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Abstract

To gain insight into genetic factors controlling seed metabolic composition and its relationship to major seed proper-
ties, an Arabidopsis recombinant inbred line (RIL) population, derived from accessions Col-0 and C24, was studied 
using an MS-based metabolic profiling approach. Relative intensities of 311 polar primary metabolites were used to 
identify associated genomic loci and to elucidate their interactions by quantitative trait locus (QTL) mapping. A total 
of 786 metabolic QTLs (mQTLs) were unequally distributed across the genome, forming several hotspots. For the 
branched-chain amino acid leucine, mQTLs and candidate genes were elucidated in detail. Correlation studies dis-
played links between metabolite levels, seed protein content, and seed weight. Principal component analysis revealed 
a clustering of samples, with PC1 mapping to a region on the short arm of chromosome IV. The overlap of this region 
with mQTL hotspots indicates the presence of a potential master regulatory locus of seed metabolism. As a result 
of database queries, a series of candidate regulatory genes, including bZIP10, were identified within this region. 
Depending on the search conditions, metabolic pathway-derived candidate genes for 40–61% of tested mQTLs could 
be determined, providing an extensive basis for further identification and characterization of hitherto unknown genes 
causal for natural variation of Arabidopsis seed metabolism.

Key words: Arabidopsis thaliana, gas chromatography–mass spectrometry, metabolic quantitative trait locus, primary 
metabolism, recombinant inbred line, seed biology.

Introduction

Natural variation is often the result of the contribution of 
multiple genes, detectable as quantitative trait loci (QTLs), 
and their interactions (Alonso-Blanco and Koornneef, 2000; 
Mackay, 2001; Remington and Purugganan, 2003; Koornneef 

et al., 2004; Shindo et al., 2007). However, it is often poorly 
understood to what extent the observed variation is attrib-
uted to genetic factors (Keurentjes et al., 2006). Linkage and 
association mapping represent powerful, complementary 
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approaches to connect genetic markers and phenotypic vari-
ation (Mackay, 2009). With recent advances in the field of 
‘-omics’ sciences, mapping of molecular phenotypes such 
as transcript (West et  al., 2007; Keurentjes et  al., 2007) or 
metabolite levels (Lisec et  al., 2008; Toubiana et  al., 2012; 
Alseekh et al., 2015) is increasingly utilized, opening up new 
possibilities for understanding complex molecular processes.

Recent developments of metabolomic platforms allow par-
allel and rapid quantification of hundreds to thousands of 
metabolites, offering new opportunities to study plant metab-
olomes (Alonso et al., 2015; Soltis and Kliebenstein, 2015). 
One of the most frequently used metabolic approaches in 
plant biology is GC-MS (Fiehn, 2008). This technique allows 
quantification of a broad spectrum of primary metabolites 
including amino acids, organic acids, and sugars that can 
be utilized to map metabolic QTLs (mQTLs), as shown in 
maize (Riedelsheimer et  al., 2012), tomato (Schauer et  al., 
2006, 2008), potato (Carreno-Quintero et  al., 2012), and 
rice (Matsuda et al., 2012; Ying et al., 2012; Li et al., 2016). 
Based on mQTL mapping, genes encoding enzymes involved 
in specific biochemical pathways were identified (Saito and 
Matsuda, 2010; Chan et al., 2011; Angelovici et al., 2013; Li 
et al., 2014; Strauch et al., 2015; Francisco et al., 2016) and 
systems for the regulation of metabolic networks elucidated 
(Fernie and Schauer, 2009; Wen et al., 2015, 2016).

mQTL studies in the model organism Arabidopsis thaliana 
(Keurentjes et al., 2006, 2008; Lisec et al., 2008, 2009; Rowe 
et al., 2008) provided the basis to identify genes and polymor-
phisms causal for natural trait variation (Brotman et al., 2011; 
Riewe et al., 2016), to characterize hitherto uncharacterized 
metabolic pathways and networks (Wentzell et al., 2007; Chan 
et al., 2010; Joseph et al., 2014), and to unravel key regulators 
of metabolism (Li and Kliebenstein, 2014; Wu et al., 2016). 
Arabidopsis seed mQTLs were studied for glucosinolates 
(Kliebenstein et al., 2001), flavonoids (Routaboul et al., 2012), 
oil content and fatty acids (Hobbs et  al., 2004; Sanyal and 
Randal Linder, 2012), carbohydrates (Calenge et al., 2006), 
and branched-chain amino acids (BCAAs) (Angelovici et al., 
2013). A  recent study focused on natural variation for oil, 
protein, carbon, and nitrogen content by near-infrared spec-
troscopy (Jasinski et al., 2016). Comprehensive investigations 
of the genetic basis of the Arabidopsis seed primary metabo-
lome, addressing a broader range of metabolite classes, have 
rarely been performed (Joosen et al., 2013).

Recombinant inbred line (RIL) populations represent an 
important genetic resource for the investigation of natural 
variation in Arabidopsis (Mackay, 2001). A large set of recip-
rocal RILs was created by crossing the Arabidopsis accessions 
Col-0 and C24 (Törjék et al., 2006). This RIL population was 
successfully utilized in several mapping studies, resulting in 
the identification of genomic regions involved in biomass het-
erosis at early developmental stages (Meyer et al., 2010), and 
metabolic and biomass QTLs (Lisec et al., 2008, 2009).

We used this population to address the following ques-
tions. (i) Are seed metabolite levels, seed weight, and seed 
protein content correlated? (ii) Which genomic regions are 
associated with particular metabolites in mature Arabidopsis 
seeds and do these loci interact? (iii) Which genomic regions 

contain genes encoding enzymes involved in pathway reac-
tions related to these metabolites? (iv) Are there common 
genetic factors affecting multiple metabolites and thus acting 
as potential master regulators affecting the metabolic com-
position of mature seeds and what are the most promising 
candidate regulatory genes?

Materials and methods

Plant material and growing conditions
The mapping population consisted of 393 RILs originating from 
the reciprocal crosses Col-0×C24 (n=202) and C24×Col-0 (n=191) 
described by Törjék et al. (2006). F2 plants were propagated by self-
pollination using single-seed descent to the F10 generation. Plants 
were cultivated in two consecutive experiments in a phytotron under 
controlled conditions [16 h sodium lamp light (250 µmol m−2 s−1); 
20 °C; 70% relative humidity/8 h dark; 16 °C; 60% relative humidity] 
to ensure a constant environment during seed formation. A rand-
omized block design and randomized positions within each block 
were used. Each line was replicated four times (individual plants). 
A total of 15–30 seeds per genotype were sown into 6 cm pots filled 
with Substrate 1 (Klasmann-Deilmann GmbH, Geeste, Germany). 
Stratification was performed for 3 d at 4  °C in the dark. After 1 
week, well-developed and healthy plants were transferred into single 
pots. The orientation of trays was changed daily; every second day 
positions of trays in the room were shuffled to minimize position 
effects. Plants were treated with Novo Nem® F (ÖRE Bio-Protect 
Biologischer Pflanzenschutz GmbH, Schwentinental, Germany) 
every second week. Mature seeds were collected using ARACONs 
(BETATECH, Gent, Belgium), purified, and stored in sealed screw-
cap glass vials at 5 °C and 55% relative humidity.

Fractionated metabolite and protein extraction
Twenty seeds of each of three individual plants per RIL were 
pooled. Polar metabolites and seed proteins were extracted via liq-
uid–liquid extraction, modifying existing protocols (Lisec et  al., 
2006; Erban et al., 2007; Giavalisco et al., 2011) using a liquid han-
dling system (Biomek® FXP, Beckman Coulter GmbH, Krefeld, 
Germany). Seed material was deep frozen at –80  °C and homog-
enized twice for 1 min at 30 Hz using a mixer mill (Retsch GmbH, 
Haan, Germany). Metabolites were extracted in 0.5  ml of chilled 
extraction buffer 1 (MTBE:MeOH:H2O; 3:1:0.5 plus internal stand-
ard 1:1000) by shaking and ultrasonication for 15 min at 4 °C. After 
adding 325  μl of  extraction buffer 2 (MeOH:H2O; 1:3), samples 
were centrifuged and two 80 µl aliquots of the upper organic phase 
were stored for potential further investigation. Subsequently, 150 μl 
of  chloroform were added, followed by shaking and centrifugation 
for 10 min, leading to a phase inversion. Three 120 μl aliquots of 
the upper polar phase were transferred into glass vials (CZT Klaus 
Trott, Kriftel, Germany), dried in a vacuum concentrator, filled with 
argon, capped, and stored in sealed plastic bags containing silica 
desiccant at –80 °C. The pellet containing proteins was dried as men-
tioned above.

Seed protein quantification
Seed protein quantification was performed in 384-well plates using 
the Bio-Rad Protein Assay (Bio-Rad Laboratories GmbH, Munich, 
Germany) in three replicates, according to the manufacturer’s 
instructions. Protein pellets were washed five times with 800 µl of 
70% ethanol, dissolved in 800 μl of  60 mM NaOH by shaking for 
60 min at 70 °C, and centrifuged for 10 min. The total protein con-
centration of the supernatant was quantified at 595  nm using an 
Infinite 200 PRO microplate reader (Tecan Deutschland GmbH, 
Crailsheim, Germany) and a standard curve of 0–2.5 μg of BSA.



Arabidopsis seed mQTL | 1657

Relative quantification of polar metabolites using GC-MS
Aliquots of the polar phases were in-line derivatized directly prior 
to injection (Erban et al., 2007) and analyzed using a Gerstel 
MPS2-XL autosampler (Gerstel, Mühlheim, Germany) and an 
Agilent 7890 gas chromatograph (Agilent, Santa Clara, CA, USA) 
coupled to a LECO time-of-flight mass spectrometer (LECO, St. 
Joseph, MI, USA) (Riewe et al., 2012). Metabolites were identi-
fied and assigned using LECO ChromaTOF software including the 
Statistical Compare package and electron impact spectra library 
provided by the Golm Metabolome Database (GMD, gmd.mpimp-
golm.mpg.de). Extraction of quantitative data was performed using 
the R-package ‘TargetSearch’ (Cuadros-Inostroza et al., 2009).

Raw data processing and normalization
Metabolite intensities were normalized for seed weight, inter-
nal standard (l-alanine-2,3,3,3-d4, 98 atom% D, Isotec Inc., 
Miamisburg, OH, USA), and individual detector response to cor-
rect for potential extraction batch and measurement day effects. 
Outliers were removed (median ±4× SD), and metabolite data were 
power transformed to ensure a proximate normal distribution (Box 
and Cox, 1964). Protein concentrations were batch normalized and 
seed protein content calculated using the number of seeds, sample, 
and total buffer volume. The normalized, outlier-corrected, and 
transformed metabolite data and protein content are summarized in 
Supplementary Data S1 at JXB online.

Statistical analyses
Statistical analyses were performed in R (R Core Team, 2015). 
Pearson correlation P-values were multiple testing corrected using 
false discovery rate (FDR) adjustment (Benjamini and Hochberg, 
1995). Principal component analysis (PCA) was performed using 
the ‘pcaMethods’ package (Stacklies et al., 2007) on centered and 
Pareto-scaled data.

Molecular markers and linkage map
The RIL population was initially genotyped at the F7 generation 
with 110 single nucleotide polymorphism (SNP) markers (Törjék 
et  al., 2003, 2006). Further genotyping was performed at the F9 
generation using 28 additional simple sequence repeat (SSR) mark-
ers (Supplementary Data S2). Markers were derived from previ-
ous studies (Loudet et al., 2002; Salathia et al., 2007; Andreuzza 
et al., 2010; Hou et al., 2010), and partially modified. The marker 
distributions of  the reciprocal subpopulations were compared 
using a Mantel test (10 000 permutations) of  the corresponding 
similarity matrices obtained by simple matching. The 138 mark-
ers were evenly distributed over the five chromosomes, with an 
average marker distance of  3.4 cM corresponding to ~1 Mbp 
(Supplementary Data S3).

Analysis of quantitative trait loci
Power-transformed metabolite data, total protein content, and PCA 
scores were used to map QTLs with the R-package ‘qtl’ (Broman 
et  al., 2003). To check for main effect QTLs, interval mapping 
and composite interval mapping approaches were performed with 
Haley–Knott regression (Haley and Knott, 1992). The conditional 
genotype probabilities were calculated using the ‘calc.genoprob’ 
function with a step size of 1 cM and an assumed genotyping error 
probability of 0.0001 with the Kosambi map function. Composite 
interval mapping was performed using the ‘cim’ function with a pre-
defined number of five covariates selected by forward selection and 
a window size of 20 cM. To correct for type I error rates (false-pos-
itive QTLs), a genome-wide logarithm of odds (LOD) score thresh-
old was estimated by 10 000 permutations at alpha 0.05 (Churchill 
and Doerge, 1994). All QTLs detected were used as the initial QTL 

model. The ‘stepwiseqtl’ function was used for forward/backward 
selection of multiple QTL models, with model choice made via a 
penalized LOD score, with separate penalties on main effects and 
interactions. Individual ‘heavy’ and ‘light’ penalties were extracted 
from 3000 ‘scantwo’ permutations with the ‘calc.penalties’ function 
(Broman and Sen, 2009; Manichaikul et al., 2009). For each trait, the 
derived multiple QTL model was plugged into the ‘fitqtl’ function to 
estimate QTL effects and percentages of variance (R2) explained by 
the individual QTLs from the final simultaneous fit of all QTLs. The 
1.5-LOD support intervals (Manichaikul et al., 2006) for each QTL 
were estimated with the ‘lodint’ function and expanded to the near-
est flanking markers.

Candidate gene identification
To identify candidate genes for mQTLs, compound and pathway 
information of the AraCyc 13.0 database was downloaded from 
the Plant Metabolic Network (PMN, plantcyc.org). Arabidopsis 
gene annotation information was obtained from the Arabidopsis 
Information Portal (ARAPORT 11, araport.org). For each mQTL, 
a search window was determined according to the 1.5-LOD support 
interval (Supplementary Data S4). Genes were extracted and tested 
for either direct association with the corresponding metabolite or 
indirect association with one of the pathways in which the metabo-
lite is involved. To nominate the most promising candidate genes of 
the master regulatory locus detected on the short arm of chromo-
some IV, all 567 genes within the confidence interval of the hotspot 
on chromosome IV were analyzed for gene ontology (agriGO, bio-
info.cau.edu.cn/agriGO/) and matched against the plant transcrip-
tion factor database (PlnTFDB 3.0, plntfdb.bio.uni-potsdam.de).

Threshold determination for mQTL hotspots
For each mQTL, the nearest molecular marker to the LOD apex 
was determined and the numbers of associated mQTLs per marker 
were added up. The deviation from the random number of co-
localizations was calculated by randomly distributing the mQTLs 
of each metabolite over the 138 marker positions and counting the 
maximum number of mQTL co-localizations. This procedure was 
repeated 10 000 times, yielding a distribution of the maximum num-
bers of mQTLs per marker. The 95% quantile of this distribution 
corresponded to 15 QTLs. Hence ≥15 mQTLs at the same genome 
position were regarded as significantly co-localized.

Results and discussion

In the present study, we utilized a previously generated set 
of reciprocal RILs consisting of 202 Col-0×C24 and 191 
C24×Col-0 F10 RILs (Törjék et al., 2006). Pools of 60 seeds 
from three individuals per genotype were analyzed for their 
metabolic composition. After exclusion of contaminants and 
manual data curation, 311 metabolites (64 of known chemical 
structure) were detected in >85% of all samples. Only these 
metabolites were taken into further consideration. A  com-
parison of the metabolic composition between the reciprocal 
subpopulations revealed no statistically significant differ-
ences (ANOVA/FDR, P>0.05 for all metabolites). No signifi-
cant differences in marker distribution between the reciprocal 
RILs were found (association between marker matrices of 
88.3% estimated by Mantel test with 10 000 permutations, 
P<0.001). Maternal effects, for example due to different cyto-
plasm, mitochondria, and chloroplasts, were excluded by a 
two-way ANOVA exemplarily testing for effects of markers, 
subsets, and marker–subset interactions on leucine abundance 
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(Supplementary Data S5). In addition, a modified cross-val-
idation (Melchinger et al., 2004) was conducted treating the 
reciprocal RIL subsets individually and including randomly 
selected subsets in the mapping (Supplementary Data S6). In 
both cases, the reduction in population size led to a drastic 
decline of LOD scores and the detection of different combi-
nations of leucine QTLs due to reduced detection power and 
random sampling effects. Hence the RILs were treated as one 
population and the corresponding results were used for all 
subsequent analyses.

Correlation between metabolites, seed protein content, 
and seed weight

Correlations between levels of metabolites help to gain infor-
mation about metabolic links (Carreno-Quintero et al., 2012; 
Hill et  al., 2013). Correlated metabolites can be the result 
of shared metabolic pathways or enzymatic reactions, or 
indirect regulatory processes affecting different pathways. 
Pearson correlation/FDR (Supplementary Data S7) analyses 
resulted in far more positive (97%) than negative (3%) cor-
relations between metabolites (Supplementary Figs S1, S2). 
At a global level, metabolites were mostly weakly or moder-
ately correlated (0.2<R<0.6). This resembles previous studies 
in Arabidopsis (Cross et al., 2006; Meyer et al., 2007; Sulpice 
et al., 2010) and tomato (Schauer et al., 2006). Several sig-
nificant correlations, including 55 correlations of known 
metabolites with seed protein content, seven correlations of 
known metabolites with seed weight content, and hundreds 
of pairwise correlations between metabolites, were detected. 
Strong correlations between metabolites of specific sectors 
of metabolism, including structurally related metabolites, or 
metabolites from the same biological pathway, were found, 
as reported previously (Schauer et al., 2006; Lu et al., 2008; 
Lin et al., 2014). There was a strong correlation between the 
monosaccharides glucose and fructose (R=0.75). Other high 
correlations were detected: gentiobiose–erythritol (R=0.91), 
raffinose–myo-inositol (R=0.85), galactinol–myo-inositol 
(R=0.59), and raffinose–galactinol (R=0.57). Galactinol, raf-
finose, and myo-inositol are involved in the reversible reac-
tion producing stachyose (Tanner and Kandler, 1968; Lehle 
and Tanner, 1973). High correlations between the citric acid 
cycle metabolites malic acid and citric acid (R=0.79) as well 
as fumaric acid and malic acid (R=0.55) were detected, sup-
porting the finding that metabolites involved in the same 
pathway(s), in particular, are highly correlated (Sulpice et al., 
2010). The BCAAs valine, leucine, and isoleucine were sig-
nificantly and highly correlated: valine–isoleucine (R=0.94), 
leucine–isoleucine (R=0.88), and valine–leucine (R=0.81). 
This might be due to their structural relationship and largely 
shared biosynthetic and degradation pathways (Binder, 2010; 
Angelovici et  al., 2013). A  dominant role for amino acids 
in metabolite correlations has previously been described in 
tomato (Toubiana et al., 2012) and soybean (Lin et al., 2014).

Maturing Arabidopsis seeds mainly accumulate lipids in 
the form of triacylglycerols (TAGs), and seed storage proteins 
(SSPs) as storage macromolecules substantially contributing 
to the weight of mature seeds (Baud et al., 2008). Although 

primary metabolites serve as feedstock for their synthesis, 
only low correlations between polar primary metabolites and 
seed weight were found. Erythritol (R=0.39) and gentiobiose 
(R=0.36) were the strongest positively correlated, and pre-
phenic acid (R= –0.28) and ornithine (R= –0.26) the strong-
est negatively correlated metabolites of known structure. As 
lipids and lipophilic compounds contribute 34.6–46.0% to 
the seed dry weight (O’Neill et al., 2003), they might be more 
important than polar primary metabolites.

In total, 276 significant correlations between metabo-
lites and seed protein content were detected, including 55 
metabolites of known chemical structure. However, most of 
these pairs are only moderately or slightly correlated (only 
41 with R>0.5). The top four known metabolites correlated 
with protein content are glutamic acid (R=0.57), glucopyra-
nose (R=0.57), melibiose (R=0.57), and pyroglutamic acid 
(R=0.56). The high correlation of glutamic acid with seed 
protein content was expected due to its central role in plant 
nitrogen transport and protein biosynthesis (Glass et  al., 
2001). A  recent study revealed that the glutamate decar-
boxylase- (GAD) mediated conversion of glutamate to 
γ-aminobutyric acid (GABA) during seed development plays 
an important role in balancing carbon and nitrogen metabo-
lism, and storage reserve accumulation in Arabidopsis seeds, 
and affects seed protein content (Fait et al., 2011). Glutamic 
acid is a key compound of cellular metabolism involved in 
the biosynthesis of many other amino acids. It acts as a sub-
strate for glutamate dehydrogenases and various aminotrans-
ferases, providing 2-oxoglutarate for respiration (Forde and 
Lea, 2007). Moreover, it is a major transport form of nitrogen 
in plants (Xu et al., 2012). Protein content and seed weight 
were not found to be significantly correlated.

In summary, moderate to high, mostly positive pairwise 
correlations were detected, especially for structurally or path-
way-related metabolites. Unlike our initial hypothesis, only 
weak pairwise correlations between individual polar primary 
metabolites and seed weight could be detected. Lipophilic 
compounds or combinations of particular metabolites might 
yield higher correlations, as previously described (Meyer 
et al., 2007).

Natural variation in primary metabolism and detection 
of mQTLs and regions associated with seed protein 
content

A total of 786 mQTLs affecting the metabolism of mature 
Arabidopsis seeds were identified by our mapping approach 
(Supplementary Data S8). For 90% of the 311 analyzed 
compounds, at least one mQTL was identified, reflecting a 
remarkably high variation emerging from the cross of two 
accessions. Lisec et al. (2008) used the same RILs and similar 
analytical approaches, but investigated leaf material of young 
vegetatively grown plants and found mQTLs for only 46% of 
the detected metabolites. Similarly, Rowe et al. (2008) iden-
tified mQTLs for 44% of the measured leaf metabolites. In 
the study presented here, 152 mQTLs were attributed to 58 
metabolites of known (Fig. 1) and 634 mQTLs to 222 metab-
olites of unknown chemical structure. For 72 metabolites, 
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only one QTL was identified. A  maximum of seven QTLs 
was found for unknown mass spectral tags (MSTs) 40, 66, 
218, 225, 232, and 245, respectively. Combined main effect 
QTLs explained up to 88.87% of phenotypic variation of 
particular metabolites, with explained phenotypic variation 
ranging from 0.57% to 77.68% for individual QTLs. On aver-
age, 7.23% of phenotypic variation is explained by a single 
QTL, suggesting that for most metabolites multiple unidenti-
fied genetic loci may contribute with moderate effects to over-
all phenotypic variation. In addition, the analysis revealed 
evidence for 30 epistatic interactions, including four metab-
olites of known structure: leucine, isoleucine, benzoic acid, 
and indole-3-acetonitrile (Supplementary Data S9). One 
QTL associated with seed protein content was detected on 
chromosome IV with ‘MASC04123’ (4.15 cM) as the near-
est marker. The confidence interval for this QTL spanning a 
region of 18.7 cM on chromosome IV is overlapping with the 
confidence intervals of 22 QTLs for metabolites of known 
structure, including proline and methionine, and 146 QTLs 
for metabolites of unknown structure. However, only a small 

proportion of phenotypic variation of seed protein content 
(2.94%) is explained by this QTL.

The RIL population was previously utilized by Lisec 
et  al. (2008), who quantified 181 leaf metabolites, includ-
ing 85 compounds of known chemical nature, and identi-
fied 157 mQTLs for 84 metabolites (50 of known chemical 
structure). Comparing this with our findings, a total of 25 
known metabolites with mQTLs, predominantly amino acids 
and organic acids, were detected in both studies. To compare 
the detected mQTLs, support intervals were extended to the 
nearest flanking markers to derive physical map positions. 
This comparison revealed nine mQTLs for seven metabolites 
with overlapping confidence intervals (Table 1), including a 
tyrosine mQTL on chromosome V that contains a tyrosine 
aminotransferase (At5g53970) involved in tocopherol synthe-
sis in Arabidopsis (Riewe et al., 2012). Untargeted LC-MS-
based metabolomic approaches and quantitative genetic 
analysis enabled broad-spectrum molecular dissection of the 
Arabidopsis leaf metabolite composition of 160 Cvi×Ler 
RILs (Keurentjes et al., 2006). Mapping of >2000 mass peaks 

Fig. 1. Distribution of mQTLs for metabolites of known chemical structure. Chromosomal locations of significant mQTLs for the 58 metabolites of known 
chemical structure and the seed protein content are indicated by boxes representing the 1.5-LOD QTL support intervals. Vertical black lines within the 
boxes indicate the apices of the corresponding LOD curves. The mQTLs are color-coded according to their significance [threshold at alpha of 0.05 
(yellow), 0.01 (orange), 0.001 (red)] derived from permutation results of the genome-wide maximum LOD scores. Vertical lines represent marker positions. 
For a subset, their approximate distance in centiMorgans is indicated. Asterisks at the bottom correspond to the position of identified mQTL hotspots.
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resulted in the identification of mQTLs for ~75% of all mass 
signals, which is comparable with the detection rate in seeds 
in the present study. Another study used GC-MS to analyze 
210 Bay×Sha RILs (Rowe et al., 2008). They identified a total 
of 557 metabolites and used them for QTL mapping, lead-
ing to the identification of 438 mQTLs for 243 metabolites 
(36 known metabolites overlapped with those identified in the 
present study).

By testing all 55 pairwise epistatic interactions between 11 
detected metabolite QTL clusters against the average accu-
mulation of 557 metabolites, Rowe et  al. (2008) identified 
240 metabolites with 1–5 significant epistatic interactions, 
for a total of 328 significant interactions. Lisec et al. (2008) 
detected 38 epistatic interactions involving metabolites of 
known structure. With only four interactions among mQTLs 
of known metabolites, much fewer incidences of epista-
sis were observed in the present study on Arabidopsis seed 
metabolites.

Detection of enzyme-encoding mQTL candidate genes

To identify candidates, genes within the mQTL confidence 
intervals were extracted and queried for direct or indi-
rect association with the particular metabolite using the 
AraCyc 13.0 database. Genes encoding enzymes catalyz-
ing reactions that involve the metabolite as substrate or 
product were considered direct candidates, while genes 
encoding enzymes that catalyze other reactions within 
pathways that lead toward the formation of  the metabo-
lite or which consume the metabolite were considered 
indirect candidates. A total of  168 direct candidate genes 
for 27 of  the 52 metabolites of  known structure (52%) 
were found. Expanding search criteria to all pathways in 
which the metabolite is involved, a total of  765 direct and 
indirect candidate genes for 33 metabolites (~63%) were 
determined. These numbers differ from those observed by 
Lisec et al. (2008) utilizing the same RIL population, but 
analyzing leaf  material. We found a higher percentage of 
direct candidate genes, which might be attributed to a less 
conservative calculation of  mQTL confidence intervals. In 
contrast to the 43% increase found by Lisec et al. (2008), 
the extension of  the search criteria to indirect associations 
increased the percentage of  mQTLs with a candidate gene 
only by 21% in the present study.

Shared mQTLs among branched-chain amino acids, 
epistatic interactions, and candidate genes

For leucine and isoleucine, shared loci and epistatic interac-
tions between the mQTLs on chromosomes IV (60.5 cM) and 
V (96.0 cM) were observed (Supplementary Data S8, S9). 
Furthermore, high correlations were found between leucine, 
valine, and isoleucine (Supplementary Data S7). These find-
ings prompted us to look at candidate genes within the leu-
cine mQTLs in more detail. Leucine, valine, and isoleucine 
are characterized by their branched hydrocarbon residues. 
They form the small group of BCAAs that are critical for 
protein synthesis and normal plant growth (Yu et al., 2013) 
and serve as precursors for secondary metabolites (Binder, 
2010; Buchanan et al., 2015). Plants synthesize these essential 
amino acids de novo. Valine and isoleucine are synthesized 
in two parallel pathways using a single set of four enzymes, 
whereas the pathway to leucine branches off  and requires 
three additional steps (Binder, 2010). The BCAA biosynthe-
sis in plants occurs in chloroplasts (Diebold, 2002; Binder, 
2010), whereas the degradation mostly takes place in mito-
chondria (Zolman et al., 2001; Beck et al., 2004). Despite the 
limited mapping resolution provided by RILs, it is possible 
to identify candidate genes underlying biochemical pathways 
(Lisec et al., 2008; Brotman et al., 2011). To this end, the 
four detected mQTLs for leucine (Fig. 2A; Supplementary 
Data S8) were screened for known and putative pathway 
genes involved in BCAA metabolism. From three databases, 
ARAPORT 11 (araport.org), AraCyc 13.0 (PMN, plantcyc.
org), and KEGG PATHWAY (www.genome.jp/kegg/path-
way.html, last accessed 16 February 2017), genes annotated in 
leucine biosynthesis and degradation were extracted and their 
map positions compared with the leucine mQTL confidence 
intervals. Candidate genes could be identified for all four leu-
cine mQTLs. Three candidate genes: AT2G23170 (GH3.3), 
AT2G26800 (HML1), and AT2G31810 (AHAS), were asso-
ciated with the mQTLs on chromosome II. AT2G23170 
(GH3.3) encodes an indole-3-acetic acid (IAA)-amido syn-
thetase (Staswick et al., 2005), AT2G26800 a putative hydrox-
ymethylglutaryl-CoA lyase, presumably involved in leucine 
degradation, and AT2G31810 a small regulatory subunit 
of the acetolactate synthase (Binder, 2010). The acetolac-
tate synthase is the first common enzyme in the biosynthetic 
pathways of the BCAAs (Chen et al., 2010) and catalyzes 

Table 1. Comparison of detected mQTLs in seeds and leaf material

Metabolite Chromosome Support interval R2 (%)a Support interval
Lisec et al. (2008)

R2 (%)a

Lisec et al. (2008)

Glycine III 17.27–23.28 Mbp 5.42 16.24–17.78 Mbp 8.00
Malic acid IV 13.69–18.54 Mbp 9.85 10.67–15.39 Mbp 4.20
myo-Inositol I 3.49–9.36 Mbp 5.32 4.12–6.50 Mbp 6.50
Raffinose III 17.27–23.41 Mbp 4.30 16.24–19.50 Mbp 4.70
Serine II 5.18–10.43 Mbp 3.30 3.00–5.33 Mbp 5.10
Serine III 17.27–19.86 Mbp 7.54 15.17–17.78 Mbp 6.90
Tyrosine III 14.30–23.41 Mbp 3.36 11.77–17.78 Mbp 4.20
Tyrosine V 18.83–26.92 Mbp 3.50 21.92–22.91 Mbp 9.60

a Estimated proportion of the phenotype variance explained by a QTL
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the conversion of two molecules of pyruvate into (S)-2-
acetolactate, or one molecule of pyruvate and one molecule of 
2-oxobutanoate into 2-aceto-2-hydroxybutyrate (Singh, 1999; 
Duggleby et al., 2008). Two candidate genes co-localized with 
the confidence interval of the leucine mQTLs on chromosome 
III. AT3G48560 (AHAS) encodes the catalytic subunit of the 
acetolactate synthase (pyruvate decarboxylase). Mutants 
defective in this gene exhibit increases in all three BCAAs in 
mature seeds (Lu et al., 2011). AT3G49680 (BCAT3) encodes 
a BCAA aminotransferase, which is involved in the biosyn-
thesis and degradation of valine, leucine, and isoleucine (Knill 
et al., 2008). For the confidence interval on chromosome IV, 
AT4G27260 (GH3.5) could be identified as a direct candidate 
gene encoding an IAA-amido synthetase, which conjugates 
various amino acids, including leucine, to IAA. IAA is the 
prevalent form of auxin, an important phytohormone, affect-
ing many aspects of plant development and plant response 
to biotic and abiotic stimuli (Woodward and Bartel, 2005). 
Some of these amino acid modifications can be reversed by 

amido hydrolases (Davies et al., 1999), suggesting that IAA–
amino acid conjugates, such as IAA–leucine, are storage 
forms of auxin (Staswick et al., 2005). These compounds can 
be metabolized to contribute to the pool of free auxin, allow-
ing plants to fine-tune their levels of active auxin (Woodward 
and Bartel, 2005). The confidence interval for the leucine 
mQTLs on chromosome V harbors AT5G65780 (BCAT5), 
encoding another member of the BCAA transaminase gene 
family. Green fluorescent protein tagging localized the pro-
tein to the chloroplast, but recent proteomic studies indicated 
a mitochondrial localization (Diebold, 2002; Taylor, 2004; 
Zybailov et al., 2008). Although its localization is still contro-
versial and BCAT5 has not yet been characterized in detail, 
its role in leucine metabolism has been suggested (Schuster 
et al., 2006; Binder, 2010). A recent genome-wide association 
study using a diversity panel of 360 Arabidopsis accessions 
in conjunction with a QTL analysis of a RIL population 
derived from accessions Bay-0 and Shahdara revealed the 
unique, catabolic role of the AT1G10070 locus (BCAT2) in 

Fig. 2. mQTL analysis and candidate gene identification for leucine. (A) LOD profiles were plotted for all five Arabidopsis chromosomes. Gray lines 
represent LOD profiles calculated with the ‘cim’ function (composite interval mapping). Gray dots indicate selected cofactors. The horizontal dashed gray 
line corresponds to a CIM alpha threshold of 0.05, estimated by 10 000 permutations. The solid black lines indicate LOD profiles calculated with the 
‘stepwiseqtl’ function using a multiple QTL model. The positions of the QTL apices in centiMorgans are given above the curves. (B) A simplified genetic 
map with known and putative genes involved in leucine biosynthesis and degradation. Purple horizontal lines indicate the locations of genes, directly or 
indirectly involved in leucine metabolism. Leucine mQTLs were identified on chromosomes II, III, IV, and V. Support intervals are shown as red vertical 
lines beside the chromosomes. Leucine-related genes, located within the confidence intervals of the mQTLs, are indicated. Identified candidate genes for 
chromosome II are AT2G23170 (GH3.3), AT2G26800 (HML1), and AT2G31810, for chromosome III AT3G48560 (AHAS) and AT3G49680 (BCAT3), for 
chromosome IV AT4G27260 (GH3.5), and for chromosome V AT5G65780 (BCAT5). (C) Boxplots of normalized and median divided leucine abundances 
in seeds of RILs. Samples were subdivided into four groups according to the allelic state at the epistatically interacting loci on chromosomes IV and V. 
Significant differences between the groups are indicated by upper case letters (ANOVA with post-hoc Tukey HSD, Padj<0.001; number of individuals: 
nC24/C24=113, nCol-0/C24=20, nC24/Col-0 =82, nCol-0/Col-0=149). (D) Boxplots of normalized and median divided leucine abundances in seeds of parental and 
reciprocal F1 hybrid plants derived from an independent experiment. Significant differences between the groups are indicated by upper case letters 
(ANOVA with post-hoc Tukey HSD, Padj<0.05; number of individuals: nC24=7, nC24×Col-0=5, nCol-0×C24=5, nCol-0=5).
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BCAA metabolism in Arabidopsis seeds (Angelovici et al., 
2013). However, as these accessions are polymorphic for sev-
eral SNPs and insertion/deletion events, the causative molec-
ular mechanism(s) underlying the phenotypic differences in 
Bay-0 and Shahdara BCAT2 alleles were not determined. In 
the present study, no significant association with the BCAT2 
locus or any other region on chromosome I was detected. A 
comparison of the C24 and Col-0 alleles of the BCAT2 locus 
revealed several polymorphisms (Supplementary Data S10). 
Only one polymorphism within the coding sequence leading 
to a glutamic acid to aspartic acid exchange was detected. 
Both amino acids have comparable properties and are thus 
unlikely to cause substantial differences of the BCAT2 pro-
tein. This absence of functional relevant differences between 
the C24 and Col-0 alleles could explain the fact that no signif-
icant influence of the BCAT2 locus was detected in the C24/
Col-0 RIL population. A simplified genetic map with genes 
involved in leucine biosynthesis and degradation is shown in 
Fig. 2B. Comparing detected mQTLs for all BCAAs, over-
lapping confidence intervals were detected. Leucine and iso-
leucine share all detected mQTLs on chromosomes II, III, 
IV, and V, including a putative epistatic interaction between 
mQTLs on chromosomes IV (60.5 cM) and V (96.0 cM). For 
leucine and valine, mQTLs on chromosomes III, IV, and V 
share overlapping confidence intervals. For valine there is no 
mQTL on chromosome II, but an additional mQTL on chro-
mosome V that is not shared by leucine and isoleucine. Its 
confidence interval harbors one candidate gene (AT5G09300, 
BCKDH) encoding a putative subunit of the branched-chain 
keto acid dehydrogenase complex that catalyzes the second 
step of BCAA degradation (Binder, 2010; Peng et al., 2015).

To investigate further the influence of the mQTL on chro-
mosomes IV and V and their putative interaction, samples 
were divided into four groups based on their allelic states and 
the leucine abundances were plotted (Fig. 2C). The C24 allele 
at the locus on chromosome V has an increasing effect on the 
leucine abundance, but only if  the Col-0 allele is present at 
the locus on chromosome IV. The presence of the C24 allele 
at the locus on chromosome IV leads to no substantial dif-
ference in leucine abundance, independent of the allele at the 
locus on chromosome V. This finding is consistent with the 
detected epistatic interaction between the mQTLs on chro-
mosomes IV and V and higher leucine abundances in seeds 

of the reciprocal hybrids compared with their parental acces-
sions (Fig. 2D).

Detection of mQTL hotspots for Arabidopsis seed 
metabolism

QTL studies in various species identified hotspots (Schauer 
et  al., 2006, 2008; Joosen et  al., 2013; Chen et  al., 2014; 
Alseekh et al., 2015; Wen et al., 2015), but their number and 
position can vary across tissues within a specific population, 
as found in rice (Gong et al., 2013). There are two potential 
explanations for these observations. It could be a reflection of 
an uneven distribution of biosynthetic genes over the genome, 
or may be a consequence of the occurrence of pleiotropic 
or regulatory genes of higher hierarchical order controlling 
multiple metabolic reactions rather than individual metabolic 
conversions. A study comparing the distribution of metabolic 
genes in the genome with the mQTL distribution has pro-
vided evidence that a large proportion of detected mQTLs, 
with hitherto unknown metabolic functions, are most prob-
ably regulatory genes controlling primary metabolism (Lisec 
et al., 2008).

The mQTLs detected in this study were not evenly dis-
tributed across the Arabidopsis genome. In some regions, 
mQTLs clustered, whereas other regions were depleted of 
QTLs. Since 311 metabolic traits and 138 markers were taken 
into account, stochastic co-localizations of mQTLs are to be 
expected. The threshold for detection of significant enrich-
ment of mQTLs in certain positions was determined using  
10 000 permutations. Markers associated with at least 15 
mQTLs were regarded as significant hotspots. In the present 
study, we found evidence for several mQTL hotspots on chro-
mosomes II, III, IV, and V (Table 2; Supplementary Fig. S3). 
The smallest number of mQTLs (n=90) and no hotspot were 
found for chromosome I.  On average, substantially fewer 
mQTLs per marker were detected on chromosome I  than 
expected for a random distribution. For chromosome II, a 
total of 148 mQTLs and three hotspots were identified. On 
chromosome III, 143 mQTLs were detected, with evidence 
for two large hotspots. Chromosome IV shows evidence for 
220 mQTLs, and at least four markers were identified as hot-
spots. Three of them are localized on the short arm of the 
chromosome and might be regarded as a single hotspot due to 

Table 2. Summary of mQTL hotspots

Chromosome Marker Position (kbp) Position (cM) Number of mQTLs

II M2_4269 8410.151 32.48 16
II MASC02644 10 428.938 41.29 20
II MASC09222 14 375.406 58.38 34
III MASC09224 18 501.466 68.17 44
III MASC02788 20 744.711 78.77 32
IV MASC04123 301.329 4.15 27
IV MASC04725 1092.491 10.21 35
IV MASC05042 2188.362 12.90 44
IV MASC04685 5230.768 14.01 16
V MASC09209 7717.922 26.27 94
V MASC09211 25 579.812 92.79 15
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their proximity. Their combined median confidence interval is 
delimited by the markers ‘MASC04123’ and ‘MASC04685’ 
and extends beyond the short arm of chromosome IV. It spans 
a region of ~5 Mbp and contains 567 genes. For chromosome 
V, a total number of 185 mQTLs and the largest hotspot with 
94 mQTLs, associated with the marker ‘MASC09209’, were 
detected. Calculating the median confidence interval over all 
mQTLs sharing this marker, the hot spot is delimited by the 
markers ‘MASC09208’ and ‘nga139’, spanning a region of 
~6.5 Mbp, and containing 487 genes.

Hotspots of mQTLs have been previously reported in 
Arabidopsis (Keurentjes et al., 2006; Fu et al., 2009; Chan 
et al., 2010; Joseph et al., 2013). Lisec et al. (2008) identified 
two mQTL hotspots, on the short arm of chromosome IV 
and at the bottom of chromosome V, with 16 and 12 mQTLs, 
respectively. A biomass QTL and multiple mQTLs (Lisec et 
al., 2008), as well as an early stage biomass heterosis QTL 
(Meyer et al., 2010) were found in similar positions on the 
short arm of chromosome IV as the hotspot in the present 
study. The studies of Rowe et al. (2008) and Joosen et al. 
(2013) on the Bay×Sha RIL population revealed 11 and 8 
mQTL hotspots, respectively. Two major hotspots (AOP on 
chromosome IV and Elong on chromosome V) may corre-
spond to here reported hotspots on chromosomes IV (10.21 
cM and 12.9 cM) and V (26.27 cM). These loci co-localize 
with known QTLs that determine the transcript accumulation 
of aliphatic glucosinolate biosynthetic genes and the accumu-
lation and structure of aliphatic glucosinolates (Wentzell et 
al., 2007). However, another study indicated that expression 
QTL (eQTL) hotspots may not overlap in different popula-
tions (Cubillos et al., 2012).

A region on the short arm of chromosome IV is 
responsible for the major proportion of metabolic 
variation

To identify major effects on metabolism, a PCA was per-
formed. The first four principal components explained 41, 20, 
7.4, and 5.6% of the variance, respectively. The top loading 
metabolites of PC1 are unknown MSTs 124, 40, 222, and 105, 
gentiobiose, and galactinol, and for PC2 unknown MSTs 90, 
74, 155, 40, and 85 (Supplementary Data S11). The first two 
principle components separated the samples into two nar-
row clusters. Labeling the samples according to extraction 
batches, measurement time point, or the two RIL subsets did 
not explain the clustering (Supplementary Data S12). Hence, 
samples were labeled according to the genotype information 
sequentially for all 138 markers (Supplementary Data S12). 
The allelic distribution at marker ‘MASC05042’ on the short 
arm of chromosome IV (12.90 cM) closely matches the clus-
tering (Fig. 3). All markers in a region of ~23.38 cM, ranging 
from ‘MASC02820’ to ‘MASC02668’, display a similar pat-
tern, indicating that this region contributes to a large pro-
portion of the overall metabolic variation. To investigate this 
effect further, PCA scores were included in the QTL analysis to 
identify genomic regions of high importance affecting multi-
ple correlated metabolites, yielding 13 loci significantly associ-
ated with the first four principal components (Supplementary 

Data S8). Three genomic regions were associated with PC1 
responsible for the largest proportion of variance (41%). One 
QTL was identified on chromosome IV, spanning a region of 
25 cM. Another QTL of 14 cM was located on chromosome 
V. The most prominent QTL for PC1 was identified on the 
short arm of chromosome IV (12 cM) with ‘MASC05042’ as 
the nearest marker to the LOD peak. Its confidence interval 
spans 2.7 cM and includes several mQTLs for PC1 loadings. 
The PC1 QTL is localized within the mQTL hotspot region 
on the short arm of chromosome IV that is responsible for 
the major clustering in the PCA (Table 2; Supplementary 
Data S12). In previous studies, mQTL hotspots were found at 
similar positions (Lisec et al., 2008; Rowe et al., 2008; Joosen 
et al., 2013). The FRIGIDA (FRI; AT4G00650) locus, which 
encodes a major determinant of Arabidopsis flowering time 
(Johanson et al., 2000), is located ~8.8 cM (1.9 Mbp) distal to 
‘MASC05042’ (marker ‘F6N23ID’ detects a polymorphism 
within FRIGIDA). The PC1 QTL displays a very sharp peak 
with a steeply declining LOD profile and the FRIGIDA locus 
is not included within its confidence interval (Supplementary 
Fig. S4). Moreover, the top five loadings of PC1 share simi-
lar LOD profiles. Considering these facts, it is rather unlikely 
that allelic variation of FRIGIDA is causal for the observed 
complex metabolic variation conditioned by the QTLs on 
the short arm of chromosome IV. In contrast, these findings 
indicate that another, as yet unknown, master regulatory gene 
of seed metabolism or a major effector of seed development 
that has profound consequences on metabolite composition 
(e.g. through differences in size of certain tissues) is located in 
the identified region of chromosome IV and is responsible for 
major parts of the observed phenotypic variation.

As an entry into the identification of promising candidate 
regulatory genes for further analyses, all 567 genes within 
the confidence interval of the hotspot on chromosome IV 

Fig. 3. Principal component analysis of metabolite data. Score plot of the 
first two principal components PC1 and PC2 explaining 41% and 20% 
of variance of the data set, respectively. Samples were colored according 
to the genotype information on chromosome IV/marker: ‘MASC05042’ 
(12.90 cM). Black, red, and green circles correspond to Col-0, C24, and 
heterozygous alleles, respectively. Data were normalized, Pareto scaled, 
and mean centered prior to the calculation of the principal components.
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were analyzed for gene ontology (agriGO, bioinfo.cau.edu.
cn/agriGO/; Du et al., 2010) and matched against the plant 
transcription factor database (PlnTFDB 3.0, plntfdb.bio.uni-
potsdam.de; Riaño-Pachón et al., 2007). Several genes were 
annotated with kinase or phosphatase activity, but annota-
tions gave no direct hints of seed metabolic processes. A total 
of 38 annotated transcription factors are located within the 
hotspot (Supplementary Data S13). According to the data 
accessible in the Arabidopsis eFP Browser 2.0 (www.bar.uto-
ronto.ca/efp2/Arabidopsis/Arabidopsis_eFPBrowser2.html, 
last accessed 16 February 2017 , Winter et al., 2007), 12 of them 
display a high relative expression in mature and/or develop-
ing Arabidopsis seeds (Table 3). Three of them, AT4G01120, 
AT4G01280, and AT4G02640, are highly or predominantly 
expressed in mature (and developing) seeds. A particularly 
interesting candidate is AT4G02640, which encodes a basic 
leucine zipper transcription factor, (bZIP10). bZIP10 has 
been shown to interact with ABI3 (AT3G24650), a central 
transcriptional regulator of seed maturation (MAT) genes in 
Arabidopsis, and to activate seed storage protein gene expres-
sion synergistically (Lara et al., 2003). Heterodimerization 
of bZIP53 with bZIP10 significantly enhances DNA bind-
ing activity and produces a synergistic increase in target gene 
activation (Alonso et al., 2009). Furthermore, these bZIP het-
erodimers interact with ABI3, which further increases MAT 
gene activation. Comparing the C24 and Col-0 alleles of 
bZIP10, several polymorphisms (synonymous substitutions) 
and more interestingly a 7 bp insertion in the putative promo-
tor region of C24 were detected (Supplementary Data S10).

In conclusion, the results provided by this study substan-
tially enhance our current knowledge about Arabidopsis seed 
metabolism and natural variation of complex traits. It provides 
a broad and solid basis for further studies towards broadening 
the knowledge of factors mediating or regulating plant seed 
metabolism: detailed investigations can immediately be initi-
ated on the enzyme-encoding candidate genes identified here; 
metabolic factors, such as transporters or regulators, may be 
selected via further database searches. Furthermore, upon con-
firmation and fine mapping of detected mQTLs, for example 
by the use of introgression lines (ILs), novel factors of hith-
erto unknown function can be identified. Finally, the evidence 

provided of a master regulatory locus of seed metabolism on 
the short arm of chromosome IV and the hints towards a cor-
responding candidate transcription factor gene are of particu-
lar interest as they provide a direct entry into further unraveling 
of important processes of seed development and maturation.
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