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Abstract

Arogenate dehydratases (ADTs) catalyze the final step in phenylalanine biosynthesis in plants. The Arabidopsis thali-
ana genome encodes a family of six ADTs capable of decarboxylating/dehydrating arogenate into phenylalanine. 
Using cyan fluorescent protein (CFP)-tagged proteins, the subcellular localization patterns of all six A. thaliana ADTs 
were investigated in intact Nicotiana benthamiana and A. thaliana leaf cells. We show that A. thaliana ADTs local-
ize to stroma and stromules (stroma-filled tubules) of chloroplasts. This localization pattern is consistent with the 
enzymatic function of ADTs as many enzymes required for amino acid biosynthesis are primarily localized to chloro-
plasts, and stromules are thought to increase metabolite transport from chloroplasts to other cellular compartments. 
Furthermore, we provide evidence that ADTs have additional, non-enzymatic roles. ADT2 localizes in a ring around the 
equatorial plane of chloroplasts or to a chloroplast pole, which suggests that ADT2 is a component of the chloroplast 
division machinery. In addition to chloroplasts, ADT5 was also found in nuclei, again suggesting a non-enzymatic role 
for ADT5. We also show evidence that ADT5 is transported to the nucleus via stromules. We propose that ADT2 and 
ADT5 are moonlighting proteins that play an enzymatic role in phenylalanine biosynthesis and a second role in chlo-
roplast division or transcriptional regulation, respectively.

Key words:   Arogenate dehydratase, chloroplast division, moonlighting proteins, nuclear localization, phenylalanine biosynthesis, 
stromules.

Introduction

Arogenate dehydratases (ADTs; EC 4.2.1.911) catalyze the 
final step of phenylalanine biosynthesis through decarboxy-
lation/dehydration of arogenate to form the aromatic amino 
acid phenylalanine (Fig. 1A; Laskar et al., 2010; Tzin and 
Galili, 2010). In plants phenylalanine serves as a precursor 
not only of proteins but also of many secondary metabolites, 
including phenylpropanoids (Herrmann and Weaver, 1999; 
Knaggs, 2003; Vogt, 2010). Phenylpropanoids have diverse 

functions, including structural support, pigmentation, and 
scent formation (Vogt, 2010), indicating the great importance 
of phenylalanine biosynthesis in plants.

The Arabidopsis thaliana genome encodes a small gene 
family of six ADT genes, all sharing similar sequences and 
domain structures (Ehlting et al., 2005; Cho et al., 2007). 
Families of ADTs are common in plant genomes and have 
been identified in both monocot and dicot species (Tuskan et 
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PP, phenylpyruvate; PPAT, phenylpyruvate aminotransferase; PTGS, post-transcriptional gene silencing; TP, transit peptide; YFP, yellow fluorescent protein.
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al., 2006; Yamada et al., 2008; Maeda et al., 2010, 2011). The 
presence of multiple isoforms suggests that ADTs might have 
evolved different properties, and/or that each ADT is either 
transcriptionally or post-translationally regulated to allow 
for distinct functional roles. For example, all six A. thaliana 
ADTs accept arogenate as a substrate, as their name suggests, 
but two of the six ADTs also accept prephenate [meaning 
they can act as ADTs and prephenate dehydratases (PDTs; 
Fig. 1A; Cho et al., 2007; Bross et al., 2011)]. Furthermore, 
ADTs differentially contribute to lignin content and bolting/
flowering transition. Analysis of different A. thaliana ADT 
knockout mutants has indicated that specific ADTs prefer-
entially contribute to the synthesis of different downstream 
products of the phenylpropanoid pathway (Corea et al., 
2012b). In lines harboring an adt5 knockout, the amount of 
phenylalanine, and its proportions relative to tyrosine and 
tryptophan, were lower in stem tissues compared with the 
wild-type control (Corea et al., 2012a). Together, these data 
suggest that ADT5 plays a predominant role in phenylalanine 

biosynthesis for lignin deposition in stems. Also, the adt1, but 
not the adt4, knockout line exhibited a resistant late bolting/
flowering phenotype compared with wild-type A. thaliana 
under different environmental conditions, which is consist-
ent with a decreased level of ADT expression after cold treat-
ment in resistant late bolting/flowering Beta vulgaris altissima 
(Hébrard et al., 2013). This suggests that ADTs may be 
functional targets of DNA methylation in the shoot apical 
meristem during vernalization, and that the accumulation of 
phenolic compounds may play a role in floral transition.

Plant ADTs, including all six A.  thaliana isoforms, have 
three domains (Fig. 1B), a putative N-terminal transit pep-
tide (TP), an internal catalytic domain, and a C-terminal 
ACT (aspartokinase–chorismate mutase–TyrA) domain 
(Cho et al., 2007). Both the catalytic and ACT domains are 
conserved across plant, bacterial, and fungal ADTs and 
PDTs, with the catalytic domain decarboxylating/dehydrat-
ing prephenate and/or arogenate (Cho et  al., 2007; Bross 
et al., 2011) while the ACT domain is involved in allosteric 

Fig. 1.  Phenylalanine synthesis, arogenate dehydratases, and stromules. (A) Phenylalanine can be synthesized in plants using either the prephenate (top) 
or the arogenate (bottom) pathway (Cho et al., 2007; Maeda and Dudareva, 2012). Prephenate is either decarboxylated/dehydrated to phenylpyruvate 
(PP) by a prephenate dehydratase (PDT) and PP is then transaminated by a phenylpyruvate aminotransferase (PPAT) to phenylalanine. Alternatively the 
two enzymatic steps are reversed, whereby prephenate is transaminated to arogenate by a prephenate aminotransferase (PAT) and arogenate is then 
decarboxylated/dehydrated to phenylalanine by an arogenate dehydratase (ADT). (B) A. thaliana ADT constructs were cloned in different lengths. The 
full-length (F) sequence represents the entire ADT ORF while an N-terminal construct only includes the transit peptide (TP). (C) Schematic diagram of a 
chloroplast showing the formation of stromules. Stromules are stroma-filled protrusions of the outer and inner membrane from chloroplasts. They can 
differ in length, forming long thread-like extensions or globular structures.
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regulation induced by ligand binding (Tan et al., 2008; Vivan 
et al., 2008). The N-terminal domain is unique to plant ADTs 
and is not found in the bacterial or fungal proteins. In A. thal-
iana ADTs, this domain is ~100–130 amino acids in length, 
and are likely to be chloroplast TPs according to sequence 
prediction programs, which is consistent with phenylalanine 
biosynthesis occurring in chloroplasts (Jung et al., 1986; Cho 
et al., 2007; Li and Chiu, 2010) and a chloroplastic localiza-
tion identified for ADTs in protoplasts (Rippert et al., 2009).

Identifying the subcellular localization of proteins can 
help to define their functional role and has subsequently led 
to the identification of new unexpected roles (Sparkes and 
Brandizzi, 2012). This approach can be particularly helpful 
when dissecting and differentiating the biological roles of 
members within protein families (Karve et al., 2008). In this 
study, we provide evidence that most A.  thaliana ADTs are 
targeted to the stroma and stromules (stroma-filled tubules; 
Köhler and Hanson, 2000) of chloroplasts and we show that 
this targeting is dependent on the presence of the TP. This 
subcellular localization is consistent with the enzymatic role 
of ADTs in phenylalanine biosynthesis and the proposed 
role of stromules in increasing metabolite transport (Natesan 
et  al., 2005). In addition, we demonstrate that two of the 
ADTs, ADT2 and ADT5, have additional subcellular locali-
zation patterns that suggest novel, non-enzymatic functions.

Materials and methods

Growth conditions for bacteria and plants
Escherichia coli DH5α and DH10β strains (Invitrogen catalog nos 
11319019 and 18290015, respectively) were used for the maintenance 
and amplification of plasmid DNA. Agrobacterium tumefaciens 
strain LBA4404 containing Ti helper plasmid pAL4404 (NCCB 
accession no. PC2760; Hoekema et al., 1983; Hellens et al., 2000) 
was used for transformation of Nicotiana benthamiana and A. thali-
ana. Agrobacterium tumefaciens strain GV3101 (Koncz and Schell, 
1986; Hellens et al., 2000) was used for the transformation of the 
dominant negative myosin XI-2 (dnMyoXI-2) and dnMyoXI-K/GTD 
constructs (Avisar et al., 2008). Escherichia coli and A. tumefaciens 
were grown at 37°C in LB medium, and at 28°C in YEB medium, 
respectively (Vervliet et al., 1975; Bertani, 2004), with media supple-
mented with appropriate antibiotics.

Three- to five-week-old N. benthamiana were used for localization 
studies of A. thaliana ADTs and grown in incubators (Conviron) 
under 16 h light (80–100 µmol m−2 s−1) and 8 h dark, with light and 
dark temperatures set to 24°C and 22°C, respectively. Arabidopsis 
thaliana accession Columbia-0 (Col-0) was grown for 3–4 weeks 
with the same photoperiod and a light intensity of 150 µmol m−2 
s−1. Arabidopsis thaliana plants grown for transient transformations 
were watered with a 20 mM l-ascorbic acid solution.

The adt2-1D mutation is an ethyl methanesulfonate-induced point 
mutation that causes a serine to be replaced by an alanine in the ACT 
regulatory domain, leading to an enzyme that is unable to respond 
to phenylalanine-mediated allosteric inhibition (Huang et al., 2010).

Cloning of ADT–CFP fusion constructs
Primers were designed (Table 1) to amplify full-length A. thali-
ana ADT genes (ADT1, At1g11790; ADT2, At3g07630; ADT3, 
At2g27820; ADT4, At3g44720; ADT5, At5g22630; and ADT6, 
At1g08250) (Ehlting et al., 2005; Cho et al., 2007) and tested 
(Lynnon BioSoft, Version 6). Amplified full-length ADT sequences 

contain the entire ORF, including the coding sequence for TPs, 
ADT/PDT catalytic and ACT regulatory domains. In addition, 
ADT2 was cloned as the TP sequence only (Fig. 1B). Primers were 
designed to include restriction enzyme cleavage and docking sites, to 
allow for directional integration of PCR fragments into the target 
vector (Table 1). ADT sequences were amplified with Platinum Taq 
Polymerase High Fidelity (Invitrogen catalog no. 11304011) with 
previously cloned ADT sequences as templates (Cho et al., 2007).

The T-DNA binary vector pEZT-NL (Carnegie Cell Imaging 
Project, http://deepgreen.stanford.edu, last accessed 13 February 
2017) was used in conjunction with the pAL4404 Ti-helper plas-
mid for expression in planta. ADT genes expressed from pEZT-NL 
are under the control of the Cauliflower mosaic virus (CaMV) 35S 
promoter and are translated as C-terminally tagged enhanced green 
fluorescent protein (EGFP) fusions. For co-localization studies, 
pEZT-NL was modified by replacing EGFP, flanked by CpoI and 
XbaI sites, with the cerulean cyan fluorescent protein (CFP)-coding 
sequence (Conley et al., 2009b). Both PCR-amplified CFP sequences 
and the empty pEZT-NL were double-digested with CpoI and XbaI; 
the resulting fragments were ligated and then transformed into E. 
coli. Positive transformants were selected on LB medium contain-
ing gentamicin. The resulting vector was renamed pCB. Using the 
appropriate restriction enzymes, ADT genes were cloned into pCB, 
and all resulting pCB-ADT vectors were sequenced to ensure proper 
fusion and sequence integrity of the ADT–CFP sequences.

Table 1.  List of primer sequences

Namea Sequence (5'–3')b Restriction 
enzyme 
recognition 
sequence

CFP-For ATCGGACCGGTCGCCACC 
ATGGTGAGCAAGG

CpoI

CFP-Rev TCATCTAGATTACTTGTA 
CAGCTCGTCC

XbaI

CFP-Seq GATCTGAGCTACACATGC N/A
ADT1-F AAGCTTATGGCTCTGAGGTGTTTTC HindIII
ADT1-R GGATCCTGTCTGACTAGATCCATTGG BamHI
ADT2-F AAGCTTATGGCAATGCACACTGTTCG HindIII
ADT2-S AAGCTTATGCGTGTTGCGT 

ATCAGGGAGTACG
HindIII

ADT2-R GGATCCAAGAGCATTGTA 
GTGTCCACTGG

BamHI

ADT2-RTP GGATCCTTAACGCGGGAGCCATTAG BamHI
ADT3-F GAATTCATGAGAACTCTCTTACCTTC EcoRI
ADT3-R GGATCCATCAATGAAAATGTTGATGACG BamHI
ADT4-F CTCGAGATGCAAGCCGCAACGTCG XhoI
ADT4-R GGATCCAATGCTTCTTCT 

GTGGATGTCATGG
BamHI

ADT5-F CTCGAGATGCAAACCATTTCGCC XhoI
ADT5-R CCCGGGTTACGTCTTCGCTAG SmaI
ADT6-F GAATTCATGAAAGCTCTATCATC EcoRI
ADT6-R GGATCCATCGATGAAGTTGATG BamHI

a CFP-For/Rev, amplify cerulean cyan fluorescent protein sequence; 
CFP-Seq, pCB sequencing primer; F, complementary to the 5' end of 
the full-length ADT coding sequence; S, complementary to the 5' end 
of the catalytic domain; R, reverse primer complementary to the 3' 
end of the ADT coding sequence; RTP, reverse primer complementary 
to the 3' end of the transit peptide.
b Italics, restriction enzyme docking sites; bold, restriction enzyme 
recognition sequence, underline, nucleotides to maintain frame; dotted 
underline, pEZT-NL vector sequence; double underline, introduced 
start or stop codon; unformatted, original, unmodified template 
sequence.

http://deepgreen.stanford.edu
http://deepgreen.stanford.edu


1428  |  Bross et al.

To clone the native ADT5 promoter (proNat5), 1 kb upstream of 
the ADT5 start codon was PCR amplified with primers that added a 
5' MauBI and a 3' XhoI restriction site. The amplified MauBI–XhoI 
fragment was used to replace the CaMV 35S promoter in pCB-
ADT5, generating the vector proNat5::ADT5:CFP.

Cloning filamentous temperature sensitive Z2 (FtsZ2)–yellow 
fluorescent protein (YFP)
The Gateway-compatible vector pLIC6 encoding FtsZ2-1 cDNA 
was obtained from the ABRC (stock number DKLAT2G36250; 
Popescu et  al., 2007). Restriction digest of pLIC6 with HindIII 
yielded a 2329 bp restriction fragment containing FtsZ2-1 flanked 
by attachmentB (attB) sites. This gel-purified fragment was then 
recombined into pDONR221 (Hartley et al., 2000). The entry clone 
created was digested with AseI and the expected 2608 bp fragment 
encoding FtsZ2-1 flanked by attL sites was isolated and recombined 
into the destination vector pEarleygate101 (Earley et al., 2006), gen-
erating an FtsZ2–YFP fusion construct with expression regulated by 
the CaMV 35S promoter.

Bacterial transformations
Plasmid DNA was isolated from overnight E. coli cultures using an 
alkaline lysis method (modified from Ish-Horowicz and Burke, 1981; 
Sambrook and Russell, 2001) and transformed into electrocompe-
tent E.  coli (ElectroMax DH5α, Invitrogen), or electrocompetent 
A. tumefaciens (Wise et al., 2006), using the Gene Pulser II System 
(Bio-Rad) set to 2.0 kV, 25 µF capacitance, and 200 Ω or 400 Ω resist-
ance, respectively. Immediately following electroporation, E.  coli 
and A. tumefaciens cells were incubated for 1 h in non-selective LB 
medium, before plating on selective medium. Correct insertion of 
amplicons into plasmid DNA of positive E. coli transformants was 
confirmed by restriction enzyme digestion and sequencing of iso-
lated plasmid DNA. pCB-ADTs were transformed into A. tumefa-
ciens LBA4404 containing Ti-helper plasmid pAL4404 (Hoekema 
et al., 1983; Hellens et al., 2000).

Organelle markers
To identify stromules, the TP of the small subunit of tobacco 
RuBisCO fused to YFP (TP-ssRuBisCO–YFP; Nelson et al., 2007) 
was used in co-localization experiments. This fusion construct is 
under the control of a CaMV 35S promoter and, after translation, 
the TP guides the fusion protein to the chloroplast stroma where it 
can be used to identify stromules (Nelson et al., 2007).

The T-DNA-containing binary vector pEarleygate301-YFP, 
encoding A.  thaliana NUCLEOPORIN1 fused to YFP (NUP1–
YFP) is under the expression of its native promoter (Lu et al., 2010) 
and was used as a nuclear marker.

Agrobacterium tumefaciens GV3101 containing pCB302 encod-
ing the dominant negative form of  either N. benthamiana myosin 
XI-2 or myosin XI-K/GTD was used to inhibit stromule forma-
tion (Avisar et  al., 2008; Natesan et  al., 2009). Each construct 
encodes the globular tail domain of  the corresponding myosin 
XI. Expression of  the dominant negative constructs in pCB302 
is regulated in planta by the nopaline synthase promoter (Xiang 
et al., 1999; Avisar et al., 2008).

Agroinfiltration of tobacco leaves
Nicotiana benthamiana and A.  thaliana were transiently trans-
formed by pressure-infiltrating cultures of  A.  tumefaciens 
(Wroblewski et al., 2005; Wydro et al., 2006; Conley et al., 2009b). 
Agrobacterium tumefaciens were grown overnight in 3 ml of  YEB 
medium with the appropriate antibiotics. Then 50 μl of  the over-
night culture was transferred to 50 ml of  YEB containing 25 μl of  
200 mM acetosyringone and 500 μl of  1 M MES, and grown until 
cell density reached an OD600 of  0.5–0.8. Cells were collected by 

centrifugation, resuspended in Gamborg’s solution to a final OD600 
of  1.0, and incubated for an additional hour prior to infiltration. 
For co-infiltration, equal volumes of  A. tumefaciens cultures con-
taining different vectors were combined to maintain a final OD600 
of  1.0. The p19 vector encodes a 19 kDa protein from Tomato bushy 
stunt virus, which has been shown to enhance transgene expression 
through suppression of  post-transcriptional gene silencing (PTGS; 
Silhavy et al., 2002; Voinnet et al., 2003) and was added to all tran-
sient transformations.

A minor variation of this protocol was used for co-expression 
with TP-ssRuBisCO–YFP as this construct produced a very strong 
fluorescence signal compared with that of ADT–CFP. Therefore, 
A.  tumefaciens strains containing ADT–CFP and p19 constructs 
(1:1) were infiltrated 1 d before the infiltration of TP-ssRuBisCO–
YFP and p19 (1:1) constructs. In addition, A. tumefaciens contain-
ing the TP-ssRuBisCO–YFP construct were infiltrated at a lower 
OD600 of ~0.5. Hence visualization of subcellular localization was 
performed 4 days post-infiltration (dpi) with TP-ssRuBisCO–YFP 
(which equals 5 dpi, with an ADT–CFP).

Transient transformants were assayed 5 dpi using a Leica SP2 
confocal laser scanning microscope equipped with a ×63 water 
immersion objective. The abaxial surface of leaf tissue was viewed 
to observe the localization pattern of fluorescent proteins in the 
lower epidermis and in mesophyll cells. CFP and chlorophyll were 
excited with a blue diode laser (405 nm), and emission was collected 
from 440 nm to 485 nm and from 630 nm to 690 nm, respectively. 
YFP was excited with a 514 nm argon laser and its emission was 
collected from 540 nm to 550 nm. For co-localization experiments, 
CFP and YFP emissions were collected sequentially to avoid emis-
sion crosstalk of the fluorophore pair (Shaner et al., 2005; Conley 
et al., 2009b). Images were analyzed using Leica Confocal Software 
(Leica, V2.61) or ImageJ 1.45s (Schneider et al., 2012). Chlorophyll, 
CFP, and YFP fluorescence was false colored red, cyan, and yellow, 
respectively.

Western blots
For one protein extract, three leaf disc samples (9  mm) were col-
lected from transiently transformed N.  benthamiana plants at  
4 dpi. Total soluble protein (TSP) was extracted and quantified as 
described by Conley et al. (2009a). For each sample, 10 μg of TSP 
were size separated by 10% SDS–PAGE. The proteins were probed 
with a primary anti-GFP antibody (Clontech catalog no.  632380; 
designed to recognize GFP and fluorescent variants including CFP) 
at a 1:5000 dilution. Subsequently, a secondary goat anti-mouse IgG 
(H+L) horseradish peroxidase-conjugated antibody (Bio-Rad cata-
log no. 170-6516) was used at a 1:3000 dilution. CFP fusion proteins 
were visualized with the enhanced chemiluminescence (ECL) detec-
tion kit (GE Healthcare, Mississauga, ON, Canada).

Measurements and statistics
Stromule and chloroplast lengths were determined using the meas-
uring tool from ImageJ 1.45s (Schneider et al., 2012). Chloroplasts 
were measured in a straight line across their longest axis. Stromules 
were considered to be any extensions from chloroplasts that were 
>1 μm in length. Chloroplasts were analyzed for stromules only if  
they contained detectable TP-ADT2–CFP fluorescence. For non-
linear stromules, several linear measurements were taken to account 
for bends and curves, and subsequently added together to provide a 
more accurate measurement of stromule length. Nuclear-localized 
ADT5–CFP was measured as a proportion of total cells exhibit-
ing ADT5–CFP fluorescence. To determine the proportion of cells 
having ADT5–CFP within the nucleus, cells were analyzed only if  
ADT5–CFP was present in the cell/chloroplast. The proportion 
of chloroplasts with stromules, average stromule and chloroplast 
lengths, and proportion of cells with ADT5 in the nucleus were ana-
lyzed using one-way ANOVA (multiple comparisons) on GraphPad 
Prism 7.0.
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Results

ADTs localize to stroma and stromules of chloroplasts

To determine the subcellular localization of ADTs, full-length 
A.  thaliana ADTs were transiently expressed as CFP fusions 
in N.  benthamiana leaves. ADT genes were cloned (Fig.  1B) 
upstream of the CFP-coding sequence to maintain the fluores-
cent tag even if the putative TP is cleaved in planta (Li and Chiu, 
2010). ADTs were tagged with CFP, instead of GFP, to avoid 
emission spectra overlap with organelle markers tagged with 
YFP (Shaner et al., 2005; Nelson et al., 2007; Lu et al., 2010). 
Leaves of 3- to 5-week-old N. benthamiana leaves were co-trans-
formed with an A. tumefaciens strain harboring an ADT–CFP 
construct, and a strain encoding p19 to enhance recombinant 
protein expression (Voinnet et  al., 2003). For co-localization 
experiments, leaves were also co-transformed with A.  tumefa-
ciens carrying a plasmid-encoded organelle marker. ADT–CFP 
expression was confirmed by isolating total protein and per-
forming western blots (Supplementary Fig. S2 at JXB online).

As transformation controls, non-infiltrated tissue, pCB with-
out an insert (empty vector; EV), and pCB infiltrated only with 
p19 were observed by confocal laser scanning microscopy. For 
all controls, only chlorophyll autofluorescence was detected 
and no fluorescence was observed in the CFP and YFP chan-
nels in the absence of fusion proteins (Supplementary Fig. S1). 
ADTs localized to the chloroplast stroma, but were also seen 
within thread-like structures (e.g. the arrow in ADT2) or as 
globular structures (e.g. arrows in ADT4) near the chloroplast, 
but the CFP signal did not directly overlap with chlorophyll 
autofluorescence (Fig.  2A). The shape and length of these 
structures were variable, ranging from short and globular to 
long and narrow protrusions from the chloroplast body. Unlike 
ADT1–ADT5, ADT6 did not localize to chloroplasts, but was 
mostly present in the cytosol (Fig. 2A, bottom panel).

We hypothesized that the thread-like and globular structures 
were stromules (Köhler and Hanson, 2000). To confirm that 
ADTs do localize to stromules, the ADT–CFP fusion con-
structs were co-expressed with the TP of the small subunit of 
RuBisCO fused to YFP (TP-ssRuBisCO–YFP). This construct 
is known to localize to the stroma, and therefore can be used 
to identify stromules (Nelson et  al., 2007). The fluorescence 
of CFP fusion proteins with ADT1–ADT5 overlapped with 
the fluorescence of TP-ssRuBisCO–YFP, which confirms that 
these ADTs are targeted to stromules within the chloroplasts 
(Fig.  2B). The fluorescence of ADT6–CFP did not overlap 
with the fluorescence of TP-ssRuBisCO–YFP as ADT6 is 
mostly found within the cytosol (Fig. 2B, bottom panel).

To determine if  the TP domain of ADTs is responsible 
for chloroplast and stromule localization, the TP sequence 
was expressed as a TP-ADT2–CFP fusion protein and was 
detected in chloroplasts and stromules (Fig.  3). These data 
are consistent with the TP being sufficient to target ADT 
sequences to chloroplasts and stromules.

ADT2 localizes to chloroplasts in a ring structure

ADT2–CFP displayed a unique localization pattern com-
pared with the other ADTs (Fig.  4A). In chloroplasts with 

no apparent central constriction, ADT2–CFP localized 
to a band at the equatorial plane. Stacked confocal images 
showed that ADT2 formed a ring around the center of the 
chloroplast (data not shown). In elongated chloroplasts with 
a slight indentation, suggestive of an early chloroplast divi-
sion stage, ADT2–CFP localized as a band around the mid-
dle of the elongation exactly at the point of indentation. In 
chloroplasts with a clear indentation, indicative of a later 
stage of division, ADT2–CFP was found at the site of con-
striction. ADT2 localization to the poles of chloroplasts was 
consistent with remnants of the division ring on daughter 
chloroplasts (Miyagishima, 2011). These ADT2 localization 
patterns are strikingly similar to those of proteins that are 
involved in chloroplast division, a process requiring place-
ment of multiple proteinaceous rings followed by constriction 
that partitions the chloroplast into two equal-sized daughter 
chloroplasts (Fig. 4B; Miyagishima, 2011).

To initiate division, chloroplasts have to reach a certain 
size (Pyke, 1999). Therefore, we argue that chloroplasts with 
ADT2–CFP at the equatorial plane should be the largest as 
they are in the process of dividing. Conversely, chloroplasts 
with ADT2–CFP at their pole should be the smallest as they 
have just recently divided. In addition, these two classes 
should have little variation in size as they represent distinct 
stages in chloroplast development. In contrast, growing chlo-
roplasts should vary in size as they encompass all division 
stages. While chloroplast volume would be the most accurate 
way to measure chloroplast size, it is difficult to determine. 
Therefore, chloroplast size was measured as the length of a 
chloroplast across its longest axis. Chloroplasts from unin-
filtrated N.  benthamiana plants were used to determine the 
average size of a chloroplast because they should contain chlo-
roplasts at many different developmental stages, and thus dif-
ferent sizes. Chloroplast sizes measured in three uninfiltrated 
plants had an average length of 5.1 μm (Table 2). In chloro-
plasts with ADT2–CFP present on a pole, the average length 
of these chloroplasts was significantly shorter (P<0.05), at 
4.2  μm (Table  2). Lastly, chloroplasts with ADT2–CFP 
localized at the equatorial plane were significantly longer, at 
6.7 μm (P<0.05; Table 2). As predicted, the SD from the mean 
was larger for chloroplasts from uninfiltrated plants, consist-
ent with a mixed population of chloroplasts, compared with 
chloroplasts with ADT2–CFP at a pole or at the equatorial 
plane (Table 2). These data support the hypothesis that the 
ADT2 localization patterns we observed are consistent with 
different chloroplast division stages.

A single amino acid change in ADT2 affects chloroplast 
morphology and FtsZ2 localization in A. thaliana

Mutations in genes encoding components of  the chloroplast 
division machinery result in changes to chloroplast mor-
phology (Pyke, 1999). If  ADT2 has a role in chloroplast divi-
sion, it is reasonable to expect that an adt2 mutant will have 
distorted chloroplasts. Unlike for other ADT genes, no A. 
thaliana T-DNA insertion line that abolishes ADT2 mRNA 
production exists (Corea et al., 2012b). However, a point 
mutation within the coding sequence of  the ACT regulatory 
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domain of  ADT2 (adt2-1D) has been documented in which 
conversion of  a serine to an alanine prevents allosteric inhi-
bition of  the enzyme (Huang et al., 2010). To determine 
if  adt2-1D affects chloroplast morphology, homozygous 

adt2-1D plants were examined by confocal microscopy and 
compared with wild-type Col-0 plants of  identical age (Fig. 
5A, B). Chloroplasts in adt2-1D plants differed greatly in 
appearance, and were highly heterogeneous in size and 

Fig. 2.  Subcellular localization of ADT–FP fusion proteins and co-localization with TP-ssRuBisCO–YFP. (A) ADT–CFP subcellular localization patterns. 
ADT1–ADT5 localized to stroma and to areas seemingly close to the chloroplast just outside of the autofluorescence signal generated by chlorophyll. 
They often appear either in thread-like structures (e.g. the arrow in ADT2) or globular structures (e.g. the arrows in ADT4). The ADT6–CFP pattern 
is distinctly different, showing a cytosolic distribution. Images were taken at a lower magnification to allow observation of the CFP signal relative 
to several chloroplasts. (B) Close-ups of ADT–CFP subcellular localization patterns in relation to TP-ssRuBisCO–YFP. In contrast to the chlorophyll 
autofluorescence, the TP-ssRuBisCO–YFP is a stroma-specific marker that visualizes all stroma-filled areas within the chloroplast including stromules. 
ADT1–ADT5 are found within the main body of chloroplast and in stromules, while ADT6 is found within the cytosol and does not co-localize with 
TP-ssRuBisCO–YFP.
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shape (Fig. 5C). This contrasted with chloroplasts in wild-
type Col-0, which were ovoid in shape and relatively uniform 
in size. Although many adt2-1D chloroplasts were clearly 
affected by the mutation, wild-type appearing chloroplasts 

can still be observed, suggesting a partial loss of  ADT2 
function.

FtsZ is a tubulin-like protein that is a central component of 
the chloroplast division apparatus (Vitha et al., 2001; TerBush 

Fig. 3.  Localization of ADTs to the chloroplast is dependent on the transit peptide sequences. To test if the transit peptide sequences are sufficient for 
the transport of ADTs to the chloroplast, the first 99 amino acids of ADT2 (TP-ADT2–CFP) were expressed transiently in N. benthamiana leaves. 

Fig. 4.  ADT2 forms structures consistent with chloroplast division rings. (A) In addition to being expressed within chloroplasts and stromules, ADT2 
was also found to accumulate in places consistent with chloroplast division rings. The top panel shows ADT2 forming rings at the equatorial plate of the 
chloroplast. On occasion, ADT2 was found in the constriction zone of chloroplasts (two middle panels). In these cases, the chloroplasts have a distinct 
dumb-bell shape and the degree of indentation depends on how far the division process has proceeded. In addition, ADT2 accumulated in a spindle-
like shape that tapers at chloroplast poles (bottom panel). This fusiform ADT2 accumulation was only found at one pole of the chloroplast and is distinct 
from a stromule pattern shown in Fig. 2. (B) Schematic of chloroplast division stages: from top to bottom, positioning of chloroplast division rings; slightly 
constricted chloroplast just prior to division; two daughter chloroplast following division. Analogous to the fluorescent images, chloroplasts are shown in 
red and the position of ring proteins in blue (adapted from Miyagishima, 2011).
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et al., 2013). There are two FtsZ proteins (FtsZ1 and FtsZ2), 
which assemble to form the earliest known division ring, the 
Z-ring within the stroma. As the localization of FtsZ in chlo-
roplast division mutants has been used to provide insight into 

the function of putative division proteins (Vitha et al., 2003; 
Glynn et al., 2007; Fujiwara et al., 2008; Glynn et al., 2009; 
Nakanishi et al., 2009a), we were interested to determine if  
FtsZ localization was affected in adt2-1D plants. Thus we 

Fig. 5.  Chloroplast morphology and FtsZ2–YFP localization is affected by a point mutation in ADT2. (A) Chloroplasts in wild-type A. thaliana Col-0. (B) 
Chloroplasts in adt2-1D A. thaliana mutants. (C) Close-ups of chloroplasts observed in adt2-1D to show the heterogeneity in shape and size. (D) Transiently 
expressed FtsZ–YFP in wild-type Col-0 localizes as expected to a single ring at the equatorial plane. (E) In contrast, FtsZ2–YFP localizes as long spiralling 
filaments within adt2-1D chloroplasts. (D, E) Images of chlorophyll fluorescence (left) and FtsZ2–YFP (middle) are shown separately and merged (right).

Table 2.  Comparison of chloroplast lengths

Type of chloroplast No. of plants No. of chloroplasts Length (µm)a SD

Uninfiltrated 3 68 5.1 1.12
With polar ADT2 3 75 4.2* 0.60
With equatorial ADT2 ring 5 35 6.7* 0.85

a The length of the chloroplast was measured at its longest axis.
*  Significantly different from the chloroplasts in the uninfiltrated control (P<0.05) as determined by a t-test.
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generated an FtsZ2–YFP fusion construct and expressed it 
in adt2-1D plants. Expression of FtsZ2–YFP in wild-type 
Col-0 leaves led to the formation of the expected single ring 
(Fig. 5D). In contrast, FtsZ2–YFP in adt2-1D plants was less 
organized and formed what appeared to be spirals or multiple 
rings (Fig. 5E). These results demonstrate that deregulation 
of ADT2 abolishes proper placement of FtsZ2, further sup-
porting an involvement of ADT2 in chloroplast division.

ADT5 is found in the nucleus

In addition to its chloroplast localization, only ADT5–CFP 
was also detected in nuclei at ~4–5 dpi (Figs 2A, 6A). To 
confirm this finding, ADT5–CFP was co-infiltrated with 

a YFP fusion to the nuclear marker NUP1, a component 
of the nuclear pore complex in A.  thaliana that was previ-
ously shown to localize to the nuclear membrane (Lu et al., 
2010). Confocal imaging determined that NUP1–YFP local-
ized around ADT5–CFP (Fig. 6B). As NUP1–YFP localizes 
to the nuclear membrane, this result confirms that ADT5–
CFP is contained within the nucleus and localizes uniformly 
throughout the nucleoplasm. As these results were obtained 
with constructs using a CaMV 35S promoter, we repeated the 
experiment and expressed ADT5–CFP under control of its 
native promoter (Fig. 6C) and confirmed the nuclear locali-
zation pattern. To ensure that the observed nuclear localiza-
tion is not due to a smaller diffusible cleavage product or to a 
particularly high level of ADT5 compared with other ADTs, 

Fig. 6.  ADT5 is found in the nucleus. ADT5–CFP proteins are unique as they are the only full-length ADT proteins that were found in the nucleus. 
(A) Nuclei show a close association with chloroplasts (left) or with stromules of chloroplasts (right). Both images show ADT5–CFP within nuclei. 
(B) Co-localization of ADT5–CFP with NUP1–YFP. To determine if ADT5–CFP localizes to the nucleus, it was co-expressed with NUP1–YFP in 
N. benthamiana. Images of chlorophyll fluorescence and ADT5–CFP are shown merged (left). NUP1–YFP is shown alone (middle) and merged with 
ADT5–CFP and chlorophyll fluorescence (right). NUP1–YFP localizes to the nuclear membrane and surrounds ADT5–CFP, confirming that it localizes to 
the nucleus. (C) ADT5–CFP transiently expressed with its native ADT5 promoter also localizes to the nucleus. (D) Western blot of ADT5–CFP (calculated 
size 73.9 kDa) expressed with its native promoter and visualized with a GFP antibody is detected at its expected size. As negative controls, proteins 
isolated from leaves transformed with GFP (25 kDa) and p19 are shown. Total soluble protein was isolated from transiently transformed leaves, and 10 μg 
of total soluble protein was size separated by 10% SDS–PAGE. Sizes of the protein ladder are given in kDa.
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we performed western blots (Fig.  6D; Supplementary Fig. 
S2). The blot containing all ADTs expressed under the con-
trol of the CaMV 35S promoter shows a low level of cleav-
age in all lanes. However, more cleavage product is seen for 
ADT1 and ADT3 compared with ADT5, while no nuclear 
localization is observed with either ADT1 or ADT3. The blot 
showing ADT5–CFP under the control of its native promoter 
(Fig. 6D) shows a shadow band of the size of CFP, and yet 
a very clear nuclear localization is evident (Fig. 6C). These 
results indicate that the nuclear localization pattern is a bona 
fide ADT5 localization. There are additional bands of higher 
molecular weight (Fig.  5D; Supplementary Fig. S2) that 
might correspond to ADT dimers or even higher multimers.

Furthermore, we often observed ADT5–CFP-containing 
nuclei surrounded by chloroplasts that appeared to be 
connected to the nucleus through stromules (Fig.  6A), 
suggesting that ADT5 nuclear localization depends on 
stromule-mediated transport. To test if  stromule forma-
tion affects the nuclear localization of  ADT5, we tran-
siently expressed myosin XI tail domains (dnMyoXI-2 and 
dnMyoXI-K/GTD) as they were previously shown to inhibit 
stromule formation through a dominant negative effect on 
wild-type myosin XI (Avisar et  al., 2008; Natesan et  al., 
2009). To ensure that these treatments inhibit stromules, 
several control transformations were performed. To visual-
ize stromules in control transformations, TP-ADT2–CFP 
was used, as it easily visualizes stromules and therefore 
provides a very sensitive marker to detect stromule inhibi-
tion. TP-ADT2–CFP was co-infiltrated into N. benthamiana 
leaves with an empty pCB vector, a dnMyoXI-2 construct, 
or a dnMyoXI-K/GTD construct (Avisar et al., 2008), and 
the number of  chloroplasts having stromules (Fig. 7A) and 
the length of  stromules formed (Fig. 7B) were determined. 
In plants transformed with an empty vector, 28.7% of  chlo-
roplasts had stromules (Fig. 7A) and the average length of 
these was 4.6  μm (Fig.  7B). Infiltration with dnMyoXI-2 

decreased the percentage of  chloroplasts with stromules 
(22.2%; Fig. 7A) compared with that of  the control, and sig-
nificantly reduced (P<0.001) the average length of  stromules 
to 2.7 μm (Fig. 7B). Treatment with dnMyoXI-K/GTD also 
caused a significant decrease (P<0.001) in the percentage 
of  chloroplasts with stromules (17.3%; Fig. 7A) and signifi-
cantly decreased (P<0.001) the average length of  stromules 
to 3.5 μm (Fig. 7B). These results confirm that both myosin 
domains affect stromule formation.

To determine if  the ability to form stromules affects 
nuclear localization of ADT5, ADT5–CFP was co-expressed 
with the empty pCB vector, dnMyoXI-2, or dnMyoXI-K/GTD 
(Fig. 7C). The extent of ADT5–CFP nuclear localization was 
expressed as a percentage of cells containing CFP fluores-
cence. Co-infiltration with the empty vector control showed 
that 25.9% of cells had ADT5–CFP fluorescence visible in 
the nucleus (Fig. 7C). In contrast, co-infiltration with dnMy-
oXI-2 or dnMyoXI-K/GTD showed that ADT5–CFP was 
detected in the nucleus in only 7.1% and 4.3% of cells, respec-
tively (Fig. 7C), both significant reductions (P<0.001) from 
the control. These data demonstrate that ADT5–CFP nuclear 
localization is decreased by the same conditions shown to 
decrease stromule formation.

ADTs in A. thaliana

Transient transformations using agroinfiltration are widely 
used in N. benthamiana but have traditionally been difficult 
in A.  thaliana (Wroblewski et  al., 2005). We were able to 
transform A. thaliana reliably by growing plants with 20 mM 
l-ascorbic acid, which seemed to decrease necrosis of leaves 
associated with agroinfiltration. As it was not the focus of 
this study, the reason for this was not addressed. However, as 
l-ascorbic acid can scavenge damaging reactive oxygen spe-
cies (Gallie, 2013), the increased tolerance of A. thaliana to 
agroinfiltration may be due to a decrease in oxidative stress.

Fig. 7.  The presence of ADT5 in the nucleus is affected by the ability to form stromules. To determine if nuclear localization of ADT5 is dependent on 
stromules, plants were co-infiltrated with TP-ADT2–CFP (A and B) as a control or ADT5–CFP (C) and an empty vector (dark gray), dominant negative 
myosin XI-2 (dnMyoXI-2; light gray) and myosin XI-K (dnMyoXI-K/GTD; white), respectively. (A) Percentage of chloroplasts having stromules. Chloroplasts 
were analyzed if they contained any visible TP-ADT2–CFP fluorescence and were determined to have a stromule if the projection was longer than 1 μm. 
In total 554, 395, and 579 chloroplasts were analyzed from plants transformed with an empty vector, dnMyoXI-2, and dnMyoXI-K/GTD, respectively. 
(B) Average length of stromules. A total of 166, 93, and 91 stromules were measured from plants transformed with an empty vector, dnMyoXI-2, 
and dnMyoXI-K/GTD, respectively. (C) Nuclear localization of ADT5–CFP. Cells were analyzed for CFP fluorescence in the nucleus only if any ADT5–
CFP fluorescence was detectable. A total of 131, 190, and 358 cells were analyzed from plants transformed with an empty vector, dnMyoXI-2, and 
dnMyoXI-K/GTD, respectively. Each experiment was performed on three independent occasions. Significant differences (P<0.001) as determined by a 
one-way ANOVA (multiple comparisons) are indicated by different letters. Averages ± SE of the mean are plotted.
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ADT–CFP fusion genes were transiently expressed in 
A.  thaliana to confirm that localization in a heterologous 
host reflected the situation in the native environment (Fig. 8). 
As in N.  benthamiana, all ADT–CFPs in A.  thaliana, with 
the exception of ADT6–CFP, which appeared in the cyto-
sol, exhibited stroma and stromule-like patterns (Fig.  8A). 
Similarly, the unique localization patterns of ADT2–CFP 
and ADT5–CFP were observed in A. thaliana, localizing to 
the equatorial plane and poles of chloroplasts (Fig. 8B), and 
to nuclei (Fig. 8C), respectively. This finding was important as 
it verifies that the findings in N. benthamiana are not artifacts.

Discussion

Phenylalanine biosynthesis and stromules

ADTs were seen to localize to thread-like structures seem-
ingly outside of the region of chlorophyll autofluorescence 
(Fig.  2A). Co-localization of ADT–CFP fluorescence with 
the stromule marker TP-ssRuBisCO–YFP (Nelson et  al., 
2007) confirmed that all ADTs except ADT6 localized to 
stromules (Fig.  2B). Prior to our study, A.  thaliana ADTs 
were found uniformly throughout the stroma of chloroplasts, 
with no indication of stromule localization (Rippert et  al., 

2009). However, the said study used protoplasts, which rep-
resent dedifferentiated cells that are also in a state of stress 
(Genschik et al., 1992; Reyes et al., 2010).

Stromules are dynamic structures that range in size and 
shape from short beak-like projections to long and elabo-
rate tubules (Köhler and Hanson, 2000; Gunning, 2005; 
Gray, 2013). The function of stromules has been the subject 
of debate, but the idea that they increase transport of com-
pounds synthesized within plastids to other areas of the cell is 
now generally accepted (Hanson and Sattarzadeh, 2013). The 
presence of biosynthetic enzymes, such as ADTs, in stromules 
is consistent with this hypothesis. Phenylalanine, the product 
of ADT enzymatic activity, is required within the cytosol for 
the synthesis of proteins and as a precursor for phenylpro-
panoids such as lignins and flavonoids (Fraser and Chapple, 
2011). It stands to reason that stromules could have a high 
concentration of phenylalanine as a result of ADT activity, 
providing an effective means of increasing phenylalanine 
export into the cytosol. Interestingly, abiotic stressors, such 
as drought and salt stress, known to induce stromules (Gray 
et al., 2012), are also associated with increased flavonoid lev-
els in leaves (Agati et al., 2011; Mewis et al., 2012), and genes 
encoding flavonoid biosynthetic enzymes are up-regulated 
in response to salinity-induced stress (Walia et al., 2005).  

Fig. 8.  ADT localization to the stroma and stromules, the chloroplast equatorial plane, and the nucleus can also be detected in A. thaliana. To test if the 
ADT patterns determined in N. benthamiana reflect expression in A. thaliana, all six ADT–CFP fusion proteins were transiently expressed in A. thaliana 
Col-0. All images show a merge of chlorophyll and CFP fluorescence. (A) ADT1–CFP through ADT5–CFP localize to stroma and structures resembling 
stromules of varying shapes and lengths, with varying levels of fluorescence in the stroma. ADT6–CFP localizes outside of chloroplasts in the cytosol. (B) 
Chloroplast division patterns for ADT2–CFP. (C) Nuclear localization of ADT5–CFP.
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For example, PHENYLALANINE AMMONIA LYASE1 
(PAL1) uses phenylalanine as a substrate to catalyze the first 
step of phenylpropanoid biosynthesis in the cytosol (Walia 
et al., 2005; Fraser and Chapple, 2011). Under conditions of 
salt stress, PAL1 up-regulation coincides with the formation 
of stromules, suggesting that these two events might be linked 
and that both events contribute to an increased transport of 
phenylalanine to the cytosol.

ADTs are not the only enzymes that have been associ-
ated with stromules. Other examples include geranylgeranyl 
diphosphate synthase (GGPS), which synthesizes geranylge-
ranyl diphosphate in the stromules of chloroplasts, and the 
compound is required in the cytosol as part of isoprenoid 
metabolism (Thabet et al., 2012), or RuBisCO and an aspar-
tate aminotransferase (ASP5), which are present in stromules 
and capable of moving between plastids via stromules when 
expressed as GFP fusion proteins (Kwok and Hanson, 2004). 
This allows for the speculation that chloroplastic enzymes 
that synthesize molecules required in the cytosol preferen-
tially localize to stromules as these might facilitate metabolite 
export.

In silico analysis of A.  thaliana ADT sequences using 
ChloroP (Emanuelsson et  al., 1999) predicted that their 
N-terminal sequences were likely to encode TPs directing the 
enzymes to the chloroplast. We present data that confirm the 
in silico prediction for ADT2, as the N-terminal portion was 
necessary and sufficient to allow direct import into chloro-
plasts and specifically stromules (Fig. 3A, B). These data also 
corroborate observations made for all three petunia ADTs, 
where the N-terminal portion of ADTs directed GFP fusion 
proteins to chloroplasts (Maeda et al., 2010).

ADT2 and a role in chloroplast division

Aside from its inclusion in stroma and stromules, ADT2 
localized as a ring around the equatorial plane or at the poles 
of  chloroplasts (Figs 4A, 8B). The similarity of  these pat-
terns to those of  chloroplast division proteins (Miyagishima, 
2011) during and after division led to an investigation of 
a possible second, non-enzymatic role for ADT2 in chlo-
roplast division. Since chloroplast division is regulated by 
size (Pyke, 1999), we reasoned that chloroplasts with either 
the equatorial or polar localization patterns would be larger 
and smaller, respectively, than average sized chloroplasts. 
This was confirmed upon comparing chloroplast lengths 
across their longest axis (Table 2). Additionally, the SD of 
chloroplast lengths varied. It was lowest in chloroplasts with 
ADT2 at the equator or at a pole, in agreement with these 
chloroplasts being in very distinct phases, either just prior 
to or post-division, and therefore very similar in size. This 
was in contrast to chloroplasts from uninfiltrated plants, 
which are comprised of  chloroplasts in all division states. 
Therefore, our results suggest that ADT2 localizes to the 
division plane early in the division process and remains there 
throughout the duration of  constriction and separation into 
daughter organelles. Similarly, known division proteins such 
as FtsZ and ACCUMULATION AND REPLICATION 
OF CHLOROPLASTS 6 (ARC6) assemble at the equatorial 

plane in the process leading to constriction and division 
(Vitha et al., 2001; 2003).

The striking similarities between ADT2 and other chloro-
plast division proteins prompted observation of chloroplasts 
in adt2 mutant plants. Interestingly, no T-DNA insertion 
knockout lines that abolish ADT2 mRNA are available 
(Corea et  al., 2012b). This makes ADT2 unique and raises 
the possibility that an adt2 knockout is lethal. However, 
plants homozygous for the adt2-1D point mutation have 
been documented (Huang et  al., 2010). The appearance of 
adt2-1D chloroplasts was variable and the presence of mis-
shapen and heterogeneous chloroplasts is consistent with 
previous descriptions of chloroplast morphology in division 
mutants (Pyke and Leech, 1992; Colletti et al., 2000; Glynn 
et al., 2009; Nakanishi et al., 2009b). In the adt2-1D plants, 
chloroplasts that appear wild type can still be observed. This 
infers that the single amino acid substitution probably does 
not abolish ADT2’s function, but impairs it. During chlo-
roplast division, FtsZ forms the first known division ring 
within the stroma (TerBush et al., 2013). Given the central 
role that FtsZ proteins play in division, we reasoned that 
FtsZ localization should be affected in adt2-1D chloroplasts 
if  ADT2 is a chloroplast division protein. Expression of an 
FtsZ2–YFP fusion construct in adt2-1D plants revealed long 
and spiraling FtsZ2–YFP filaments throughout the chloro-
plast stroma. Although FtsZ2–YFP was overexpressed in 
our study, in wild-type Col-0 chloroplasts the fusion protein 
localized as expected as a single equatorial ring. We propose 
that the abnormal appearance of FtsZ2–YFP within adt2-1D 
chloroplasts suggests that ADT2 regulates FtsZ positioning. 
However, we cannot ignore the possibility that elevated phe-
nylalanine levels in adt2-1D (up to 160-fold compared with 
the wild type; Huang et al., 2010) are at least in part respon-
sible for the observed changes.

It is intriguing to note that not all ring proteins have been 
identified. Although FtsZ, one of the inner rings, and ARC5 
(dynamin), one of the outer rings, have been known for some 
time (Vitha et al., 2001; Gao et al., 2003), the identity of the 
outer plastid-dividing (PD) ring (Yoshida et al., 2010), poly-
glucan filaments, has just recently been suggested, and the 
composition of the inner PD ring is still unknown. The realiza-
tion that enzymes can have a second unrelated, non-enzymatic 
function, even as part of cellular structural components, is dis-
covered more and more frequently (Huberts and van der Klei, 
2010; MoonProt Database: www.moonlightingproteins.org, 
last accessed 13 February 2017). A good example of this is the 
Physcomitrella patens enzyme presenilin, the catalytic unit for 
γ-secretase, which has an independent function in the cytoskel-
etal network (Khandelwal et al., 2007). However, additional 
studies will be required to determine the precise relationship 
between ADT2, phenylalanine levels, chloroplast division, and 
other components of the chloroplast division machinery.

ADT5 and the nucleus

Similar to ADT2, ADT5 has an additional unique localiza-
tion pattern and was clearly observed in the nuclei of both 
N. benthamiana and A. thaliana (Fig. 6A, C). Proteins with 

http://www.moonlightingproteins.org
http://www.moonlightingproteins.org
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dual plastid and nuclear localization may be significant in the 
context of retrograde signaling. While retrograde signaling 
traditionally refers to chemical messengers that are released 
from plastids and affect nuclear gene expression (Inaba 
et al., 2011), it is becoming apparent that proteins within the 
chloroplast can also act as retrograde signals (Isemer et al., 
2012; Krause et  al., 2012). One such protein is WHIRLY1 
from A.  thaliana, which can move directly from plastids to 
the nucleus (Isemer et al., 2012). In plastids, WHIRLY1 con-
tributes to plastid genome stability by preventing illegitimate 
recombination (Maréchal et al., 2009). In the nucleus, it acts 
as a transcriptional activator of pathogen response genes 
(Isemer et al., 2012), consistent with the increased pathogen 
susceptibility associated with decreased WHIRLY1 DNA 
binding ability (Desveaux et al., 2005). Whether ADT5 has 
a role in retrograde signaling is currently unknown. In addi-
tion, many other enzymes with diverse functions have been 
reported in both plastids and nuclei, such as phosphate-iso-
pentyltransferase 3, an enzyme involved in cytokinin biosyn-
thesis (Galichet et  al., 2008; Krause et  al., 2012), CDT1, a 
kinase required in cell cycle regulation (Raynaud et al., 2005), 
and a dihydrofolate reductase required for nucleotide metab-
olism (Luo et al., 1997), but often the nuclear role of these 
enzymes is ill defined.

While a direct mechanism of protein transport between 
plastids and the nucleus through stromules is a hypothetical 
mode (Krause et  al., 2012), they have been shown to inter-
connect plastids (Köhler et  al., 1997; Kwok and Hanson, 
2004; Hanson and Sattarzadeh, 2013). Chloroplasts with 
stromules containing ADT5–CFP often appeared to connect 
directly with the nucleus (Fig.  6A). Expression of dominant 
negative forms of myosin XI were found to inhibit stromules 
(Fig. 7A, B) and also significantly reduce ADT5–CFP locali-
zation to the nucleus (Fig. 7C), providing indirect evidence of 
stromule-mediated nuclear transport. We are aware that there 
are alternative interpretations of these results, as myosin XI is 
involved in other processes including movement of organelles 
(Avisar et al., 2008) and cytoplasmic streaming (Shimmen and 
Yokota, 2004). Regardless of this, the appearance of stromules 
directly connecting to nuclei (Fig. 6A) makes the possibility of 
a stromule-mediated nuclear transport system intriguing.

Currently, the role that ADT5 plays in the nucleus is 
unknown. It is conceivable that it acts as a transcriptional 
regulator of ADT genes or other genes within the same 
biosynthetic pathway. There is precedence for an enzyme 
to act as a transcriptional regulator of functionally related 
genes. For example, A.  thaliana HEXOKINASE1 (HXK1) 
is involved in glucose metabolism in mitochondria, but also 
localizes to the nucleus where it forms part of a protein com-
plex affecting transcription of genes involved in glucose sign-
aling (Cho et al., 2006). Furthermore, in the budding yeast 
Saccharomyces cerevisiae, ARG5,6, an enzyme involved in 
arginine biosynthesis, is able to bind DNA directly and regu-
late gene expression (Hall et al., 2004). Interestingly, mutant 
analysis has shown that loss of ADT5 activity cannot be 
compensated for by other ADTs and is the only single ADT 
knockout with a visible phenotype (Corea et al., 2012b), con-
sistent with a unique nuclear role for ADT5.

ADT2 and ADT5: moonlighting proteins

The term ‘moonlighting protein’ was coined to describe pro-
teins that perform multiple autonomous and often unrelated 
functions without these functions being partitioned into dif-
ferent domains of the protein or resulting from alternative 
splicing or gene fusion (reviewed in Jeffery, 1999, 2013). Since 
the description of the first moonlighting proteins, the num-
ber of documented moonlighting proteins has increased to 
~300 (Jeffery, 2013; MoonProt Database: www.moonlight-
ingproteins.org). Enzymes are common among moonlighting 
proteins and many have additional non-enzymatic functions, 
including roles as structural components and as regulators of 
transcription or translation (Jeffery, 2013). For example, in 
Tetrahymena, a citrate synthase acts as an enzyme in mito-
chondria while in the cytosol it can polymerize to form 14 nm 
filaments and then act as a cytoskeletal protein (Kojima et al., 
1997). We propose that ADT2 and ADT5 are moonlight-
ing proteins. In the current study we provide evidence that 
ADT2, with demonstrated arogenate dehydratase activity 
(Cho et al., 2007), can form rings around chloroplasts similar 
to FtsZ or ARC5 as part of their role in chloroplast division 
(Vitha et al., 2001; Gao et al., 2003). The dual localization 
of ADT5 to chloroplasts and nuclei suggests that ADT5 has 
an additional role in the nucleus, possibly in transcriptional 
regulation. As the entire ADT enzyme family catalyzes the 
final step in phenylalanine biosynthesis, we expect this to be 
a key regulatory step.

Moonlighting proteins appear to be ubiquitous in nature, 
with documented examples in simple single-cell organisms, 
such as archaea and bacteria, and complex eukaryotes includ-
ing plants and animals. It seems likely that moonlighting 
proteins are evolutionarily advantageous, ensuring that the 
number of genes in a genome does not limit the number of 
functions they are capable of performing. Many moonlight-
ing proteins are ancient in terms of their evolutionary history, 
giving them ample time to adapt to a second role (Jeffery, 
2013). Analyzing the subcellular localization of A.  thaliana 
ADTs shows that the function of enzymes is far more com-
plex than previously realized.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Negative controls.
Fig. S2. Western blots showing expression of transiently 

expressed ADTs.
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