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other proteins, than we may first suspect will surely be cru-
cial going forward, whether in studies of protein structure–
function relationships or efforts to manipulate metabolism in 
plants and other organisms.

Key words: Arogenate dehydratase, chloroplast division, moonlighting 
proteins, nuclear localization, phenylalanine biosynthesis, stromules.
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Mesophyll conductance to CO2 – a key factor in 
plant photosynthesis – is strongly influenced by leaf 
anatomy. In this issue, Veromann-Jürgenson et  al. 

(pages 1639–1653) provide evidence of the conserva-
tion of ancient structural traits (extremely thick cell 
walls) in evolutionarily old taxa that suggest apparent 
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evolutionary constraints on CO2 fixation. This opens 
the way for integrated approaches combining evo-
lutionary constraints of diffusive, structural and bio-
chemical factors on plant photosynthesis.

For many decades, the rate of CO2 diffusion through sto-
mata (stomatal conductance, gs) and the capacity of photo-
synthetic machinery to convert light to biochemical energy 
and fix CO2 into sugars (biochemical capacity) were consid-
ered the only two factors constraining plant photosynthesis. 
However, pioneer studies already suggested that CO2 diffu-
sion from sub-stomatal cavities to carboxylation sites inside 
chloroplasts (mesophyll conductance, gm) could also limit 
photosynthesis (Nobel, 1970). There is now an increasing 
interest among plant physiologists in studying the role of gm 
as the third major player involved in controlling the rate of 
photosynthesis, and this is reflected in the number of stud-
ies recently published addressing the ecophysiological signifi-
cance of gm and its regulatory mechanisms (see Flexas et al., 
2012, and references therein).

Large variations in gm among species or plant groups can 
be explained through the existence of several barriers to CO2 
diffusion across the mesophyll (including air, cell walls, lipid 
membranes, cytoplasm and chloroplast stroma) differing in 
nature and size (Evans et al., 2009; Terashima et al., 2011). 

Recently, a small number of studies have quantified the 
importance of different leaf anatomical traits in determin-
ing the variability in gm and photosynthesis among species 
(Tomás et al., 2013; Peguero-Pina et al., 2016a; Peguero-Pina 
et al., 2017) or even within the same species growing under 
contrasting environmental conditions (Terashima et al., 2011; 
Tosens et  al., 2012a; Peguero-Pina et  al., 2016b, c). These 
analyses showed that gm was most strongly correlated with 
the chloroplast surface area facing intercellular air spaces 
(Sc/S), thickness of the mesophyll cell walls (Tcw), and chloro-
plast size; however, depending on foliage structure, the over-
all importance of gm in constraining photosynthesis and the 
importance of different anatomical traits in the restriction 
of CO2 diffusion varied (Evans et al., 2009; Terashima et al., 
2011; Tosens et al., 2012b).

Ancient structural traits constrain 
photosynthesis in old taxa

Mesophyll conductance has been estimated for more than 
100 species from all major plant groups, but mainly sperma-
tophytes (angiosperms and gymnosperms), with little data for 
ferns, liverworts and hornworts (Flexas et al., 2012; Carriquí 
et al., 2015; Tosens et al., 2016). Considerable variations in gm 

Box 1. Mesophylls of evolutionarily old or modern species which have evolved under 
different CO2 concentrations

The schematic representation shows the mesophyll of (A) an evolutionarily old species which 
evolved under high CO2 concentration and (B) an evolutionarily modern species which evolved 
under low CO2 concentration. Photosynthesis in evolutionarily old species at current CO2 con-
centrations could be constrained by low values of stomatal conductance (gs) (due to larger 
stomatal size but lower stomatal density: Franks and Beerling, 2009), low values of mesophyll 
conductance (gm) (due to extremely thick cell walls, Tcw: Veromann-Jürgenson et al., 2017), and 
lower carboxylase catalytic efficiency (kcat

c/Kc) (Galmés et al., 2014).
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and its underlying traits among different plant groups have 
supported the hypothesis that an evolutionary trend exists 
towards higher gm together with the diversification of embry-
ophytes (Flexas et al., 2012; Carriquí et al., 2015). However, 
there is still a significant knowledge gap concerning phyloge-
netic/evolutionary trends in gm.

The number of  studies concerning gm in gymnosperms 
is surprisingly limited, in spite of  the great importance of 
coniferous forests throughout the world (Breckle, 2002). 
Specifically, gm had only been estimated in 13 conifer spe-
cies before the study by Veromann-Jürgenson et al. (2017; 
see also references therein). Although gymnosperms show 
the lowest gm values across spermatophytes (Flexas et al., 
2012), available data show a high degree of  interspecific 
variation and suggest the primary role of  gm as a limit-
ing factor for net CO2 assimilation in conifers. However, 
as pointed out by Veromann-Jürgenson et al. (2017), infor-
mation about gm with its underlying structural traits is 
especially limited in conifers, and only Peguero-Pina et al. 
(2012, 2016b) had previously correlated gm with ultra-
structural needle anatomy in species belonging to this 
plant group.

In this context, Veromann-Jürgenson et  al. (2017) have 
characterized the structural traits (i.e. Sc/S, chloroplast size 
and Tcw) that are mainly responsible for low gm and photo-
synthetic performance in several evolutionarily old gymno-
sperms and herbaceous species with contrasting phylogenetic 
age. These authors have found, for the first time, striking evi-
dence about the effect of divergence time on structure and 
physiology, and specifically a negative correlation between 
estimated evolutionary age of the plant genus and area-based 
photosynthesis (AN). However, as they recognize, this state-
ment should be treated with caution because species’ evolu-
tionary adaptation to prevailing environmental conditions 
can actually drive photosynthetic capacity more strongly 
than their evolutionary age (Tosens et al., 2016). Regarding 
CO2 diffusion across the mesophyll, although gm itself  was 
not related to plant evolutionary age, the lowest gm values 
(which scaled positively with AN regardless of evolutionary 
age) were observed for the oldest genera.

The most significant conclusion emerging from the study 
of  Veromann-Jürgenson et al. (2017) is that the preserva-
tion of  old traits suggests constraints on evolution due to 
the co-occurrence of  low gm and AN and the correspond-
ing high Tcw for species with widely contrasting ecologi-
cal strategies. Thereby, these authors hypothesize that (i) 
the high-CO2 atmosphere when several of  these thick-cell-
walled species evolved (about 65–200 million years ago) 
suggests a lower control of  diffusional limitations on the 
rate of  photosynthesis, and (ii) the preservation of  this 
ancient trait in spite of  the gradual CO2 decrease through 
evolution has led to stronger control of  foliage assimila-
tion rates by gm (Box 1).

Integrated approaches: the way forward

The phylogenetic trend consisting of a reduction of the 
cell wall thickness through evolution from bryophytes to 

angiosperms was recently considered by Carriquí et  al. 
(2015), who suggested that this reduction was probably cru-
cial to allow plants to achieve larger photosynthetic rates 
albeit at the expense of a reduction in desiccation tolerance. 
Increased values of cell wall thickness have been related to 
a greater ability to preserve the structure of the cells under 
water stress (Proctor and Tuba, 2002; Carriquí et al., 2015). 
Related to this, Corcuera et al. (2002) suggested that cell wall 
thickness may be associated with the maximum bulk modulus 
of elasticity (εmax), one of the main physiological traits related 
to the functional role of the cell wall. Higher εmax values are 
seen as an efficient mechanism for plant performance under 
dry climates, as low cell-wall elasticity (i.e. high εmax) would 
allow a rapid recovery after a decrease in soil water content 
(Corcuera et al., 2002). To the best of our knowledge, there 
are no published studies empirically relating higher εmax val-
ues with increasing cell wall thickness. However, there does 
seem to be a positive trend between both parameters when 
values of cell wall thickness are plotted against εmax for sev-
eral oak species (Box 2). Additional studies including simul-
taneous measurements of both parameters in a larger number 
of species from different genera are required for understand-
ing the ultimate causal factors involved in this trade-off.

Besides gm, Veromann-Jürgenson et al. (2017) found that 
AN also depended strongly on gs, which correlated negatively 
with the age of the genus. This empirical result is supported 
by Franks and Beerling (2009), who stated that periods of 
falling atmospheric CO2 challenged plants with diminished 
CO2 availability, inducing a selection for higher maximum 

Box 2. Cell wall thickness and maximum bulk  
modulus of elasticity
The graph shows the relationship between cell wall thick-
ness (Tcw) and the maximum bulk modulus of elasticity 
(εmax) for several Quercus species. Mean values of εmax 
are from Corcuera et al. (2002); mean values of cell wall 
thickness are from Peguero-Pina et al. (2016a, 2017).
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gs through a trend towards smaller stomatal size and higher 
density, thereby alleviating the negative impact of dimin-
ishing CO2 on photosynthesis (Box 1). This co-regulation 
between gm and gs is to some extent expected (Flexas et al., 
2012) because CO2 and water vapour share, in part, diffusion 
pathways in the mesophyll (Evans et  al., 2009; Terashima 
et al., 2011).

Beyond diffusive components (i.e. gs and gm), other factors 
also determine the rate of plant photosynthesis, such as the 
enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco). Galmés et al. (2014) found evolutionary trends in 
relation to atmospheric CO2 when analyzing the variability 
in Rubisco kinetics in different plant species. These authors 
confirmed that evolution of Rubisco towards increased affin-
ity for CO2 (Kc falling) and increased carboxylase catalytic 
efficiency (kcat

c/Kc) in land plants is likely to have been com-
plementary to falling CO2/O2 ratios, as well as to adaptations 
in leaf architecture, morphology and conductance (Beerling 
et al., 2001; Franks and Beerling, 2009; Haworth et al., 2011) 
(Box 1).

Veromann-Jürgenson et  al. (2017) provide an interest-
ing starting point for further studies on the role of  phy-
logenetic aspects in plant physiological performance (i.e. 
the influence of  the age on photosynthesis associated with 
the preservation of  ancient traits in evolution, such as 
extremely thick cell walls). Currently, the way forward is 
through the implementation of  integrated approaches that 
combine evolutionary constraints of  diffusive, structural 
and biochemical factors on plant photosynthetic perfor-
mance, together with other functional traits (e.g. plant 
hydraulics).

Key words: Cell wall elasticity, cell wall thickness, evolutionary constraints, 
gymnosperms, leaf anatomy, mesophyll conductance, photosynthesis, 
Rubisco, stomatal conductance.
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