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Abstract

Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer’s Disease 

(AD) based on multi-domain data. However, most of existing methods only use data from a single 

auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple 

domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary 

domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) 

framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two 

key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the 

most informative feature subset from multi-domain data, and 2) a multidomain transfer 

classification (MDTC) model that can identify disease status for early AD detection. We evaluate 

our method on 807 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database using baseline magnetic resonance imaging (MRI) data. The experimental results show 

that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving 

the learning performance in the target domain, compared with several state-of-the-art methods.
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Introduction

Alzheimer’s Disease (AD) is characterized by the progressive impairment of neurons and 

their connections, which leads to the loss of cognitive function and the ultimate death. It is 

reported that an estimated 700,000 elderly Americans will die with AD, and many of them 

will die from complications caused by AD in 2014 (Association, A.s 2014). Mild cognitive 

impairment (MCI) is a prodromal stage of AD, where some MCI patients will convert to AD 

over time, i.e., progressive MCI (pMCI), and other MCI patients remain stable, i.e., stable 

MCI (sMCI). Thus, for timely therapy that might be effective to slow the disease 

progression, it is important for early diagnosis of AD and its early stage (i.e., MCI). For the 

last decades, neuroimaging has been successfully used to investigate the characteristics of 

neurodegenerative progression in the spectrum between AD and normal controls (NC). In 

recent years, magnetic resonance imaging (MRI) data are widely applied to early diagnosis 

of AD, which can measure the structural brain atrophy (Fan et al. 2008; Misra et al. 2009; 

Risacher et al. 2009). For instance, several studies have shown that AD patients exhibited 

significant decrease of gray matter volume (Chao et al. 2010; Chetelat et al. 2005; Guo et al. 

2010).

Recently, many machine learning methods based on MRI biomarkers have been used for 

early diagnosis of AD (Cho et al. 2012; Coupé et al. 2012; Cuingnet et al. 2011; Eskildsen et 

al. 2013; Gaser et al. 2013; Li et al. 2014; Liu et al. 2014; Liu et al. 2016a, b; Ota et al. 

2014; Wee et al. 2013; Westman et al. 2013; Westman et al. 2012; Zhang et al. 2016). 

According to the point of view in the machine learning field, the number of training samples 

available to build a generalized model is often overwhelmed by the feature dimensionality. 

In other words, the number of training samples is usually very limited, while the feature 

dimensionality is very high. This so-called small-sample-size problem has been one of the 

main challenges in neuroimaging data analysis, which may lead to over-fitting issue (Zhu et 

al. 2012). To overcome the small-sample-size problem, feature selection has been commonly 

used in many neuroimaging based studies (Cheng et al. 2015b; Eskildsen et al. 2013; Jie et 

al. 2015; Liu et al. 2014; Ye et al. 2012; Zhu et al. 2014), where various feature selection 

methods have been developed to select informative feature subset for reducing the feature 

dimensionality. Especially, in neuroimaging data analysis for disease diagnosis and therapy, 

features may be corresponding to brain regions. In such a case, feature selection can detect 

the regions with brain atrophy, thus potentially useful for timely therapy of brain diseases.

Besides feature selection, many studies have used multimodal data to improve classification 

performance (Jie et al. 2015; Liu et al. 2014; Ye et al. 2012; Zhang et al. 2012; Zhu et al. 

2014). For example, to enhance the generalization of classifiers, some studies have used 

multi-task learning for multimodal feature selection (Jie et al. 2015; Liu et al. 2014; Zhang 

et al. 2012; Zhu et al. 2014). In all these studies using multimodal data, different biomarkers 

are regarded as different modalities, and each modality data is regarded as a learning task 

Cheng et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Jie et al. 2015; Liu et al. 2014). On the other hand, several studies have considered each 

learning approach as a learning task (Zhang et al. 2012; Zhu et al. 2014). All these studies 

suggest that the use of multimodal data for multi-task learning of features can significantly 

improve classification performance and enhance generalization performance of classifiers. 

However, in the clinical practice of AD/MCI diagnosis, the collection of complete 

multimodal biomarkers from each subject is expensive and time-consuming; on the other 

hand, it is relatively easy to get single modality data (e.g., MRI) for different categories of 

subjects. Therefore, in this paper, we address the latter case to build respective classification 

models for early diagnosis of AD.

According to the pathology of AD, it is the progressive impairment of neurons, and MCI and 

advanced AD are thus highly related. In this way, several studies suggested that the learning 

domain of AD diagnosis is related to the learning domain of MCI diagnosis (Cheng et al. 

2015b; Coupé et al. 2012; Da et al. 2014; Filipovych et al. 2011; Westman et al. 2013; 

Young et al. 2013). Also in machine learning community, transfer learning aims to extract 

the knowledge from one or more auxiliary domains and applies the extracted knowledge to a 

target domain (Duan et al. 2012; Pan and Yang 2010; Yang et al. 2007), where the auxiliary 

domain is assumed to be related to the target domain. However, in recent years, several 

transfer learning methods were developed just for AD/MCI diagnosis (Cheng et al. 2015a; 

Cheng et al. 2015b; Filipovych et al. 2011; Schwartz et al. 2012; Young et al. 2013). 

Although these studies suggested that the data from the auxiliary domain can improve the 

classification performance of target domain, the training data are often from just a single 

auxiliary domain. Actually, there are multiple auxiliary domain data that can be available in 

clinical practice. According to the principle of transfer learning, the application of multiple 

auxiliary domain data could further promote the performance of the target domain.

In addition, in our previous works (Cheng et al. 2015a; Cheng et al. 2015b; Cheng et al. 

2012), we mainly consider the prediction of MCI conversion based on a single auxiliary 

domain data, to construct the respective transfer learning model. Although in our work 

(Cheng et al. 2015b) we proposed a domain transfer learning method for classification 

groups such as MCI vs. NC and MCI vs. AD, our proposed method still cannot acquire the 

deep structured information between the target domain and the auxiliary domain. 

Furthermore, few studies considered the heterogeneity of MCI to construct semi-supervised 

classification or regression models (where MCI subjects are regarded as unlabeled samples), 

which shows that using information of MCI diagnosis can help improve performance of 

classifying or estimating AD patients from NCs (Cheng et al. 2013; Filipovych et al. 2011; 

Zhang and Shen 2011). Inspired by the aforementioned issues and successes, in this paper, 

we assume that there is underlying relationship between each binary classification problem 

in the early diagnosis of AD, where each binary classification problem can be regarded as 

target domain, with the other binary classification problems as auxiliary domains. In Fig. 1, 

we illustrate this novel description of relationships between target domain and corresponding 

multi-auxiliary domains for early diagnosis of AD. Then, those single modal data that 

contain multiple data categories can be regarded as multiple related-learning-domains.

In particular, we develop a novel multi-domain transfer learning (MDTL) method for early 

diagnosis of AD, where training data from multiple auxiliary domains are jointly learned 
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with the target domain. Specifically, we first develop a multidomain transfer feature 

selection (MDTFS) model by using the training data from multiple auxiliary domains and 

target domain to select a subset of discriminative features. Then, we build a multi-domain 

transfer classifier (MDTC) that can conjointly apply the training data from multi-auxiliary 

domains and target domain to construct the classifier. The proposed method is evaluated on 

the baseline Alzheimer’s Disease Neuroimaging Initiative (ADNI) database of 807 subjects 

with MRI data. The experimental results demonstrate that the proposed method can further 

improve the performance of early diagnosis of AD, compared with several state-of-the-art 

methods.

Materials

ADNI Database—The data used in the preparation of this paper were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). 

ADNI researchers collect, validate and utilize data such as MRI and positron emission 

tomography (PET) images, genetics, cognitive tests, cerebrospinal fluid (CSF) and blood 

biomarkers as predictors for Alzheimer’s disease. Data from the North American ADNI’s 

study participants, including Alzheimer’s disease patients, mild cognitive impairment 

subjects and elderly controls, are available in this database. In addition, the ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether the 

serial MRI, PET, other biological markers, and clinical and neuropsychological assessments 

can be combined to measure the progression of MCI and early AD. Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The ADNI is the result of efforts of many co-investigators from a broad range of academic 

institutions and private corporations, and subjects have been recruited from over 50 sites 

across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, aged 55 to 

90, to participate in the research approximately 200 cognitively normal older individuals to 

be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people 

with early AD to be followed for 2 years (see www.adni-info.org for up-to-date 

information). The research protocol was approved by each local institutional review board, 

and the written informed consent is obtained from each participant.

Subjects—The ADNI general eligibility criteria are described at www.adniinfo.org. 

Briefly, subjects are between 55 and 90 years of age, having a study partner able to provide 

an independent evaluation of functioning. Specific psychoactive medications will be 

excluded. General inclusion/ exclusion criteria are as follows: 1) healthy subjects:MMSE 

scores between 24 and 30, a Clinical Dementia Rating (CDR) of 0, non-depressed, non-

MCI, and non-demented; 2) MCI subjects: MMSE scores between 24 and 30, a memory 

complaint, having objective memory loss measured by education adjusted scores on 

Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of 
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impairment in other cognitive domains, essentially preserved activities of daily living, and 

an absence of dementia. MCI is a prodromal stage of AD, where some MCI patients will 

convert to AD, i.e., progressive MCI (pMCI), and other MCI patients remain stable, i.e., 

stable MCI (sMCI); and 3) Mild AD: MMSE scores between 20 and 26, CDR of 0.5 or 1.0, 

and meets the National Institute of Neurological and Communicative Disorders and Stroke 

and the Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria 

for probable AD.

In this work, we focus on using the baseline ADNI database with MRI data. Specifically, the 

structural MR scans were acquired from 1.5 Tscanners. We downloaded raw Digital Imaging 

and Communications in Medicine (DICOM) MRI scans from the public ADNI website 

(www.loni.ucla.edu/ADNI), reviewed for quality, and corrected spatial distortion caused by 

gradient nonlinearity and B1 field inhomogeneity. More detailed description can be found in 

(Zhang et al. 2011).

Method

In this section, we first briefly introduce our proposed learning method, and then present our 

proposed multi-modal transfer feature selection (MDTFS) model, as well as an optimization 

algorithm for solving the proposed objective function. Finally, we elaborate the proposed 

multi-domain transfer classification (MDTC) model.

Overview

In Fig. 2, we illustrate the proposed framework for early diagnosis of AD. Specifically, our 

framework consists of three main components, i.e., (1) image pre-processing and feature 

extraction, (2) multi-domain transfer feature selection (MDTFS), and (3) multi-domain 

transfer classification (MDTC). As shown in Fig. 2, we first pre-process all MR images, and 

extract features from MR images as described in the Image Preprocessing and Feature 

Extraction section below. Then, we select informative features via the proposed MDTFS 

method. We finally build a multi-domain transfer classifier using both the target domain and 

multi-auxiliary domains data for the classification of AD and MCI.

Image Preprocessing and Feature Extraction

All MR images were pre-processed by first performing an anterior commissure-posterior 

commissure (AC-PC) correction using the MIPAV software (CIT 2012). The AC-PC 

corrected images were resampled to 256 × 256 × 256, and the N3 algorithm (Sled et al. 

1998) was used to correct intensity inhomogeneity. Then, a skull stripping method (Wang et 

al. 2011) was performed, and the skull stripping results were manually reviewed to ensure 

cleaning of skull and dura. The cerebellum was removed by first registering the skull-

stripped image to a manually-labeled cerebellum template, and then removing all voxels 

within the labeled cerebellum mask. FAST in FSL (Zhang et al. 2001) was then used to 

segment human brain into three different tissues: grey matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). We used HAMMER (Shen and Davatzikos 2002) for registration. 

After registration, each subject image was labeled using the Jacob template (Kabani et al. 

1998) with 93 manually-labeled regions-of-interests (ROIs). Then, for each of 93 ROIs, we 
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computed its GM tissue volume as a feature. As a result, for each subject, we have a 93-

dimensional feature vector for representing it.

Multi-Domain Transfer Feature Selection (MDTFS)

Unlike previous methods that only considered a single auxiliary domain in model training, in 

this work, we use samples of target domain as well as multi-auxiliary domains to build a 

generalized model for feature selection. Hereafter, we denote D as the number of different 

domains with an index d ∈ {1, 2, ⋯, D} throughout the whole paper. Assume that we have 

one target domain T, with NT samples xT,i and the class labels yT,i, denoted as 

, where xT, i ∈ RF is the i-th sample with F features, and yT, i ∈ {+1, −1} 

is its corresponding class label. Also, assume that we have D − 1 auxiliary domains A, with 

 samples  and the class labels  for each auxiliary domain, denoted as 

, where  is the j-th sample with F features of the d-th 

auxiliary domain, and  is the corresponding class label for the d-th auxiliary 

domain. Therefore, by adding up one target domain and D − 1 auxiliary domains, we have D 
domains in total.

In this work, we use a traditional multi-task feature selection method (Obozinski et al. 2006) 

to design our model for feature selection, and use all the available domain data from the 

multi-auxiliary domains as well as the target domain to build a more generalized model. 

Since they are related between the target domain and each auxiliary domain, we need to 

utilize the intrinsic useful correlation information from multi-auxiliary domain, and 

introduce an L2-norm regularizer based on weight vectors (i.e., ) for 

different learning domains, which can capture the correlation information between the target 

domain and multi-auxiliary domains. To learn the common subset of features from all 

domains (i.e., target domain and all auxiliary domains), we also introduce an L2/L1-norm 

regularizer (i.e., ) based on the weight matrix W, where wf is the f-th 

row vector of weight matrix W and is associated with the f-th feature weight across all 

domains). In addition, to keep the useful decision information of itself, we also use the 

‘group sparsity’ regularization of weight matrix for all domains (i.e., 

). Accordingly, the proposed multi-domain transfer feature 

selection (MDTFS) model H(W) can be written as follows:

(1)

where y(d) ∈ RN(d)×1 is the class label vector of the d-th domain (including target domain 

and all auxiliary domains), and x(d) ∈ RN(d)×F is the training dataset of the d-th domain. The 

‘group sparsity’ regularizer matrix||W||1,1 (W ∈ RF×D) can select a discriminative subset of 
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features relevant to self-domain, and  can select a 

common subset of features relevant to all domains. The regularization term 

 can control the similarity of multiple weight vectors between the target 

domain and each auxiliary domain, thus keeping each weight vector of auxiliary domain 

close to the target domain (Zhou et al. 2013). The column vector  is the d-th auxiliary-

domain weight vector, and the column vector wT is the target-domain weight vector. In 

addition, λ1, λ2, λ3 > 0 are the regularization parameters that control the relative 

contributions of the three regularization terms. By minimizing Eq. (1), we can learn a 

converged W from the target domain and multi-auxiliary domain. It is worth noting that, 

because of using ‘group sparsity’, the elements of the weight matrix W will be zero. For 

feature selection, we just keep those features with non-zero weights.

To solve the optimization problem of Eq. (1), we employ an accelerated gradient descent 

(AGD) method (Chen et al. 2009; Nemirovski 2005). To be specific, we decompose the 

objective function of H(W) in Eq. 1 into two parts, i.e., a smooth term S(W) and a non-

smooth term G(W), as follows:

(2)

(3)

Then, we define the generalized gradient update rule as follows:

(4)

where ∇S(Wt) denotes the gradient of S(W) at the point Wt at the t-th iteration, h is a step 

size, 〈W − Wt, ∇S(Wt)〉 = tr((W−Wt) ∇S(Wt)) is the matrix inner product, ||·||F denotes a 

Frobenius norm for matrix, and tr(·) denotes a trace of a matrix. According to (Chen et al. 

2009), the generalized gradient update rule of Eq. (4) can be further decomposed into N 
separate subproblems with a gradient mapping update approach. We summarize the details 

of AGD algorithm in Algorithm 1.

Algorithm 1

AGD algorithm for MDTFS in Eq. (1)

1: Initialization: h0 > 0, η > 1, W0 ∈ RF×D, W̄
0 = W0, h=h0 and α0 = 1.

2: for t = 0,1,2, … until convergence of Wt do:
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3:  Set h = ht

4:  while H(qh(W̄t)) > Qh(qh(W̄t), W̄t), h = ηh

5:   Set ht+1 = h and compute

  Wt+1 = arg minWQht+1(W, W̄t),

   , βt+1 = Wt+1 − Wt,

   

 end-while

6: end-for

Multi-Domain Transfer Classification (MDTC)

After performing MDTFS, we can obtain the most discriminative common features, upon 

which we will build a multidomain transfer classifier (MDTC) for final classification. 

Denote  and  as the new d-th auxiliary and target 

domains, with the corresponding labels denoted as  and , 

respectively. Here, , xq∈RF̄, and F̄ denote the number of features for new d-th 

auxiliary and target domain after feature selection (via MDTFS). However, since we use the 

regularizer of ||W||1,1 in the MDTFS step, the selected features from each domain are 

different. For simplicity, we roughly select same feature subset F̄ for each auxiliary domain 

as the target domain.

Unlike our previous work (Cheng et al. 2015b) that only considered a single auxiliary 

domain in model training of classification. In this work, we will use multi-auxiliary domains 

for aiding the learning task of target domain. Due to the domain distribution relatedness 

between the target domain and each auxiliary domain, Yang et al. (Yang et al. 2007) 

consider that learning a multi-domain transfer classifier f(x) is to learn the “delta function 

Δf(x)” between the target and auxiliary classifiers using an objective function similar to 

SVMs. To combine multi-auxiliary domain classifiers , we 

construct an “ensemble” of auxiliary classifiers . Then, we employed the A-

SVMs model of Yang et al. (Yang et al. 2007) to get the multi-domain transfer classifier, 

which has the following form:

(5)
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where vd ∈ (0, 1) is the weight of each auxiliary classifier , which sums to one as 

. Also, Φ(x) is a kernel-based mapping function, and u is the weight vector of 

target domain classifier. In addition, u′ denotes the transpose of u.

To learn the weight vector u in Eq. 5, we use the following objective function, similar to the 

SVM (Yang et al. 2007):

(6)

where l is the l-th sample in the target domain training subset (xl, yl) ∈ XT, and βl is the 

slack variable that represents the prediction error of objective function of Eq. 6, thus it can 

be used for nonlinear classification. The parameter C balances contributions between 

auxiliary classifier and target-domain training samples. According to (Yang et al. 2007), we 

can solve this objective function in Eq. 6 to obtain the solution for the weight vector u. 

Then, we can obtain the final solution for f(x). In this study,  is trained by SVM, and 

Δf(x) is solved by Eq.5 using the method of kernel learning.

Results

In this section, we first describe experimental settings in our experiments. Then, we show 

the classification results on the ADNI database by comparing our proposed method with 

several state-of-the-art methods. In addition, we illustrate the most discriminative brain 

regions identified by our proposed method.

Experimental Settings

We use the samples of 807 subjects (186 AD, 395 MCI, and 226 NC), for whom the baseline 

MRI data were all available. It is worth noting that, for all 395 MCI subjects, during the 24- 

month follow-up period, 167 MCI subjects converted to AD (pMCI for short) and 228 MCI 

subjects remained stable (sMCI for short). In addition, we consider three binary 

classification problems, i.e., AD vs. NC classification, MCI vs. NC classification, and pMCI 

vs. sMCI classification. For our proposed multi-modal transferring method, we explicitly list 

the target domain and the corresponding auxiliary domains for each classification task in 

Table 1.

In the experiments, we adopt a 10-fold cross-validation strategy to partition the target 

domain data into training and testing subsets. In particular, the target domain samples of 

each classification problem is partitioned into 10 subsets (each subset with a roughly equal 

size), and then one subset was successively selected as the testing samples and all the 

remaining subsets were used for training. To avoid the possible bias occurred during sample 

partitioning, we repeat this process 10 times. We report the average performances in terms of 

area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity 

(SEN), and specificity (SPE).
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We compared the proposed method with a standard SVM (SVM for short), Lasso (Tibshirani 

1996),MTFS (Zhang et al. 2012), and M2TFS (Jie et al. 2015). These methods are listed as 

follows.

• SVM: training samples only from the target domain, and without any feature 

selection before classification stage;

• Lasso: training samples only from the target domain, and the Lasso method 

conducted for feature selection before using SVM for classification;

• MTFS and M2TFS: training samples from the target and multi-auxiliary 

domains, and the MTFS and M2TFS methods conducted for feature selection 

before using the selected classification method in the literatures (Jie et al. 2015; 

Zhang et al. 2012).

The SVM method is implemented using the LIBSVM toolbox (Chang and Lin 2001) with a 

linear kernel and a default value for the parameter C. Also, other competing methods with 

the SVM for classification are implemented using the LIBSVM toolbox, with the same 

settings of parameters as the SVM method. For the Lasso and MTFS methods, we adopt the 

SLEP toolbox (Liu et al. 2009) to solve the optimization problem. In addition, we employ 

the accelerated proximal gradient (APG) method in the literature (Chen et al. 2009) to solve 

the optimization problem of M2TFS. There are multiple regularization parameters of these 

methods (including Lasso, MTFS, M2TFS, and proposed MDTL) to be optimized. All 

regularization parameters of these methods are chosen from the range of P1 by a nested 10-

fold cross-validation on the training data. In the proposed MDTL frame, the weight vd of 

auxiliary classifier  for MDTC is learned within a nested 10-fold cross-validation via a 

grid search in the range of 0 and 1 at a step size of 0.1, and adopted the SVM based linear 

kernel for training the target-domain and auxiliary-domain classifiers. Before training 

models, we normalized features following (Zhang et al. 2011).

Comparison between MDTL and Other Methods

To investigate the effectiveness of the proposed method, we compare the proposed method 

with several state-of-the-art methods. Table 2 shows the classification results achieved by six 

methods, including SVM (traditional SVM), Lasso, MTFS (Zhang et al. 2012), M2TFS (Jie 

et al. 2015), and the proposed method (i.e., MDTL and MDTC). In Table 2, the proposed 

‘MDTL’ method first performs the MDTFS for feature selection and then adopts MDTC for 

classification, while the ‘MDTC’ method performs only MDTC for classification. Also, note 

that each value in Table 2 is the averaged result of the 10-fold cross validation, which was 

performed for ten different times. In addition, we plot the ROC curves achieved by these six 

methods in Fig. 3.

As can be seen from Table 2 and Fig. 3, for three binary classification problems, the 

proposed MDTL method consistently outperforms SVM, Lasso, MDTC, MTFS and M2TFS 

in terms of the classification accuracy, sensitivity, and AUC measures. We also perform 

1P ∈ {0.000001, 0.00001, 0.0001, 0.0003, 0.0007, 0.001, 0.003, 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
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DeLong’s method (DeLong et al. 1988) on the AUC between the proposed method and each 

of other five competing methods, with the corresponding p-values shown in Table 2. The 

DeLong’s test is a nonparametric statistical test for comparing AUC between two ROC 

curves, which can be employed to assess statistical significance by computing z-scores for 

the AUC estimate (Robin et al. 2011; Sabuncu et al. 2015). For both AD vs. NC and MCI vs. 

NC classification tasks, the proposed MDTL method consistently outperforms the 

competing methods in all classification measures. In pMCI vs. sMCI classification, the 

proposed MDTL method outperforms the competing methods except for the specificity. 

Also, in Fig. 3, we can see from the ROC shown for pMCI vs. sMCI classification, which 

implies that the MDTL method can achieve better diagnostic performance in recognizing 

pMCI and sMCI patients than the competing methods. From the results in Table 2 and Fig. 

3, it is clear that the proposed MDTL method can effectively integrate information of target 

domain and multi-auxiliary domains, which can achieve more significant performance 

improvement than the methods that use samples only from the target domain for training.

On the other hand, in Table 2 and Fig. 3, the proposed MDTC method consistently 

outperforms the SVM method in all classification measures for three binary classification 

problems. Also, there are slight differences of performance between the MDTC and Lasso 

method for three classification problems. These results imply that, compared with the case 

of only using SVM for performing classification, using MDTC can also improve the 

diagnostic performance, similar to the case of using the Lasso method for feature selection. 

We can see from Table 2 and Fig. 3, Lasso, MTFS, M2TFS, and MDTL methods also 

outperform the SVM method in all classification measures for three classification problems, 

which suggest that using feature selection on the high-dimensional features before 

performing classification can effectively improve the classification performance. In addition, 

from Table 2 and Fig. 3, MTFS, M2TFS, and MDTL methods can achieve better 

classification performance than the Lasso method, and the MDTL method also outperforms 

both the MTFS and M2TFS methods. These results also suggest that the inclusion of multi-

auxiliary domains can improve the classification performance compared to the case of only 

using target domain, and that our proposed regularization factor based on multidomain 

weight vector is more suitable than the manifold regularization factor for the transfer 

learning problem.

In addition, there is an interesting observation from Table 2 and Fig. 3. Specifically, different 

from conventional studies (Cheng et al. 2012; Coupé et al. 2012; Da et al. 2014; Young et al. 

2013), using pMCI and sMCI subjects as auxiliary domain can also help improve the 

performance of AD and NC classification. The main reason for this observation is that we 

proposed a regularizer (i.e., ) in step of MDTFS, which can use the 

weight vector from each of the multi-auxiliary domains to adjust the weight vector of target 

domain, and combine L2/L1-norm and L1/L1-norm regularizers to select features relevant to 

all domains (including self-domain), followed by using the MDTC based linear kernel SVM 

to keep these selected helpful features for classification. Furthermore, our proposed MDTFS 

model can also keep the target domain as the most important task in classification. 

Therefore, our proposed MDTL method can effectively use related multi-auxiliary domain 

data to improve the performance of target learning domain in early diagnosis of AD.
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Comparison with MDTL and Other Variants

To investigate the relative contributions of the two components (i.e., MDTC and MDTFS) in 

our proposed method, we compare our method with its two variant methods. In Table 3, we 

give the classification measures by our proposed MDTL method, its variant methods 

(MDTC and MDTFS), and SVM (as a baseline method). Note that the proposed ‘MDTL’ 

method first performs feature selection using MDTFS model and then adopts MDTC for 

classification (i.e., MDTFS + MDTC, while the ‘MDTC’ method only performs 

classification using the proposed MDTC model. The ‘MDTFS’ method first performs 

feature selection using MDTFS model and then adopts SVM for classification. In Fig. 4, we 

also plot the ROC curves achieved by different methods. In addition, we also report the p-

values, which are computed by DeLong’s method (DeLong et al. 1988) on the AUC between 

the proposed method and its two variant methods, as well as baseline method, in Table 3. 

From Table 3 to Fig. 4, we can observe that each component can boost the classification 

performance compared with SVM method. However, using feature selection method (i.e., 

MDTFS) can achieve better improvement than the MDTC method for classification. In 

general, our proposed MDTL method that integrates all the two components together 

achieves the best performance.

Discriminative Brain Regions Detection

To evaluate the efficacy of our proposed multi-domain transfer feature selection (MDTFS) 

method in detecting the discriminative brain regions, we compare our proposed MDTFS 

method with the single-domain based feature selection method (i.e., Lasso) and the 

commonly used multi-domain based feature selection methods (i.e., MTFS and M2TFS). 

Table 4 shows the classification performances of four different methods, including Lasso, 

MTFS (Zhang et al. 2012), M2TFS (Jie et al. 2015), and the proposed MDTFS, using 

classification accuracy, sensitivity, specificity and AUC measures. In addition, we also 

compute p-values on the AUC between the MDTFS method and other three methods via 

DeLong’s method (DeLong et al. 1988), as also shown in Table 4. It is worth noting that, for 

fair comparison, we use SVM on the target domain in the classification step for our method 

and competing methods. Also, each value in Table 4 is the averaged result of 10-fold cross-

validation strategy in 10 independent runs. As shown in Table 4, MDTFS, MTFS and 

M2TFS methods can achieve better classification performance than the Lasso method. The 

possible reason could be that MDTFS, MTFS and M2TFS use data from multi-auxiliary 

domains. On the other hand, our proposed MDTFS method outperforms MTFS and 

M2TFSmethods, suggesting that our method can better capture useful information between 

the target domain and multi-auxiliary domains.

Furthermore, we also investigate the most discriminative regions identified by the proposed 

feature selection method. Since the feature selection in each fold was performed only based 

on the training set, the selected features could vary across different cross-validations. We 

thus defined the most discriminative brain regions based on the selected frequency of each 

region over the cross-validations. In Fig. 5, for three classification problems, we list all 

selected brain regions with the highest frequency of occurrence (i.e., each feature and 

selected across all folds and all runs) by MDTL (i.e., MDTFS + MDTC) on template MR 

image. As can be seen from Fig. 5, our proposed MDTL method successfully finds out the 
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most discriminative brain regions (e.g., amygdala, hippocampal formation, entorhinal cortex, 

temporal pole, uncus, perirhinal cortex, cunecus, and temporal pole) that are known to be 

related to Alzheimer’s disease (Davatzikos et al. 2011; Eskildsen et al. 2013; Jie et al. 2015; 

Ye et al. 2012; Zhang et al. 2012; Zhang et al. 2011; Zhu et al. 2014).

Discussion

In this paper, we propose a multi-domain transfer learning (MDTL) method for early 

diagnosis of AD, in which we combine the data from multi-auxiliary domains and target 

domain in both feature selection and classification steps. We evaluate the performance of our 

method on 807 subjects from the publicly available ADNI database and compare our method 

with the state-of-the-art methods. The experimental results show that the proposed method 

consistently and substantially improved the performance of early diagnosis of AD.

Learning with Multi-Domain Data

In the field of neuroimaging-based early diagnosis of AD, multimodal biomarker is widely 

used for the model design of feature selection and classification (Cheng et al. 2015a; Cheng 

et al. 2015b; Hinrichs et al. 2011; Jie et al. 2015; Liu et al. 2014; Suk et al. 2014; Ye et al. 

2012; Zhang et al. 2012; Zhang et al. 2011; Zhu et al. 2014), which can achieve better 

performance than the case of using single-modal biomarker. However, in clinical practice, 

the collection of multimodal biomarker from subject is expensive and time-consuming, and 

hence the size of collected complete multimodal biomarker dataset is often small. On the 

other hand, it is relatively easy to get more single-modal biomarker data (e.g., MRI) that 

contain different categories of subjects. Because of the characteristic of AD cohorts and the 

requirement of the clinical diagnosis of AD, these single modal data are classified as 

multiple learning domains that are related to each other. Some studies also show the 

effectiveness of transfer learning or semi-supervised learning technique in combining these 

data from related learning domains (Cheng et al. 2012; Da et al. 2014; Filipovych et al. 

2011; Young et al. 2013; Zhang and Shen 2011). However, auxiliary data from a single 

related learning domain is often used in the aforementioned studies. In this paper, we 

developed MDTL method to enhance the generalization and accuracy of classifiers for the 

case of singlemodal data with multiple related learning domains,.

To integrate these data with multiple categories of subjects, the transfer learning can be used 

to build the learning model as done in our previous works (Cheng et al. 2015a; Cheng et al. 

2015b; Cheng et al. 2012). However, in our previous works, we only adopted a single related 

domain data as auxiliary domain to help design classification model for MCI conversion 

prediction. For example, in our work (Cheng et al. 2015b), we gave an explanation that the 

domain of classifying pMCI and sMCI subjects was related to the domain of classifying AD 

and NC subjects, but it was only used for MCI conversion prediction. According to the 

pathology of AD and its progression, we extended our previous work (Cheng et al. 2015b), 

by assuming that the classification problem in the target domain is related to each 

classification problem in the auxiliary domains. To validate this assumption, we have listed 

results of our proposed method (MDTL), as well as SDTL1, SDTL2, and Lasso methods, in 

Table 5. For purpose of comparison, we used the Lasso as a baseline method. Also, SDTL1 
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and SDTL2 methods are the variants of our proposed MDTL method performed on single 

auxiliary domain and target domain. As we can see from Table 5, using multiauxiliary 

domain data in the MDTL method can achieve better performance than using single 

auxiliary domain data in both SDTL1 and SDTL2 methods, and the baseline method (i.e., 

Lasso) is inferior to MDTL, SDTL1 and SDTL2 methods. These results make it clear that 

the use of multi-auxiliary domain can effectively improve the performance of early diagnosis 

of AD.

Multi-Domain Transfer Learning Model

To effectively integrate the domain knowledge between target domain and multi-auxiliary 

domain, we introduced the regularizer based on weight vector (i.e., ), 

which can keep the similarity of multi-weight vectors between target domain and each 

auxiliary domain. In addition, we introduced two regularizations of weight matrix for all 

domains (i.e., ||W||1,1 and ||W||2,1) simultaneously, which can select a common feature subset 

relevant to all domains and also keep useful features relevant to self-domain. In this paper, 

we combined the three regularizers for feature selection from target-domain and multi-

auxiliary-domain data, namely Multi- Domain Transfer Feature Selection (MDTFS). To 

evaluate the efficacy of each regularizer, we performed some experiments for testing the 

contribution of each regularizer. In Table 6, we give results of the proposed MDTL method 

for three classification problems using different setting of regularization parameters.

In the MDTFS model, the regularization parameters (i.e., λ1, λ2, λ3) can control the relative 

contribution of the three regularizers. In Table 6, we investigate the contribution of each 

regularizer by setting the respective parameter to zero. For example, we set the 

regularization parameter λ1 to zero (i.e., λ1 = 0), which is used for evaluating contribution 

of the first regularizer. As can be seen from Table 6, combining three regularizers (i.e., λ1, 

λ2, λ3 ≠ 0) can achieve better performance for early diagnosis of AD. Specifically, for three 

classification problems, the minimum reduction of classification performance is without use 

of the second regularizer (i.e., λ2 = 0), while the reduction of classification performance is 

small compared to the case without using the first regularizer (i.e., λ1 = 0) and the case 

without the third regularizer (i.e., λ3 = 0). These results suggest the importance of selecting 

the common feature subset relevant to all domains and keeping the similarity of weight 

vectors between target domain and each auxiliary domain, which also confirms the efficacy 

of using multi-auxiliary domain data.

Strategy for Selecting Feature Subset

Recently, many studies in early diagnosis of AD focus on designing feature selection 

methods to overcome the small-sample- size problem in neuroimaging data analysis (Cheng 

et al. 2015b; Li et al. 2014; Liu et al. 2014; Moradi et al. 2015; Ota et al. 2015; Ye et al. 

2012; Zhu et al. 2014). In this paper, we develop a multi-domain transfer learning (MDTL) 

method that can simultaneously utilize approaches of related multi-domain data and feature 

selection to improve generalization ability of classifiers.

In the MDTL framework, the multi-domain transfer feature selection (MDTFS) is 

developed, which can use the optimal weight matrix W to select informative feature subset. 
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Since we use the regularizer of ||W||1,1 in the MDTFS step, the selected features from each 

domain are different. For simplicity, in the current work, we select the same feature subset 

for each auxiliary domain as the target domain (i.e., Strategy1 in Table 7). Actually, we 

should consider the target domain more than the auxiliary domains in classification task.

To validate the above assumption, we also adopt another strategy for selecting feature 

subset, i.e., keeping just features with non-zero weights from each column weight vector of 

W for all domains (i.e., Strategy2 in Table 7). In Table 7, we list classification results 

obtained by two different strategies. As we can see from Table 7, the MDTL method using 

Strategy2 for feature subset selection can achieve slight improvement, compared with the 

case of using Strategy1. Generally, it is believed that using Strategy2 should be more 

effective than using Strategy1; but, when using the DeLong’s test (DeLong et al. 1988) to 

assess the statistical difference between AUC values of two strategies, we found no 

statistical difference between these two strategies.

To further investigate the difference of using these two strategies, we do a statistical analysis 

on selected features of each domain. Specifically, we count the number of features selected 

across all folds and all runs (i.e., a total of 100 times for 10-fold cross-validation with 10 

independent runs) on the training set. Then, those features with frequency of 100 (i.e., 

always selected in all folds and all runs) are regarded as stable features. Accordingly, we 

compute the average percentage of stable features in the target domain and also those stable 

features in each auxiliary domain, using MDTL method with the Strategy2 for selecting 

feature subset. For AD vs. NC, MCI vs. NC and pMCI vs. sMCI classification tasks, their 

corresponding mean ratios are 83 %, 88 % and 92 %. Similarly, we adopt the Strategy1 to 

select feature subset, and obtained the results that are slightly inferior to the case of the 

Strategy2. This implies that the target domain plays a critical role in the classification 

performance, compared with the auxiliary domain.

Comparison with Previous Methods

To further evaluate the efficacy of our proposed multi-domain transfer learning (MDTL) 

method for early diagnosis of AD, we list a comparison between the MDTL and some 

representative state-of-the-art methods in the recent 5 years (Cho et al. 2012; Coupé et al. 

2012; Cuingnet et al. 2011; Duchesne and Mouiha 2011; Eskildsen et al. 2013; Hu et al. 

2016; Khedher et al. 2015; Liu et al. 2014; Moradi et al. 2015; Ota et al. 2015; Westman et 

al. 2013; Wolz et al. 2011; Zhu et al. 2014), and show them in Table 8. Here, we provide two 

performance measurements (i.e., ACC: Accuracy; and AUC: Area Under the receiver 

operating characteristic Curve) in Table 8. Since it is not available the ACC and AUC from 

the paper of Cuingnet et al. 2011, we just list measurements of sensitivity (SEN) and 

specificity (SPE). Note that, in Table 8, for several studies using multimodal biomarker (Liu 

et al. 2014; Zhu et al. 2014), we report their results using only MRI data if available; 

otherwise, we report their results using multimodal data. Although feature extraction method 

is different for the comparison methods, this comparison also can show the efficacy of 

MDTL method at certain level. In most cases, the AUC and ACC of MDTL method are 

better than those of the comparison methods, indicating that MDTL has better diagnostic 

performance in early diagnosis of AD.

Cheng et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Limitations

The current study is limited by several factors. First, our proposed method is based on the 

single modal (i.e., MRI) biomarker from the ADNI database. In the ADNI database, many 

subjects also have multimodal biomarkers. Also, many status-unlabeled subjects can be used 

to extend our current method. In the future work, we will investigate whether adding more 

auxiliary domain (e.g., multimodal biomarker, and status-unlabeled data) can further 

improve the performance.

Second, considering the small number of training samples, as well as the sensitivity of those 

very local features (i.e., thickness, and tissue density) to noises as well as errors in 

processing pipeline (including skull stripping, tissue segmentation, image registration, and 

regions-of-interest (ROI) labeling), our current study considers only using ROI features, and 

no surface-based cortical thickness features are extracted and used although some studies 

already show the sensitivity of cortical thickness in early diagnosis of AD (Cho et al. 2012; 

Cuingnet et al. 2011; Eskildsen et al. 2013; Querbes et al. 2009; Wee et al. 2013; Wolz et al. 

2011). In the future work, we will consider extracting cortical thickness features from MR 

images and combine with volume-based features for early diagnosis of AD.

Finally, due to the small number of training samples, we adopted only the volume of gray 

matter (GM) tissue in each ROI as a feature and input the MDTL model for early diagnosis 

of AD. However, the study of Cuingnet et al. (Cuingnet et al. 2011) showed that other tissue 

volumetric feature (i.e., white matter (WM) and CSF) also contributed to AD and NC 

classification. Accordingly, we also used all types of volumetric features (i.e., GM + WM + 

CSF) to test the classification performance of our proposed MDTL model, by comparison 

with the MDTL model using only the GM features. In Table 9, we list their respective ACC 

and AUC, and further perform the DeLong’s test (DeLong et al. 1988) on the AUC to test 

their statistical difference, with p-values provided. The results in Table 9 suggest that using 

three types of volumetric features can improve the performance, but the corresponding p-

values show no statistical significant improvement by using three types of volumetric 

features. In future work, we will improve the MDTL model and combine with the 

improvement of neuroimaging pre-processing pipeline to enhance the final classification 

results.

Conclusion

In this paper, we propose a novel multi-domain transfer learning (MDTL) method for early 

diagnosis of AD, which consists of multi-domain transfer feature selection (MDTFS) and 

multi-domain transfer classifier (MDTC). The main idea of our multi-domain transfer 

learning based method is to exploit the multi-auxiliary domain data to improve classification 

performance (e.g., AD vs. NC, MCI vs. NC and pMCI vs. sMCI) in the target domain. Also, 

we further combine the source data from multi-auxiliary domain and target domain to guide 

both feature selection and classification steps. We evaluate our method on the baseline 

ADNI database with MRI data, and the experimental results demonstrate the efficacy of our 

method by comparison with several state-of-the-art methods.
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Fig. 1. 
Our proposed relationships between target domain and auxiliary domains
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Fig. 2. 
Summary of our proposed framework for early diagnosis of AD using multi-domain transfer 

learning (MDTL) method
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Fig. 3. 
ROC curves of different methods for three binary classification problems
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Fig. 4. 
ROC curves of different methods for three binary classification problems
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Fig. 5. 
The most discriminative brain regions identified by the proposed MDTL method for three 

classification tasks. Note that different colors indicate different brain regions
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Table 1

Target domains and corresponding multiple auxiliary domains used in three binary classification tasks. The 

number in each bracket denotes the class label, where +1 denotes positive class and −1 represents negative 

class.

Classification problem Target domain Auxiliary domain

AD vs. NC AD(+1) vs. NC(−1) 1) MCI(+1) vs. NC(−1), 2) pMCI(+1) vs. sMCI(−1)

MCI vs. NC MCI(+1) vs. NC(−1) 1) AD(+1) vs. NC(−1), 2) pMCI(+1) vs. sMCI(−1)

pMCI vs. sMCI pMCI(+1) vs. sMCI(−1) 1) AD(+1) vs. NC(−1), 2) MCI(+1) vs. NC(−1)

Neuroinformatics. Author manuscript; available in PMC 2017 May 25.
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Table 8

Comparison with the state-of-the-art methods in early diagnosis of AD. AUC: area under the receiver 

operating characteristic curve; ACC: accuracy; SEN: sensitivity; SPE: specificity.

Reference Data Feature extraction Result

Our proposed method 186 AD, 226 NC
167 pMCI, 228 sMCI

ROIs of GM AD vs. NC
ACC = 94.7 %, AUC = 0.988
MCI vs. NC
ACC = 81.5 %, AUC = 0.882
pMCI vs. sMCI
ACC = 73.8 %, AUC = 0.796

Hu et al. 2016 188 AD, 228 NC
71 pMCI, 62 sMCI

VBM of GM, WM, and CSF AD vs. NC
ACC = 84.13 %, AUC = 0.9
pMCI vs. sMCI
ACC = 76.69 %, AUC = 0.79

Moradi et al. 2015 200 AD, 231 NC
164 pMCI, 100 sMCI

VBM of GM
VBM of GM, age and cognitive 
measures

pMCI vs. sMCI
ACC = 74.74 %, AUC = 0.7661
ACC = 82 %, AUC = 0.9

Khedher et al. 2015 188 AD, 229 NC
401 MCI

VBM of GM, and WM AD vs. NC
ACC = 88.49 %
MCI vs. NC
ACC = 81.89 %
ACC = 77.57 % (only GM)

Ota et al. 2015 40 pMCI, 40 sMCI VBM of whole brain pMCI vs. sMCI
AUC = 0.75

Zhu et al. 2014 51 AD, 52 NC
43 pMCI, 56 sMCI

ROIs of GM AD vs. NC (Only MRI)
ACC = 93.8 %, AUC = 0.979
MCI vs. NC (Only MRI)
ACC = 79.7 %, AUC = 0.852
pMCI vs. sMCI (Only MRI)
ACC = 70.8 %, AUC = 0.756

Liu et al. 2014 51 AD, 52 NC
43 pMCI, 56 sMCI

ROIs of GM AD vs. NC (PET + MRI)
ACC = 94.37 %, AUC = 0.9724
MCI vs. NC (PET + MRI)
ACC = 78.8 %, AUC = 0.8284
pMCI vs. sMCI (PET + MRI)
ACC = 67.83 %, AUC = 0.6957

Eskildsen et al. 2013 194 AD, 226 NC
161 pMCI, 227 sMCI

Cortical Thickness AD vs. NC
ACC = 86.7 %, AUC = 0.917
pMCI vs. sMCI
ACC = 73 %, AUC = 0.803

Westman et al. 2013 187 AD, 225 NC
87 pMCI, 200 sMCI

Regional Volume and Cortical 
Thickness

AD vs. NC
ACC = 91.5 %, AUC = 0.96
pMCI vs. sMCI (Conversion time of 24 months)
ACC = 69.3 %, AUC = 0.748

Coupé et al. 2012 198 AD, 231 NC
167 pMCI, 238 sMCI

Nonlocal Image Patch of ROIs AD vs. NC
ACC = 89 %
pMCI vs. sMCI
ACC = 71 %

Cho et al. 2012 128 AD, 160 NC
72 pMCI, 131 sMCI

Cortical Thickness AD vs. NC
ACC = 86 %
pMCI vs. sMCI
ACC = 71 %

Cuingnet et al. 2011 137 AD, 162 NC
76 pMCI, 134 sMCI

Various (Voxel-based, 
hippocampus, and Cortical 
thickness)

AD vs. NC
SEN = 81 %, SPE = 95 %
pMCI vs. sMCI
SEN = 62 %, SPE = 69 %

Duchesne and Mouiha 2011 75 AD, 75 NC
20 pMCI, 29 sMCI

Volume of ROIs AD vs. NC
ACC = 90 %, AUC = 0.9444
pMCI vs. sMCI
ACC = 72.3 %, AUC = 0.794
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Reference Data Feature extraction Result

Wolz et al. 2011 198 AD, 231 NC
167 pMCI, 238 sMCI

Various (Hippocampal volume, 
Cortical thickness, MBL, TBM and 
CTH)

AD vs. NC
ACC = 89 %
pMCI vs. sMCI
ACC = 68 %
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