrant if they contained a CpG on the methylation array that overlapped 

an aberrant region. We then compared genes in the Lister el al. aberrant regions to the 

combined gene-level aberrant CpG classes and calculated overlap using a Fisher’s exact test. 

We found a significant overlap of 60 genes (OR=13.4, P=2.8×10−40, Figure 4E), supporting 

reproducibility of aberrancy across studies. We partitioned the genes into CpG predictor 

classes and observed the strongest reproducibility in clone-specific genes (Figure S4D). We 

further examined the 60 genes linked to aberrancy that were common to both studies, and 

observed that 51 were enriched for iPSC gain sites (Figure 4F). A majority of those genes 

were also enriched for somatic memory sites and clone-specific effects. Since we had found 

that iPSC gain aberrant methylation of CpGs affects the expression of associated genes, 

possibly through the binding of regulatory proteins including MYC (Figures 2E and 2F, 

Table S3A), we next examined whether the 60 overlapping genes carried CpGs containing 

MYC and MYC-like binding sites. Approximately 50% of the 51 genes associated with 

iPSC-gain contained MYC and MYC-like sites, including genes that have been previously 
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linked to aberrancy in other studies (e.g. A2BP1/RBFOX1, CSMD1, TMEM132C, 
TMEM132D, IRX2) (Choi et al., 2015; Ruiz et al., 2012). These findings suggest that genes 

identified as aberrantly methylated across multiple studies are enriched for CpGs that show 

clone-specific and iPSC gain methylation, and overlap binding sites of transcription factors 

associated with reprogramming.

DISCUSSION

Our study, which used multiple iPSC clones from three monozygotic twin pairs measured at 

multiple time points in culture, allowed us to characterize how aberrant DNA methylation 

proportionally varied according to genetic background, clone, and passage and provided 

important insights into the underlying mechanisms behind aberrant methylation in iPSCs. 

Although previous studies showed that genetic factors play a major role in regulating the 

pluripotent cell epigenome (Kyttala et al., 2016; Rouhani et al., 2014), we show here that 

aberrant methylation is most strongly enriched for non-genetic factors, specifically clone-

specific effects, and only modestly enriched for genetic effects. Furthermore, we 

demonstrate that aberrant methylation is enriched at functionally relevant sequences, 

including regulatory regions and transcription factor motifs, is likely to have functional 

effects on gene expression, and occurs reproducibly at specific CpG sites across studies. Our 

findings provide insight into the regulatory mechanisms that may be controlling iPSC 

methylation and highlight an important role for clone-specific effects in aberrant 

methylation.

The overall functional consequences of aberrant iPSC methylation on cellular fate and 

function remain unclear. We examined CpGs aberrancies and, in agreement with other 

studies, found that only 2% of iPSC methylation sites were aberrant (Figure 2). We divided 

the aberrant sites into three classes (somatic memory, iPSC gain, iPSC loss) and observed 

differential functional associations among them. Different classes of aberrancies are present 

in functionally distinct chromatin states, with iPSC gain sites showing enrichments in 

bivalent promoters, repressed polycomb regions, promoters downstream of TSS, and 

transcription regulatory sequences, suggesting that these aberrancies occur in important 

regulatory elements. Somatic memory and iPSC gains were also associated with repressed 

polycomb regions, but were also enriched for quiescent regions that may not have functional 

effects. Additionally, motif enrichment analysis showed that iPSC gain CpGs were enriched 

for motifs important in transcriptional regulation and metabolism. For example, we observed 

an enrichment of the MYC motif and MYC-like motifs, such as HIF1A. c-Myc is thought to 

act early in the process of reprogramming, and to promote an active chromatin state prior to 

pluripotency regulators being activated (Sridharan et al., 2009). HIF1A can positively affect 

reprogramming by promoting the glycolytic shift that occurs during somatic cell 

reprogramming (Prigione et al., 2014), which may be an early event in facilitating the 

epigenetic changes required for reprogramming (Folmes and Terzic, 2016). We further 

observed that gene expression in samples containing iPSC gain methylation at MYC and 

MYC-like motifs was decreased, consistent with functional consequences of these changes. 

Other classes of aberrant methylation (somatic memory and iPSC loss) had less clear 

functional implications as they were enriched in quiescent regions and were not associated 

with gene expression changes. Our analyses suggest that while aberrancies in all three 
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classes may have functional consequences, iPSC gain aberrancies are most likely to 

contribute to changes in gene expression and thus could positively affect acquisition and/or 

maintenance of a pluripotent state.

We show that while genetic background is often associated with CpG methylation levels, it 

does not play a primary role in aberrant methylation. We observed that monozygotic twin-

derived iPSCs show highly similar methylation and approximately 73.5% of the 154,724 

associated CpGs being associated with genetic background either uniquely (53.6%) or in 

association with clone (16.8%), passage (1.2%) or both clone and passage (1.9%) (Figure 3). 

The presence of specific genetic variants near the probe and association with previously 

reported meQTL loci supports the model these CpGs are driven by genetic variants and not 

systematic variation such as batch effects. When we examined whether aberrant CpGs were 

preferentially enriched for CpGs associated with genetic background above genome-wide 

rates, however, we observed only modest enrichment. The association between aberrant 

methylation and genetic background further weakened when we examined gene regions or 

gene expression, suggesting that genetic variation does not play a primary role in aberrant 

methylation. Importantly, we did observe an important exception to this pattern when 

genetic variants disrupted the methylation array single base extension assay. For these SBE 

sites, we observed strong association with genetic background as well as somatic memory 

aberrant methylation. These variants, if not removed, cause aberrant methylation to appear 

similar across iPSCs from the same genetic background and may result in false 

interpretations of the relative importance of genetic variation on aberrant methylation. Thus, 

while genetic variation ubiquitously affects methylation levels, including aberrant 

methylation, it is not strongly preferentially enriched at CpGs showing aberrant methylation 

and is therefore not a primary determinant.

Although only a quarter of the differentially methylated CpGs were associated with clone 

and passage effects, aberrant methylation was highly enriched at CpGs with clone-specific 

effects. Genes containing clone and passage-associated CpGs were enriched for functional 

annotations relevant to iPSCs, including cell-cell adhesion and the X-chromosome, 

suggesting that they reflect underlying biological process physiologically relevant to 

reprogramming including the X-chromosome activation state in human iPSCs (Pasque and 

Plath, 2015). Additionally, passage-associated CpGs were enriched for JUN/FOS binding 

sites, which consistently showed decreased methylation between passage 9 and 20. It is 

known that Jun inhibits somatic cell reprogramming and is important for differentiation (Liu 

et al., 2015), and has been shown to regulate cell adhesion genes as ESCs exit a pluripotent 

ground state (Veluscek et al., 2016). When we examined the overlap between CpGs 

associated with non-genetic factors and aberrant methylation, we observed high enrichment 

for clone-specific effects above that expected from genome-wide rates, particularly for iPSC 

gain sites. This enrichment strengthened when we examined gene-level methylation 

enrichment as well as gene expression patterns. Further, genes that were identified in this 

study as well as Lister et al. showed high levels of iPSC gain and clone-specific effects, 

suggesting that this phenomenon is replicable across studies, samples, and methylation assay 

platforms. Thus, non-genetic factors moderately contribute to CpG methylation variation, 

but clone-specific effects are particularly enriched in and are therefore likely to be an 

important factor in mediating aberrant methylation.
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Overall, we show that CpG methylation in iPSCs is clearly influenced by genetic variation, 

and that in some cases this variation can explain aberrantly methylated sites. However, the 

fact that aberrant methylation is enriched in functionally distinct regions, is correlated with 

gene expression changes, most often occurs independently of genetic background in a clone-

specific manner, and shows enrichment for MYC and MYC-like protein binding sites 

suggests that there are non-genetic physiological mechanisms underlying aberrant 

methylation. Our work provides a foundation for future studies aimed at elucidating the 

specific molecular mechanisms underlying aberrancy as well as the physiological 

consequences of these epigenetic modifications.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests should be directed to the corresponding author Kelly 

Frazer (kafrazer@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection—Individuals were recruited from the Twin Sibling Pedigree cohort 

(TSP; a population based twin registry spanning counties in Southern California) (Pasha et 

al., 2013), and informed consent was received from all individuals. These collections were 

approved by the Institutional Review Boards of the University of California at San Diego 

and of The Salk Institute. Fibroblasts were generated from skin biopsies of three pairs of 

Caucasian female monozygotic twins in the iPSCORE collection (Panopoulos et al., in 

Press): iPSCORE _31_1 and iPSCORE _31_2 were age 63 at collection, iPSCORE _111_1 

and iPSCORE _111_2 were age 55, and iPSCORE _103_1 and iPSCORE _103_2 were age 

70.

iPSC derivation and culture—To make retroviruses for reprogramming, moloney-based 

retroviral vectors (pMX-OCT4, pMX-SOX2, pMX-KLF-4, pMX-c-MYC) were obtained 

from Addgene (see Key Resources Table). Packaging plasmids (pCMV-gag-pol-PA and 

pCMV-VSVg) were kindly provided by Dr. Gerald Pao (The Salk Institute, La Jolla, CA). 

Retroviruses were collected 24 hours after 293T cells were transfected with plasmids using 

Lipofectamine (Invitrogen) according to manufacturer’s recommendations. To derive iPSCs, 

twin fibroblast lines were infected with retroviruses encoding OCT4, SOX2, KLF-4 and c-
MYC by spinfection at 800×g for 1 hour at room temperature in the presence of polybrene 

(8 μg/ml), and replated onto MEFs (Millipore) before switching to ESC medium for iPSC 

colony formation, as described (Lutz et al., 2008; Panopoulos et al., 2012). Individual 

colonies were expanded in mTeSR-1 media (STEMCELL Technologies) on Matrigel-coated 

plates. iPSC are named according to iPSCORE collection name (i.e. 31_1), followed by the 

clone and passage (e.g. 31_1_1_20 corresponds to family ID 31_individual 

1_clone1_passage 20).

iPSC characterization—iPSC lines were evaluated for pluripotency by flow cytometry 

and gene expression analysis. Flow cytometry analysis was performed using fluorescently 

conjugated antibodies to the pluripotent cell surface markers TRA-1-60 and SSEA-4 (BD 
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Biosciences). For gene expression analysis, Total RNA was isolated using Trizol Reagent 

(Invitrogen) and was reverse transcribed using the SuperScript II Reverse Transcriptase kit 

(Invitrogen). Real-time PCR was performed using SYBR-Green PCR Master mix (Applied 

Biosystems). The expression levels were normalized to GAPDH and the individual 

pluripotent genes (OCT4, SOX2, NANOG, and CRIPTO) were compared to the fibroblast 

marker COL6A2. Karyotype analysis was performed by Wicell Cytogenetics.

METHOD DETAILS

Methylation arrays—DNA was isolated (DNeasy kit, Qiagen) from iPSCs at passages 5, 

9, and 20 and from fibroblasts at passage 7 and 500 ng was bisulfite converted (EZ DNA 

Methylation Kit, Zymo Research), of which 250 ng was hybridized to Infinium 

HumanMethylation450 BeadChip arrays (Illumina). To prevent batch effects samples from 

each individual were arrayed across different BeadChips. Samples were processed (whole 

genome amplification, bead hybridization, immunostaining, scanned) as described (Smith et 

al., 2015). Methylation levels were processed using the minifi package in R (Fortin et al., 

2014) and initially normalized using background subtraction (preprocessIllumina). Then, 

probes with missing data (detection P < 0.01 in any sample, N = 3,955) or associated with 

cross-reactivity (Chen et al., 2013) (N = 29,233) were removed. The data was normalized 

using SWAN (Maksimovic et al., 2012) (preprocessSWAN) and beta values obtained 

(getBeta, type = “Illumina”).

HumanCoreExome arrays—Genomic DNA from fibroblasts from all six individuals 

(passage 7) and one iPSC clone from each individual (passage 20) was extracted (AllPrep 

DNA/RNA Mini Kit, Qiagen), normalized to 200 ng, hybridized to HumanCoreExome chips 

(Illumina) and stained and scanned per standard protocol. We observed an average call rate 

of 99.2% across the 12 arrays (dbGaP phs000924).

RNA-seq—Total RNA was extracted from the fibroblast and iPSC lines using RNeasy mini 

kits (Qiagen) following the manufacturer’s protocol. RNA quality was assessed based on 

RNA integrity number (RIN) using an Agilent Bioanalyzer: all samples had a RIN value >= 

8.4. Libraries were prepared using the Illumina TruSeq stranded mRNA kits and sequenced 

using an Illumina HiSeq4000 to an average of ~31 million read pairs. 2×100 bp RNA-seq 

reads were aligned with STAR (2.5.0a) to the hg19 reference (http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit) using Gencode v19 splice 

junctions with default alignment parameters except –outFilterMultimapNmax 20, –

outFilterMismatchNmax 999, –alignIntronMin 20, –alignIntronMax 1000000, –

alignMatesGapMax 1000000 (Dobin et al., 2013; Harrow et al., 2012). Bam files were 

coordinate sorted using Sambamba (0.5.9) (Tarasov et al., 2015) and duplicate reads were 

marked using biobambam2 (2.0.21) bammarkduplicates (Tischler and Leonard, 2014). The 

minimum uniquely mapped read percentage was 85% and the median was 92%. We 

estimated transcript and gene expression using the STAR transcriptome bam file and RSEM 

(1.2.20) rsem-calculate-expression (–seed 3272015 –estimate-rspd –forward-prob 0) (Li and 

Dewey, 2011). We filtered RSEM gene TPM values by removing any genes whose 

expression was not greater than 2 TPM in 10 or more iPSC samples and adjusted for 
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duplicate rate using linear regression. We then transformed the residual expression values for 

each of the 14,506 genes passing these filters to match a standard normal distribution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Copy Number Variation Determination—Raw scan data were processed by Genome 

Studio (Illumina, Inc) using the supplied cluster files for SNP calling on the 

HumanCoreExome arrays (average call rate 0.99, GenCall threshold 0.15). The process 

array data was subjected to both manual and computerized analysis to detect CNVs. Both 

approaches were used, as it is known that automated CNV calling can fragment segments 

due to non-normal distributions of probes on the arrays; hence a single contiguous CNV can 

be erroneously broken up into several smaller regions. For systematic manual inspection of 

the data, chromosome plots were created to visualize the B-allele frequencies (proportion of 

A and B alleles at each genotype) and log R ratios (ratio of observed to expected intensities) 

for each chromosome. The plots were scanned independently by two operators, comparing 

iPSCs and matched germline samples for signatures of abnormalities in the iPSCs.

For computerized analysis genotype data were exported to Nexus CN where CNV calling 

was carried out with the hg19/GRCh37 reference version of the human genome. The X and 

Y chromosomes were removed due to the complexity of reliably determining copy number 

in these copy variable and highly repetitive chromosomes. A descriptor sheet was supplied 

with the six sample pairings for germline to corresponding iPSC results files. The Nexus 

files and settings used were: Systematic Correction File: 

Catlg_ILM_HumanCoreExome-12v1-1_B_20140311.bed_hg19_ilum_correction.txt (as 

supplied by Biodiscovery Inc). Manual analysis did not identify any CNVs. Nexus CN 

initially detected 13 autosomal CNVs, however due to issues with borderline thresholding 

for low confidence CNVs, the list of 13 was manually curated and low confidence CNV 

calls were removed. The quality controlled and condensed list contained 10 unique and 

verified CNVs. The combined set of variants are shown in Supplement Figure 1D.

Fibroblast clustering—Raw methylation arrays for 62 fibroblast samples that were 

previously published (Wagner et al., 2014) were downloaded from GEO (accession: 

GSE52025). Sites with missing data were removed and the arrays were normalized as 

described for the samples in this study using background subtraction and SWAN. We 

performed batch correction between the 6 fibroblast samples generated in this study and the 

62 from Wagner et al. using sva (Leek et al., 2012) package in R (R Core Team, 2015) 

(ComBat function). Clustering was performed in R, using Euclidean distance and complete 

clustering on all sites that passed QC in both datasets. Because the SNP beta values are 

excluded during normalization, the SNP beta values were obtained from the raw data and 

calculated as B signal/(A Signal + B Signal + 100) and compared to the 6 samples from this 

study where the signal was calculated in a similar way.

Identification of aberrant CpG sites—To identify aberrant sites methylation levels at 

individual CpG sites were compared with 15 methylation profiles of ES cells previously 

published (Nazor et al., 2012). Raw methylation levels of the ES cells were downloaded 

from GEO (accession GSE31848) and a single ES line per subject was chosen (i.e. 
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GSM867941, GSM867939, GSM867940, GSM867947, GSM867948, GSM867949, 

GSM867938, GSM867950, GSM867945, GSM867946, GSM867943, GSM867944, 

GSM867942, GSM867952, GSM867936). The averages and standard deviations of the beta 

values (B signal/(A Signal + B Signal + 100) were calculated for each CpG. Sites were 

excluded if a probe failed in any of the 15 ES lines. SBE CpGs that contained a genetic 

variant at the 1,0, or −1 position of the CpG probe as identified by whole genome 

sequencing were removed. For each iPSC sample, a Z-score for each CpG was calculated by 

comparing the iPSC beta value to the mean and standard deviation of the ES cells. The Z-

score distribution for each iPSC sample was then compared to a normal distribution. A 

cutoff was chosen such that the number of expected Z-scores (absolute value) from the 

normal distribution was 1% or less of the number of observed Z-scores (absolute value). The 

average cutoff was 3.42 (range 3.2–3.8) and the average number of sites associated was 

18,780 (range 4,597–40,110). Sites that exceeded this Z-score cutoff (positive or negative) 

were considered aberrant in the iPSC line if they were also at least 0.2 Beta away from the 

mean of the ESC lines (average 1300; range 599–2,799). Sites were further classified into 

iPSC loss, somatic memory, and iPSC gain by comparing the sample to their respective 

fibroblast sample. If the iPSC was within +/− 0.2 of the fibroblast, it was considered somatic 

memory; if the iPSC was more than 0.2 less than the fibroblast, it was considered iPSC loss; 

and if the iPSC was more than 0.2 more than the fibroblast, it was considered iPSC gain.

ROADMAP analysis—The 25-state chromHMM state predictions based on imputed data 

in 127 reference epigenomes were downloaded (http://egg2.wustl.edu/roadmap/data/

byFileType/chromhmmSegmentations/ChmmModels/imputed12marks/jointModel/final/

*segments.bed.gz; 6/30/2015). For each CpG we determined the state of the closet segment 

in each of the 127 epigenomes using bedtools (closestBed) (Quinlan and Hall, 2010). 

Enrichment of CpGs sites based on their classification (CpG predictor class or aberrant CpG 

class) in the 25 different states across of either the iPSCs and ESCs or all 127 epigenomes 

was calculated using the hypergeometric distribution (phyper in R).

Aberrant methylation and gene expression—For all RNA samples for which there 

was methylation data (N=42), gene expression values from each sample were paired with 

methylation status at CpGs annotated to their gene (the first gene listed in the Illumina 

annotation file) in the same sample. Each gene was classified by the presence and type of 

aberrant methylation (none, iPSC gain, somatic memory, iPSC loss, or multiple different 

types). Expression values were adjusted for each iPSC sample using linear regression and 

the category of aberrant type was tested as a predictor for the residual gene expression as 

compared to the “none” category using multiple linear regression (Figures 3D and S3). For 

CpGs with Myc or Myc-like binding sites, the same approach was used except only CpGs 

that showed aberrant iPSC gain in any sample and any of the Myc-like binding sites (Table 

S5) were examined (Figure 2F).

Whole Genome Sequencing/Variant Calling—DNA was isolated from blood samples 

(DNeasy kit, Qiagen) quantified, normalized and sheared with a Covaris LE220 instrument. 

DNA libraries were prepared (TruSeq Nano DNA HT kit, Illumina), characterized in regards 

to size (LabChip DX Touch, Perkin Elmer) and concentration (Quant-iT, Life Technologies), 
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normalized to 2–3.5nM, combined into 6-sample pools, clustered and sequenced on the 

HiSeqX (150 base paired-end). Base call (BCL) files were used to map reads to the hg19 

reference sequence (which had the pseudoautosomal region of chrY masked) using ISIS 

Analysis Software (v. 2.5.26.13; Illumina) (Raczy et al., 2013). The ISIS Isaac Aligner (v. 

1.14.02.06) identified and marked duplicate reads, and these were removed from 

downstream analysis. Bam files were characterized using Picard (v. 1.113–1.131), and input 

to the ISIS IsaacVariant Caller (v. 2.0.17) (default settings), which yielded genomic VCF 

files. For computation of accuracy, single nucleotide variants with a “PASS” flag were 

compared to GIAB (v. 2.19; ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/

NA12878_HG001/NISTv2.19).

Resulting VCF files were filtered according to HighDPFRatio, fraction of basecalls filtered 

at a site is greater than 0.4; HighDepth: locus depth is greater than 3× the mean chromosome 

depth; HighSNVSB: SNV strand bias value (SNVSB) exceeds 10; IndelConflict: locus is in 

region with conflicting indel calls; LowGQX: locus GQX (minimum genotype quality 

assuming variant position and the genotype quality assuming non-variant position) is less 

than 30 or not present; SiteConflict: site genotype conflicts with proximal indel call. 

Resulting filtered files were combined using GATK and variants called in one or more 

samples were assumed to be homozygous reference in all samples in which they were not 

called. Non-reference concordance was calculated for each sample based on the proportion 

of non-reference calls that had the exact (same allele call) genotype in the appropriate twin. 

We obtained an average of 3,603,710 SNPs and 518,796 indel variants per individual with an 

average TiTv ratio of 2.09 at biallelic SNPs (Table S6). We observed high non-reference 

SNP concordance between twin samples (average 98%).

ANOVA

Analysis of variance (ANOVA) was performed in R using the anova function on a linear 

(lm) model. We conducted two analyses for both the 42 DNA methylation and 44 RNA-seq 

data from iPSC samples at passages 9 and 20 to maintain approximately balanced groups. 

The first analysis estimates the effect of genetic background after adjusting for passage: we 

performed an ANOVA including a variable indicating the twin pair (3 sets) with passage as a 

covariate. The second analysis estimates the effect of clone and also the effect of passage: 

we performed an ANOVA including clone and passage as variables. For each predictor 

(genetic background, clone, passage), we adjusted the resulting P-values for multiple testing 

using the Benjamini-Hochberg method for false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) and considered associated sites significant at a 5% FDR for DNA 

methylation and associated genes at 1% FDR for RNA-seq (Table S2). A more stringent 

threshold was used for RNA-seq because of the high density of borderline significant results.

We expected that in general, for a genetic effect, we would see a proportional, but less 

significant clone association than genetic background association because there are 

numerically fewer twin pairs (3) then clones (22), and the test statistic for genetic 

background has fewer degrees of freedom compared with clone. On the other hand, clone 

effects associated with reprogramming would not be expected to track with genetic 
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background and would likely occur in only one or a subset of clones within a genetic 

background, resulting in the P-value for clone being more significant.

To classify CpGs and genes into predictor classes (Tables S1, S2), we grouped them 

according to the combination of predictors that were significant. Additionally, in order to be 

considered “strong genetic” or “strong genetic + passage”, we imposed an additional 

requirement that the P-value associated with genetic background needed to be smaller than 

the P-value associated with clone, consistent with expectations for a genetic effect. Those 

that did not meet this criterion were grouped “clone-specific” or “clone-specific + passage”. 

This step ensures that strongly clone-specific sites do not drive false association with genetic 

background because the multiple samples (p9 and p20) have the same background.

Genetic variants near the CpG probe—To determine if CpG sites associated with 

genetic background were enriched for the presence of proximal genetic variants, we first 

identified the closest non-reference variant across all 6 WGS samples to each CpG using 

bedtools (closestBed). For each CpG, the distance from the 0-position to the variant was 

calculated as the distance reported from closestBed (negative for upstream) multiplied by −1 

if the probe was reported on the reverse (R) strand. This resulted in a distance where the 

positions 0–49 corresponded to the bases of the probe and the −1 position to the site where 

SBE occurs. We excluded all CpGs where the genotypes between twins did not agree (N = 

38,137), although the results were similar whether they were included or not. We then split 

the CpGs into those near a polymorphic variant in which twin pairs had different genotypes 

from each other, and those that were monomorphic (i.e. all reference alternate homozygotes 

or all heterozygotes). Within each group, CpGs were grouped into distance bins and the odds 

ratio and 95% confidence interval of the CpG being associated with genetic background was 

calculated using the combined >300bp or <−300bp categories as a null group using the 

Fisher’s exact test (fisher.test in R).

Association with previously identified meQTL—CpGs associated with meQTL were 

previously identified (Lemire et al., 2015). When testing CpGs associated with genetic 

background in our study for enrichment with CpGs associated with meQTLs, only CpGs 

that met the criteria for inclusion in the Lemire et al. paper were used: SBE sites (at position 

1,0, or −1) with a European population variant (frequency > 0) and probes spanning a 

European population variant (frequency > 0.05) as defined in (Chen et al., 2013) were 

excluded. Enrichment was calculated using a Fisher’s exact test.

Gene-level CpG predictor classification—CpGs were assigned to genes based on the 

UCSC_RefGene_Name field in the Illumina HumanMethylation450 annotation file 

(HumanMethylation450_15017482_v.1.1.csv). When multiple genes were listed, the CpG 

was assigned once to both. For each gene, enrichment was assessed by a hypergeometric test 

in R using phyper. The number of CpGs that were associated with each CpG predictor class 

or aberrant CpG class out of the total number of CpGs associated with that gene was 

compared to the overall number of CpGs associated to all genes. The P-values were 

corrected for multiple testing using p.adjust (method = “fdr”) in R and considered significant 

if the adjusted P-value was less than 0.05. Because each CpG predictor class and aberrant 
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CpG class was tested independently, a gene can be enriched for multiple CpG predictor or 

aberrant CpG classes.

Motif enrichment—Regions flanking CpG sites (122bp with 60 bp on either side of the 

CpG) were obtained from Illumina 450K Methylation BeadArray annotation (file). Sites 

showing association with genetic background, clone, or passage were compared to those 

sites not found to be associated with any of the CpG predictor classes, while aberrant 

classifications were compared to sites showing no aberrant methylation in any sample. 

Regions were compared using MEME-ChIP (v4.11.2) (Machanick and Bailey, 2011), which 

incorporates Dreme (Bailey, 2011), Tomtom (Gupta et al., 2007), and CentriMo (Bailey and 

Machanick, 2012) to the human and mouse HOCOMOCOv10 databases. Only human 

associations that showed an E-value less than 0.01 are reported. Because many of the motifs 

identified showed similarity to the MYC motifs, MYC-like motifs were defined as those that 

shared at least four of the six central base pairs of the MYC motif (CACGTG). Because the 

ENOA_HUMAN.H10MO.A motif was retracted from the HOCOMOCO database (personal 

communication Ivan Kulakovskiy), we removed this motif from the results.

GOseq gene set enrichment—Genes were tested for enrichment using GOseq (Young 

et al., 2010) adjusting for the number of methylation probes associated with each gene 

(Geeleher et al., 2013). Sites were annotated to one or more genes based on the Illumina 

HumanMethylation450 BeadChip manifest file. Gene categories were downloaded from the 

Molecular Signatures Database v5.1 (http://www.broadinstitute.org/gsea/msigdb/index.jsp, 

msigdb.v5.1.symbols.gmt) or accessed using the “org.Hs.eg.db” library (Carlson) in R. 

Associations reaching a false discovery rate of less than 0.05 are reported.

Overlap of aberrant CpGs with Lister et al—To identify CpG sites that overlap the 

regions previously reported as aberrantly methylated in Lister et al we used bedtools 

(intersectBed). Because the Lister et al. regions were reported in hg18, the hg18 positions 

from the Illumina HumanMethylation450 annotation file were used. For genes, a gene was 

considered to overlap if any CpG annotated to the gene overlapped one of the Lister et al. 

regions. The strength of the overlap between aberrantly methylated regions in Lister et al. 

and aberrantly methylated CpGs in this study were estimated by Fisher’s exact test across all 

sites or stratified by CpG predictor or aberrant CpG class.

SBE variation filtering—While we used WGS to identify SBE sites and subsequently 

filtered them, most studies do not have access to this data. Because many SBE sites are 

polymorphic in populations, we examined whether filtering CpGs based on the European 

allele frequency of SNPs at the SBE positions could effectively identify SBE sites 

discovered by WGS. We performed a receiver operating characteristic (ROC) analysis for 

one subject in each twin pair using the ROC command in R package Epi (Bendix 

Carstensen, 2016)(URL http://CRAN.R-project.org/package=Epi) (Figure S4C). For each 

subject, a CpG was positive for an SBE variant if that subject’s WGS data contained a non-

reference variant at positions −1,0, or 1. The frequency of SBE variants in the European 

population at the position was obtained as previously reported (Chen et al., 2013). Across 

the three samples, we observed that filtering at an average allele frequency cutoff of 0.003 
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removed 77% percent of the SBE sites identified by whole genome sequencing with 97% 

specificity (see Figure S4C for results from a single sample), but that rare variants and 

individual-specific variants were missed.

DATA AND SOFTWARE AVAILABILITY

Methylation, array genotype, RNA-seq expression values, and whole genome sequence 

genotype data is available through dbGaP (phs000924 and phs001325).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TRA-1-60-FITC BD Biosciences 560380

SSEA-4-PE BD Biosciences 560128

Bacterial and Virus Strains

pMXs-hOCT3/4 Addgene 17217

pMXs-hSOX2 Addgene 17218

pMXs-hKLF4 Addgene 17219

pMXs-hc-MYC Addgene 17220

pCMV-gag-pol-PA gift from Dr. 
Gerald Pao; 
The Salk 
Institute, La 
Jolla, CA, USA

N/A

pCMV-VSVg gift from Dr. 
Gerald Pao; 
The Salk 
Institute, La 
Jolla, CA, USA

N/A

Critical Commercial Assays

AllPrep RNasy Blood & Tissue Kit Qiagen Cat no: 80204

DNeasy Blood & Tissue Kit Qiagen Cat no: 69506

TruSeq Stranded mRNA Library Prep Kit Illumina Cat no: RS-122-2103

EZ DNA Methylation Kit Zymo Research Cat no: D5001

Infinium HumanMethylation450 BeadChip Illumina Cat no: WG-314-1003

Infinium HumanCoreExome BeadChip Illumina Cat no: WG-331-1101

Deposited Data

Whole genome sequencing data (DeBoever et 
al., in Press)

dbGaP phs000924

RNA-seq This paper dbGaP phs000924

DNA Methylation This paper dbGaP phs000924

Embryonic stem cell DNA methylation (Nazor et al., 
2012)

GEO GSE31848

ROADMAP chromHMM (Ernst and 
Kellis, 2015)

http://egg2.wustl.edu/roadmap/data/

Experimental Models: Cell Lines

Human: Twin-derived iPSCs and 
fibroblasts

This paper N/A

Human: BJ-Fibroblasts Salk Stem Cell 
Core

N/A

Human: H1 (WA01) ESCs Salk Stem Cell 
Core

N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: H9 (WA09) ESCs Salk Stem Cell 
Core

N/A

Mouse Embryonic Fibroblasts Millipore PMEF-CF

Oligonucleotides

Endogenous OCT4
F: GGGTTTTTGGGATTAAGTTCTTCA
R: GCCCCCACCCTTTGTGTT

Panopoulos et 
al, 2012

N/A

Endogenous SOX2
F: CAAAAATGGCCATGCAGGTT
R: AGTTGGGATCGAACAAAAGCTATT

Panopoulos et 
al, 2012

N/A

NANOG
F: ACAACTGGCCGAAGAATAGCA
R: GGTTCCCAGTCGGGTTCAC

Panopoulos et 
al, 2012

N/A

CRIPTO
F: CACGATGTGCGCAAAGAGA
R: TGACCGTGCCAGCATTTACA

Panopoulos et 
al, 2012

N/A

GAPDH
F: GGACTCATGACCACAGTCCATGCC
R: TCAGGGATGACCTTGCCCACAG

Panopoulos et 
al, 2012

N/A

Software and Algorithms

R (R Core Team, 
2015)

https://cran.r-project.org/

STAR (Dobin et al., 
2013)

https://github.com/alexdobin/STAR

Nexus CN Biodiscovery http://www.biodiscovery.com/nexus-copy-number/

minifi (Fortin et al., 
2014)

http://bioconductor.org/packages/release/bioc/html/minfi.html

SWAN (Maksimovic et 
al., 2012)

http://bioconductor.org/packages/release/bioc/html/minfi.html

Sambamba (Tarasov et al., 
2015)

http://lomereiter.github.io/sambamba/

bammarkduplicates (Tischler and 
Leonard, 2014)

https://github.com/gt1/biobambam/blob/master/src/programs/bammarkduplicates. 1

RSEM (Li and Dewey, 
2011)

https://deweylab.github.io/RSEM/

Genome Studio Illumina, Inc https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html

sva (Leek et al., 
2012)

https://bioconductor.org/packages/release/bioc/html/sva.html

bedtools (Quinlan and 
Hall, 2010)

http://bedtools.readthedocs.io/en/latest/

ISIS Analysis Software Illumina https://support.illumina.com/sequencing/sequencing_software.html

Picard Broad Institute https://broadinstitute.github.io/picard/

MEME-ChIP (Machanick 
and Bailey, 
2011)

http://meme-suite.org/tools/meme-chip

Dreme (Bailey, 2011) http://meme-suite.org/tools/meme-chip

Tomtom (Gupta et al., 
2007)

http://meme-suite.org/tools/meme-chip

CentriMo (Bailey and 
Machanick, 
2012)

http://meme-suite.org/tools/meme-chip

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA methylation in iPSCs is associated with genetic background, clone and passage 
(see also Figure S1)
A) Study design indicating the fibroblast and iPSC samples derived from each subject in the 

three twin sets (103_2,103_1; 31_1,31_2; 111_2,111_1). iPSC clones are colored by shades 

of the subject’s color code and the colored rectangles depict indicated passages. Color codes 

are consistent throughout the paper. Blood samples were used for whole genome sequencing 

(WGS), while fibroblast and iPSC samples were used for DNA methylation (CpG) and 

RNA-seq (RNA) analyses. iPSCs indicated by filled cells have both methylation and RNA-

seq data, while those indicated by outlines only have RNA-seq data. B) Dendrogram 

showing clustering of genome-wide methylation data of fibroblast samples from this study 

(color-coded) with data from 62 previously published fibroblast samples (grey) showing that 

fibroblasts do not cluster by genetic background. C) Dendrogram showing clustering at 65 

SNPs present on the methylation arrays showing that twins cluster together based on genetic 

information. D) Hierarchical clustering and heat map of correlation of genome-wide 

methylation patterns of iPSC samples showing clustering by subject (genetic background), 

clone and passage (colored based on rectangle shades in 1A). E) Hierarchical clustering and 

heat map of methylation levels at 3,270 CpGs that have been shown to distinguish 

pluripotent and somatic cell types and also passed QC in our analysis. The fibroblasts 

Panopoulos et al. Page 25

Cell Stem Cell. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(labeled black in passage annotation, six left most columns) randomly cluster whereas iPSC 

cluster by genetic background, clone and passage.
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Figure 2. Aberrant DNA methylation in iPSCs (see also Tables S1A, S1B, S2, S3A, and Figure 
S2)
A) Barplot showing the number of aberrant methylation sites in each of the 49 samples, 

broken down into aberrant types. iPSC lines are color coded by subject, clone, and passage 

(Figure 1A). B) Venn diagram showing the classification of CpG sites aberrant in one or 

more samples. C) Heat maps showing enrichment −log P-value for hypergeometric 

association between ROADMAP regulatory regions (25 states) in 127 reference epigenomes 

and CpG sites associated with each aberrant classification. D) Boxplot showing the RNA-

seq normalized expression values according to the number of aberrantly methylated iPSC 
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gain CpGs annotated to the gene. Each data point that goes into the box plot corresponds to 

the expression value of a single gene in a single sample considering the number of 

neighboring aberrant CpGs. Beta and P-values derive from linear regression of raw data after 

including sample name as a covariate. E) Average methylation Beta values for CpGs that 

carry MYC or MYC-like motifs (identified as enriched in iPSC gain sites by CentriMo) and 

show iPSC gain. Each black line indicates an individual CpG and the colored lines indicate 

the average expression value for all CpGs associated with each motif type. F) Boxplot as in 

D, but restricted to the CpGs carrying the MYC and MYC-like motifs that showed at least 1 

iPSC gain in 1 individual.
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Figure 3. Methylation variation predictor classification has functional significance (see also 
Tables S1B, S2, S3B, S4, and Figure S3)
A) Venn diagram showing the overlap of CpG sites associated with genetic background, 

clone, and passage by ANOVA (FDR < 0.05). Percentages are of the total number of CpGs 

associated with one or more factor and the italicized numbers indicate the number of CpGs 

in each group after removal of SBE sites. Plots above and next to the Venn diagram show 

examples of CpGs that fall into each of the seven categories of the Venn diagram and are 

colored according to their classification. Within each plot, points are colored according to 

clone and shapes indicate passage (circle = P5, square = P9, triangle = P20). Black lines 
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indicate the mean of all samples with the same genetic background and colored lines 

indicate mean of all samples from the same individual. B) Line plot showing odds ratios 

(OR) of the relationship between a CpG being associated with genetic background and 

harboring a polymorphic genetic variant at a given distance from the probe for each CpG 

predictor class from Figure 2A. CpGs are grouped according to distance from SBE site (e.g. 

−10 includes −2 to −10 and 10 includes +2 to +10). Open black circles indicate that the 

association was significant at FDR < 0.05. X-axis indicates distance from SBE site. Y-axis is 

on a log scale. Black bars indicate the position of the assay probe or bases considered to be 

SBE variants. C) Heat maps showing enrichment –log P-value for hypergeometric 

association between ROADMAP regulatory regions (25 states) in 8 ES and 5 iPSC reference 

epigenomes and CpG sites associated with each predictor classification. D) Venn diagram 

showing the number of genes associated with each RNA predictor class by ANOVA (FDR < 

0.01). E) Heatmap showing OR’s for the overlap between gene-level CpG predictor class 

(columns) and RNA predictor class (rows). Black boxes surround comparisons where the 

same predictor classification group was compared between methylation and gene expression. 

Cells are colored according to −logP-value. Inf corresponds to “infinite” and reflects a 

positive association when an OR cannot be calculated due to a missing cell value.
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Figure 4. Association of aberrant methylation with clone-specific effects (see also Tables S1A, 
S1B, and S3A, and Figure S4)
A) Heat map showing hierarchical clustering of 9,310 aberrant CpGs, cells are colored 

according to whether they are not aberrant (None), iPSC loss, somatic memory, or iPSC gain 

in each of the 49 samples. B) Heatmap showing odds ratios (ORs) from Fisher’s exact test of 

overlap between CpGs in aberrant CpG classes (columns) and those in CpG predictor 

classes. For CpG predictor classes, the reference is sites not associated with any category 

(the “None” category). For aberrant CpG classes, the reference is sites showing no aberrant 

methylation in any sample (the “Not Aberrant” category). Cells are colored according to 
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−logP-value with positive values indicating over-enrichment and negative indicating under-

enrichment. Cells with non-significant results (FDR > 0.05) do not have an OR reported. C) 

Heatmap showing ORs for the overlap between gene-level aberrant CpG classes and gene-

level CpG predictor classes. Cells are colored according to −logP-value. D) OR’s for the 

overlap of genes enriched for aberrant classification (columns) and genes where the 

expression values from RNA-seq were associated with each predictor classification (rows). 

Cells are colored according to −logP-value. (E) Venn diagram showing the intersection of 

genes in aberrant regions in Lister et al. and genes aberrantly methylated in this study. F) 

List of 60 genes that show overlap in aberrant methylation between Lister et al. and this 

study. Genes are annotated by whether they showed gene-level aberrant methylation for 

iPSC gain, somatic memory, iPSC loss, or gene-level clone-specific enrichment. MYC-like 

CpG indicates the gene carried one or more iPSC gain CpGs associated with a MYC or 

MYC-like binding site. Cells are black if the variable is present (overlaps a Lister et al 

region; shows gene-level enrichment for iPSC gain, somatic memory, or iPSC loss; shows 

gene-level enrichment for the clone-specific CpG predictor class, or carries at least one CpG 

with a predicted Myc bindings site), and grey if absent.
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