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Abstract

Accounting for the interannual climatic variations is a well-known issue for simulation-based

studies of environmental systems. It often requires intensive sampling (e.g., averaging the

simulation outputs over many climatic series), which hinders many sequential processes, in

particular optimization algorithms. We propose here an approach based on a subset selec-

tion in a large basis of climatic series, using an ad-hoc similarity function and clustering. A

non-parametric reconstruction technique is introduced to estimate accurately the distribution

of the output of interest using only the subset sampling. The proposed strategy is non-intru-

sive and generic (i.e. transposable to most models with climatic data inputs), and can be

combined to most “off-the-shelf” optimization solvers. We apply our approach to sunflower

ideotype design using the crop model SUNFLO. The underlying optimization problem is for-

mulated as a multi-objective one to account for risk-aversion. Our approach achieves good

performances even for limited computational budgets, outperforming significantly standard

strategies.

1 Introduction

Using numerical models of complex dynamic systems has become a central process in many

fields, including engineering or natural sciences. It is now an essential tool for water resource

management, adaptation of anthropic or natural systems to a changing climatic context or the

conception of new production systems.

Many times, the objective pursued by model users amounts to solving an optimization

problem, that is, find the set of input parameters of the model that maximizes (or minimizes)

the output of interest (cost, production level, environmental impact, etc.). Examples of such

problems abound with environmental models, including water distribution systems design [1]

or agricultural watershed management [2]. In agronomy, in the past two decades crop models

have received a growing attention [3–6], as they can be used to help improve the plant perfor-

mances, either through cultural practices [7, 8] or model-assisted plant breeding [9, 10].
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Within the wide range of potential approaches to solve such optimization problems, black-
box optimization methods have proven to be popular in this context [9, 11], in particular

because they are in essence non-intrusive: they only require pointwise evaluations of the

model at hand (output value for a given set of inputs), as opposed to knowing the underlying

mechanisms of the model, derivative information, etc. This greatly facilitates implementation

and avoids developping taylored algorithms.

However, a well-known difficulty, shared by many agricultural or ecological models users,

lies in dealing with climatic information. Many models require series of measures of precipita-

tion, temperature, etc., as input variables: typically, a crop model requires day-to-day measures

over the agricultural season. Those inputs are particularly crucial for agricultural or ecological

models, for which the climate has a preponderant impact on the system. To avoid drawing

conclusions biased by the choice of a particular set (e.g., year) of climatic data, scenarios

approaches can be used, duplicating the analysis for a small number of distinct climates [12,

13]. Alternatively, one may compute utility functions based on the model outputs over a

(large) number of climatic datasets [14, 15]. This avoids the potentially challenging task of

identifying scenarios, but requires intensive computation, as the number of datasets must be

large enough to obtain a stable estimation of the utility (see for instance [8] for a discussion on

uncertainty propagation on agro-ecosystem models). This approach rapidly becomes compu-

tationally prohibitive if the analysis is embedded in an optimization loop, even for moderately

complex models.

A natural solution is to treat the climate as a random variable, which allows the use of the

robust (or noisy) optimization framework (see e.g. [1]). However, if readily available codes

abound for continuous, box-constrained parameters and deterministic outputs, solutions

become scarce for systems depending on stochastic phenomena. Besides, the problem formu-

lation becomes more complex, as typically risk-aversion preferences need to be accounted for

[8, 15].

In this work, we propose to address the issue of propagating climatic uncertainties in an

optimization algorithm with a reasonable computational cost. Our approach is based on a sub-

set selection in a large basis of climatic series (Section 3.1). A non-parametric reconstruction

technique is introduced to estimate accurately the distribution of the output of interest based

on this subset (Section 3.2). Our solution is designed as non-intrusive and generic, i.e. trans-

posable to most models with climatic data inputs and to most black-box optimization solvers,

while allowing parallel computing.

As an application problem, which we use as a running example through this article, we

consider the optimization of phenotypes of sunflower (or ideotype design, see [11] for a

review of recent developments in this research area). Plant performance (e.g., yield), com-

puted using the crop model SUNFLO [16], is maximized with respect to its morphological

and/or physiological traits. To account for risk-aversion, the problem is formulated as a

multi-objective one.

The rest of this paper is organized as follow: Section 2 briefly reviews previous work on phe-

notype optimization, describes the SUNFLO model and the multi-objective optimization for-

mulation to solve the problem at hand. Section 3 is dedicated to the optimization algorithm.

Sections 4 provides the experimental setup and 5 numerical results.

2 Sunflower phenotype optimization

In this section, we first describe briefly the SUNFLO model and corresponding climatic data.

Then, we define an optimization problem to account for climatic uncertainty.

Optimization of black-box models with uncertain climatic inputs
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2.1 Model definition

SUNFLO is a process-based model which was developed to simulate sunflower grain yield (in

tons per hectare) and oil concentration as a function of climatic time series, environment (soil

and climate), management practices and genetic diversity [16]. It is implemented in the

RECORD project [5] which is dedicated to agro-ecosystems studies. It allows to assess the per-

formance of sunflower cultivars in agronomic conditions, hence can be used to perform varie-

tal selection or design.

A sunflower cultivar is represented by a combination of eight genetic coefficients, which are

the inputs to be optimized. They describe various aspects of crop structure or functioning:

phenology, plant architecture, response curve of physiological processes to drought and bio-

mass allocation. We assume that the coefficients can take continuous values between a lower

and an upper bound, determined from a dataset of existing cultivars. The variables and their

domain of variation are reported in Table 1.

As climatic inputs, SUNFLO uses daily measures over a year of five variables: minimal and

maximal temperatures (Tmin and Tmax, ˚C), global incident radiation (R, MJ/m2), evapotrans-

piration (E, mm, Penman-Monteith [17]) and precipitations (P, mm). Note that the model

actually uses only the data corresponding to the cultural year (for sunflower, April to October,

180 days). Fig 1 provides an example of such data.

We denote x 2 X � Rd a particular phenotype, X being the hyper-rectangle defined by the

bounds, and c = {Tmin, Tmax, R, E, P} 2 O a given climatic series. Here, c can be seen as a matrix

of size 5 × 180. Hence, the yield can be seen as a function of the phenotype and the climatic

series:

y : X� O ! Rþ

x; c 7� ! yðx; cÞ:
ð1Þ

In Section 3, we denote by y(X, C) ≔ (y(xi, cj))1 � i � I, 1 � j � J the I × Jmatrix of yield values

for a set of phenotypes X = {x1, . . .,xI} and a set of climatic series C = {c1, . . ., cJ}.
In the following, we consider that the set of climatic series O is discrete, since we use his-

toric climatic data (as opposed to using a stochastic generator for instance [18]). We note:

Card(O) = N the number of available series for the study.

2.2 Optimization under climatic uncertainty

From a farmer point of view, the objective would be to find a phenotype that maximizes the

yield for the year to come, without knowing in advance the climate data. Let C be the climatic

series of the upcoming year (the upper case denoting a random variable); we consider in the

following that C is uniformly distributed over O. The yield y(x, C) is then also a random

Table 1. Phenotypic coefficients and the bounds used for optimization.

Description, name and unit Min Max

Temperature sum from emergence to the beginning of flowering (TDF1, ˚C) 765 907

Temperature sum from emergence to seed physiological maturity (TDM3, ˚C) 1540 1830

Number of leaves at flowering (TLN) 22.2 36.7

Light extinction coefficient during vegetative growth (K) 0.780 0.950

Rank of the largest leave of leaf profile at flowering (LLH) 13.5 20.6

Area of the largest leave of leaf profile at flowering (LLS, cm2) 334 670

Threshold for leaf expansion response to water stress (LE) -15.6 -2.31

Threshold for stomatal conductance response to water stress (TR) -14.2 -5.81

https://doi.org/10.1371/journal.pone.0176815.t001
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variable (which we denote in the following Y(x)), which makes its direct maximization with

respect to x meaningless. A natural formulation is to maximize the yield expectation:

ðPEÞ max
x2X
E yðx;CÞ½ � ¼ max

x2X
E YðxÞ½ � ¼ max

x2X

1

N

XN

i¼1

yðx; ciÞ: ð2Þ

However, in general, a farmer also wishes to integrate some prevention against risk in its

decision. Such a problem is often referred to as robust optimization in the engineering litera-

ture (see for instance [19] for a review). In econometrics, this is many times handled by utility

functions [20, 21], which offer an automated trade-off between average performance and risk

aversion. However, in order to obtain several solutions ranging from risk neutral to highly risk

averse, a solution is to consider this problem as multi-objective, by introducing a second crite-

rion to maximize that accounts for the risk [15]. We consider the conditional value-at-risk

(CVaR, [22]), defined as:

CVaRa YðxÞ½ � ¼ E YðxÞjYðxÞ � Qa YðxÞ½ �½ �: ð3Þ

For the sunflower application, CVaRα is the average yield over the (N × α)-th worst years with

the usual definition of the quantile: P½Y � QaðYÞ� ¼ a, and α 2 (0, 0.5]. Note that in general, a

CVaR provides an information that is close to the one of a quantile, but enjoys better stability

anbd regularity [22].

The multi-objective optimization problem is then:

ðPECÞ
maxx2X E YðxÞ½ �

maxx2X CVaRa YðxÞ½ �

(

ð4Þ

3 Optimization with a representative subset

The two objective functions, E½YðxÞ� and CVaRα[Y(x)], require running the SUNFLO simula-

tor N times every time a new phenotype x is evaluated. Embedded in an optimization loop,

which typically requires thousands to millions of calls to the objective functions, this evaluation

step becomes prohibitive. We propose to address this problem by replacing the large climatic

dataset O by a small representative set OK. OK is chosen prior to optimization (Section 3.1);

then, the optimization algorithm is run using OK and a specific inference strategy (Section 3.2).

Fig 1. Dataset of the year 2009, Lusignan.

https://doi.org/10.1371/journal.pone.0176815.g001
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3.1 Choosing a representative subset of climatic data

To select our subset, we propose to define a distance (or, conversely, a similarity) between two

climatic series, then choose a set of series far from each other using clustering algorithms.

3.1.1 Computing dissimilarities between climatic time series. A classical tool for time

series analysis is an algorithm called Dynamic Time Warping (DTW, [23]). In short, DTW

computes distances between time series, allowing two time series that are similar but locally

out of phase to align in a non-linear manner, by matching events within a given window. Fig 2

illustrates this concept on two Tmax curves. This feature is critical in our context, as for

instance two rain time series containing both a large rain event at close dates will have a similar

effect on crop, hence should be considered as close to each other.

Given two climatic series ci and cj, five distances can be computed with DTW, one for each

variable: d(ci, cj)Tmin, d(ci, cj)Tmax, d(ci, cj)R, d(ci, cj)E and d(ci, cj)P.

However, these distances are not sufficient, since two climatic series can be far from each

other with respect to the DTW distance yet lead to the same outputs if some key features with

respect to the model are similar. Unfortunately, these features are problem-dependent and in

general unknown, even to experts. Hence, we propose to define a sixth, model-dependent dis-

tance. To do so, we choose first a small set of l inputs: B ¼ fx1; . . . ; xlg. Typically, B can be

chosen by Latin Hypercube Sampling (LHS, [24]) to “fill” the search spaceRd and obtain a

large variety of input values. For this set, the output is computed for all the climatic series.

Then, the model-based distance is simply the Euclidean distance with respect to y:

dðci; cjÞ
M
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

l

Xl

k¼1

yðxk; ciÞ � yðxk; cjÞ
� �2

v
u
u
t : ð5Þ

Note that this distance strongly depends on the choice of B. Based on a space-filling design, it

aims at being relevant on average overX, but might be misleading locally. We address this spe-

cific point in Section 3.3.

To avoid scaling issues and attribute equal importance to all variables, we use the normali-

zation procedure described in [25], which works as follow: Let D be a N × Nmatrix of

Fig 2. DTW algorithm applied to two series of Tmax: Avignon in 1985 (upper curve, left scale) and Lusignan in 2012 (bottom curve, right scale).

The dotted lines represent the optimal matching computed by DTW, for a window size of seven days.

https://doi.org/10.1371/journal.pone.0176815.g002
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distances (with values dij = d(xi, xj), dij = djj and dii = 0). We first compute a corresponding sim-

ilarity matrix S, with values:

sij ¼ �
1

2
dij �

1

N

XN

k¼1

dik þ dkj
� �

þ
XN

k¼1

XN

k0¼1

dkk0

" #

:

Then, we normalize S with:

�sij ¼
sij
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sii þ sjj

p ;

and the normalized dissimilarity matrix �D has elements defined as:

�dij ¼ �sii þ �sjj � 2�sij ¼ 2 � 2�sij:

Finally, we combine the six dissimilarities into a single scalar using a convex combination:

dij ¼ aTmin
�dTmin
ij þ aTmax

�dTmax
ij þ aP

�dPij þ aE
�dEij þ aS

�dSij þ aM
�dM
ij ; ð6Þ

with aTmin
þ . . .þ aM ¼ 1. In the following, we use aM ¼ 1=2 and the other weights equal to

1/10, to give an equal weight to the model-based distance and the DWT distances.

3.1.2 Choosing a representative subset using classification. Once the matrix of dissimi-

larities (δij)1 � i, j � N is computed, most unsupervised clustering algorithms can be used to

split the set of climatic series O into subsets. However, a difficulty here is that the centroids of

the clusters cannot be computed. Hence, we use a variation of the k-means algorithm that only

requires dissimilarities to the centroids. We follow the approach described in [25].

The algorithm divides the set O into K classes C1
; . . . ; CK

. A class Ck
contains Nk elements

fck
1
; . . . ; ckKg. Any element c 2 O is uniquely attributed to one class and we have:

PK
k¼1

Nk ¼ N.

For each class k, the most central element ωk is chosen to define the representative set, hence:

OK = {ω1, . . ., ωK}.

3.2 Non-parametric reconstruction of distributions

Now, we assume that when a new input x is considered, one may compute the outputs corre-

sponding to the representative set: y(x, OK). The next step is to obtain accurate estimations of

the objective functions E½YðxÞ� and CVaRα[Y(x)] based on these values.

Computing directly the objective functions would lead to large errors, in particular for

CVaRα[Y(x)], that requires an accurate representation of the tail distribution. A natural alter-

native is to infer a distribution on the small data set, and compute the objectives on the distri-

bution. However, in the sunflower case the form of the empirical distribution (Fig 3) does not

readily call for a given parametric model, and misspecifying the distribution shape may result

with large bias.

Hence, we propose to infer the distribution using a non-parametric method, by re-using

the data computed for the classification step, that is, the output matrix yðB;OÞ. To do so, we

assume a mixture model for y (each component corresponding to a class Ck
):

fYðxÞðyÞ ¼
XK

k¼1

Nk

N
fYkðxÞðyÞ; y 2 R; ð7Þ

f standing for the probability density function and Yk(x) being the output within the class k.

Optimization of black-box models with uncertain climatic inputs
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We decompose further Yk(x) as the sum of the output value at the representative element

and a residual term:

YkðxÞ ¼ yðx;okÞ þ εkðxÞ: ð8Þ

The intra-class distribution is then characterized by the residuals εk(x), which determine the

form, spread (or amplitude), and bias (i.e., difference between the average value and the value

for the representative element). All these elements vary from one class to another, which advo-

cates the use of non-parametric approaches. To model εk(x), we introduce the weighted vari-

ance of the yield over the representative set:

s2
KðxÞ ¼

1

N

XK

k¼1

Nk yðx;okÞ �
1

N

XK

j¼1

Njyðx;ojÞ

 !2

: ð9Þ

Note that for a new phenotype x, the only data available is y(x, ωj). We then define averages of

normalized residuals:

�εk ¼ �εk
1
; . . . ; �εkNk

� �
; with �εkj ¼

1

l

Xl

i¼1

εkj ðxiÞ
sKðxiÞ

: ð10Þ

and the output is approximated, with i uniformly taken from ⟦1, Nk⟧, by:

Ŷ kðxÞ ¼ yðx;okÞ þ sKðxÞ � �εki : ð11Þ

Fig 4 illustrates the reconstruction technique for a given (randomly chosen) phenotype, by

showing how the residuals corresponding to each class are used to obtain the estimated distri-

bution. We can see that the range and shape of the residuals vary considerably from one class

to another. Also, their distributions around the representative element differ: as the residuals

do not have a zero mean, the value of the representative element is not necessarily central for

Fig 3. Actual and estimated CDFs of the yield of a given phenotype.

https://doi.org/10.1371/journal.pone.0176815.g003
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each class. Comparing the reconstructed (Fig 4, left) and actual (right) distributions, we see

that the mixture is globally the same on both graphs.

Fig 3 shows the cumulative distribution function (CDF) of the actual yield and of two esti-

mations: using the method described above and a simple parametric method, which consists

in assuming a Gaussian distribution of the yield. The empirical CDF corresponding to the sub-

set values only is also depicted, with unequal steps to account for the different number of ele-

ments in each class.

We first notice that the subset data is by itself insufficient to evaluate accurately the mean or

the CVaR. Then, we see that the actual distribution does not seem to belong to a known distri-

bution, and using a normal distribution introduces a large bias. Inversely, using a non-

parametric reconstruction allows us to match the shape of the actual distribution.

In our study, we found that this reconstruction method provided a satisfying trade-off

between robustness, simplicity and accuracy. Yet, many refinements would be possible at this

point, for instance by introducing intra-class rescaling (different normalization for each class),

bias correction, or using the distance from the phenotype x to the basis B.

3.3 Optimization: A two-step approach

Finally, the multi-objective optimization problem can be solved with any black-box algorithm

for E½Ŷ ðxÞ� and CVaRa½Ŷ ðxÞ�, with Ŷ ðxÞ a mixture of Ŷ 1ðxÞ; . . . ; Ŷ KðxÞ. However, the objec-

tive estimates are based on the phenotype basis B, which is sampled uniformly over X to offer

a general representation of the phenotype space. This feature is important at the beginning of

the optimization to ensure that the optimizer does not get trapped into poorly represented

regions. However, as the optimizer converges towards the solution, the search space becomes

more narrow, and a substantial gain in performance can be achieved by modifying the esti-

mates so that they are more accurate in the optimal region.

Fig 4. Estimated yield distribution of a given phenotype. The colours show the different classes, and the vertical bars the output values for the

representative elements.

https://doi.org/10.1371/journal.pone.0176815.g004
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The strategy we adopt to overcome this problem is to introduce, during the optimization

procedure, a step of re-evaluation of averages of normalized residuals �εk (Eq 8). First, we run

the optimization with the initial basis B. Then, we select l new phenotypes from the obtained

Pareto set to form B0 and we evaluate yðB0;OÞ and the new version of �εk by performing N × l
simulations. Finally, we restart the optimization with the new estimates of �εk. We have found

(Section 5) that this two-step strategy was sufficient on our problem, while relatively easy to

implement.

4 Experimental setup

4.1 Climatic dataset

We used historic climatic data from five French locations where sunflower crop frequent

(Reims, Dijon and Lusignan that are in the north of the country, and in Avignon and Blagnac

in the south, see Fig 5) from 1975 to 2012. This resulted in a set O of size N = 190.

4.2 Climate subset selection

We used the R package dtw [26] to compute the distances. The window size (that is, the maxi-

mum shift allowed) is the main influential parameter of the method. We used here expert

Fig 5. Location of the five French stations for the historic climatic data.

https://doi.org/10.1371/journal.pone.0176815.g005
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knowledge to choose it based on the sunflower phenology: for precipitation, a window of ±3

days is used; for the other variables, a window of ±7 days is chosen (e.g. we considered that a

weekly shift on temperature changes little the yield). The phenotype set B is chosen as a

10-point LHS; hence, for this step the method required 1,900 calls to the SUNFLO model.

Then, a k-means algorithm is run. Since it provides a local optimum only, we performed

several restarts to achieve a good robustness. Several number of classes K were tested; we

found empirically that K = 10 provided a satisfying trade-off between the representation capa-

bility of the subset and the computational cost during the optimization loop.

4.3 Optimization setup and comparison benchmark

To assess the validity of our approach, we conducted an empirical comparison with two alter-

natives: a random search and a black-box optimization, both based on the full set of climate

series. We compare the different approaches based on an equal number of calls to SUNFLO

(that is, we do not consider the other time costs related to each approach). We consider three

budgets, which we refer to as large (380,000), medium (95,000) and small (23,750).

Our approach (denoted two-step in the following) uses the MOPSO-CD metaheuristic

(Multi-Objective Particle Swarm Optimization with Crowding Distance, [27]), available in the

R package mopsocd. Its two main parameters are the population size and number of genera-

tions (their product being equal to the number of function evaluations, i.e. the budget). A stan-

dard optimization based on all the series is also performed using the original MOPSO-CD

algorithm (henceforth full MOPSO). Random search is based on optimized Latin hypercube

sampling (LHS) to fill the search spaceX using the R package lhs.

For each budget, we define the number of iterations and the population size for the full and

two-step approaches. As a rule-of-thumb, we set the number of iterations to approximately

five times the population size [28]. For the two-step algorithm, each evaluation of the objec-

tives requires ten SUNFLO runs (while the other approaches require 190 runs), which allows a

larger population and number of iterations, but the initial and intermediate learning steps

have a 10 × 190 cost. Table 2 reports the detailed setups for each budget and algorithm.

Since all the algorithms used are stochastic, each optimization experiment is replicated ten

times to assess the robustness of the results.

5 Results and discussion

5.1 Climate subset selection

Fig 6 shows the clusters obtained with the approach described in Section 3.1. in terms of loca-

tion and average yield. Three clusters (1, 6 and 8) consist of a majority of series from the south

Table 2. Parameters of the different approaches algorithms depending on the computational budget.

Optimization experiment Budget Nb of iterations Pop size Real nb of simulations

Random (or LHS) small - 125 23,750

medium - 500 95,000

large - 2,000 380,000

Full MOPSO-CD small 25 5 24,700

medium 50 10 96,900

large 100 20 383,000

Two-step MOPSO-CD small 71(×2) 14 23,960

medium 152(×2) 30 95,600

large 308(×2) 61 380,780

https://doi.org/10.1371/journal.pone.0176815.t002
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of France (Avignon and Blagnac, hence on average hotter and drier), four from the north (4, 5,

7 and 10) and three with mixed locations.

The average yield provide a complementary information on the clusters. Overall, the clus-

ters cover a large range of yields, which distinguishes series from the same locations (1 and 5

or 4 and 9). Note that integrated quantities, such as evapotranspiration annual average do not

explain well the different classes. Especially, there is a known high impact of rain episodes and

their location in time, which may be “seen” by our composite distance, but is challenging to

display here.

5.2 Phenotype optimization

5.2.1 Algorithm performance assessment. Now, we compare the performances of the

approaches described in Table 2. We use a classical multi-criteria indicator (hypervolume) that

measures the volume of the objective space behind the Pareto front (the larger the better, see

for instance [29] for details). Fig 7 show the indicators of the different runs in the form of

boxplots.

Fig 6. Clusters split by locations in France. Average yields, computed on the base B and the set of climates, are given above the bars.

https://doi.org/10.1371/journal.pone.0176815.g006

Fig 7. Performance of the different methods for the three budgets considered.

https://doi.org/10.1371/journal.pone.0176815.g007
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For the small and medium budgets, the two-step approach clearly outperforms the other

approaches (with the exception of two outliers with the small budget). For the large budget, we

see that the regular MOPSO-CD performs slightly better, which is expected. Indeed, as soon as

there is no necessity of parsimony, using approximate objectives instead of actual ones tends

to slow down, rather than accelerate, convergence. However, we can conclude that our two-

step approach with medium budget performs almost as well as the regular approach with large

budget, hence for a quarter of the budget. In the small budget case, which is likely to happen

when more expensive environmental models (time-wise) are considered, our approach still

provides reasonably good results, while the classical optimization fails at providing a better

performance than random search.

5.2.2 Sunflower ideotype analysis. Finally, we characterize the results on the phenotype

space. We compare here the Pareto set obtained by merging all the runs (which can be consid-

ered as close to the actual solution) with one run of the two-step method; we chose the run on

the medium budget with the median performance. For readability, we only consider a subset

of the Pareto set of size five, equally spaced along the Pareto front. The Pareto fronts and sets

are represented in Fig 8.

We can see first that considering both the expectation and CVaR for optimization leads

to a large variety of optimal phenotypes. Looking back at the plant characteristics corre-

sponding to those solutions, the optimum value for three traits had little variability, mean-

ing that those traits were important plant characteristics for crop performance in the tested

environments. Those traits depicted plants adapted to water deficit: a late maturity (TDM3),

Fig 8. Left: Pareto fronts obtained by the full MOPSO-CD (circles) and the two-step (triangles) approaches, with large and medium budgets,

respectively. The bold symbols correspond to a subset of five optimal phenotypes that are shown on the figures on the right, where each line represents a

phenotype.

https://doi.org/10.1371/journal.pone.0176815.g008
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largest leaves at the bottom of the plant (LLH) and a conservative strategy for stomatal con-

ductance regulation (TR). The five other traits (TDF1, TLN, K, LLS, LE) displayed variabil-

ity in optimal values, which was identified as the basis of the performance/stability trade-off

(expectation/CVaR). Here, the traits (except TLN) vary monotonically along the Pareto

front.

Distinct plant types could be identified in the phenotype space. For example, the pink-red
plant type had an early flowering (TDF1), a low light extinction efficiency (K) and a low plant

leaf area (LLS); those characteristics correspond to a conservative resource management strat-

egy. In an opposite manner, the light-blue type displays a late flowering, a high efficiency to

intercept light and a larger plant leaf area, characteristics usually associated with a productive

but risky crop type when facing strong water deficit [30]. The strategy associated with plant

types identified from the phenotype space matched their position in the Pareto front, i.e the

light-blue plant type was more efficient but less stable than the pink-red one.

The Pareto set obtained with the two-step method reproduces part of these features: the

fixed traits are similar (except TLN, which is fixed to approximately 0.5, but this parameter is

known to have little impact on the yield, see [16]) and the variation of TDF1 and LLS is well-

captured. However, on this run the method failed at finding the variation of the K and LE

traits: this probably explains why the largest mean and CVaR values (extremities of the actual

Pareto front) are missed.

Overall, the two-step method allowed to identify the few key traits that are responsible for

the cultivar global adaptation capacity as well as secondary traits that support alternative

resource use strategies underlying the yield expectation/stability trade-off.

6 Summary and perspectives

In this article, we proposed an algorithm for the optimization of black-box models with uncer-

tain climatic inputs, and applied it to the design of robust sunflower cultivars. Our approach

does not require any a priori knowledge on the system besides parameter bounds, hence is

usable with most simulators depending on similar climatic data. Using subset selection for the

climates allowed us to reduce substantially the computational time without adding implemen-

tation issues. If bias correction seems inevitable during optimization, we showed that a two-

step strategy was sufficient to achieve convergence: this point is critical as it allows our

approach to be combined with any black-box multi-objective solver.

Nevertheless, we see many opportunities for further improvements. First, one could study

the impact of the number of clusters on the results, which is a recurrent question with cluster-

ing methods. Second, a popular strategy to reduce the computational costs is to combine opti-

mization with the use of surrogate modelling (see for instance [1]). Our approach

straightforwardly extends to such approaches, and would result in very parsimonious algo-

rithms that may be beneficial for expensive simulations. Finally, we have chosen here to use a

two-step strategy to allow the use of “off-the-shelf” optimization solvers. Interlinking optimiza-

tion and learning may improve substantially the efficiency of the method, although requiring

the development of an ad hoc algorithm.

Supporting information

S1 Dataset and Code. Data and software instructions for implementing computer experi-

ments. The dataset used throughout this manuscript and the R code used to call the SUNFLO

model and run the proposed algorithm are provided in a single archive file.
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