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Abstract
Purpose of Review Alternative approaches to conventional
drug-based cancer treatments have seen T cell therapies de-
ployedmore widely over the last decade. This is largely due to
their ability to target and kill specific cell types based on
receptor recognition. Introduction of recombinant Tcell recep-
tors (TCRs) using viral vectors and HLA-independent T cell
therapies using chimeric antigen receptors (CARs) are
discussed. This article reviews the tools used for genome
editing, with particular emphasis on the applications of site-
specific DNA nuclease mediated editing for T cell therapies.
Recent Findings Genetic engineering of T cells using TCRs
and CARs with redirected antigen-targeting specificity has
resulted in clinical success of several immunotherapies. In
conjunction, the application of genome editing technologies
has resulted in the generation of HLA-independent universal
T cells for allogeneic transplantation, improved T cell sustain-
ability through knockout of the checkpoint inhibitor, pro-
grammed cell death protein-1 (PD-1), and has shown efficacy
as an antiviral therapy through direct targeting of viral geno-
mic sequences and entry receptors.
Summary The combined use of engineered antigen-targeting
moieties and innovative genome editing technologies have
recently shown success in a small number of clinical trials
targeting HIV and hematological malignancies and are now
being incorporated into existing strategies for other
immunotherapies.

Keywords Genome editing . CRISPR/Cas9 . Tcell
therapies . Chimeric antigen receptors . Tcell receptors .

Clinical trials . Immunotherapy

Introduction

T cell-based immunotherapies aim to target and lyse antigen-
positive cells without detrimental effects to healthy cells.
Early approaches focused on adoptive cell therapy (ACT),
involving collection of potent antitumor T cells, ex vivo ex-
pansion, and reinfusion in an autologous fashion [1]. More
recently, T cells have been genetically altered to express mod-
ified αβ Tcell receptors (TCRs) that confer higher affinity for
tumor antigen [2]. These TCRs recognize cell-surface and
intracellular processed peptides presented in the context of
self-major histocompatibility complex (MHC). Alternative
synthetic constructs known as chimeric antigen receptors
(CARs) employ antibody-derived antigen-binding variable
heavy and light chain domains and operate in a HLA-
independent manner. Genome editing technologies are now
being applied to confer additional properties to engineered T
cells, with the first clinical applications recently reported. This
chapter reviews emerging gene editing tools and then presents
the applications of such gene-edited T cells.

Tools

Genome Editing Technologies

Engineered nucleases incorporate customizable sequence-
specific DNA-binding elements bound to nonspecific cleav-
age domains [3]. Induction of a nuclease-mediated double-
stranded DNA break (DSB) results in the activation of
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endogenous DNA damage response pathways. Repair occurs
in the presence of a suitable DNA template mediated by
homology-directed repair (HDR) [4]. In the absence of tem-
plate, the alternative error-prone nonhomologous end joining
(NHEJ) pathway creates insertions or deletions (Indels) at the
break point [5]. Indels can yield mRNA transcripts that con-
tain frame-shift and nonsense mutations that undergo degra-
dation through nonsense-mediated decay resulting in disrup-
tion of gene function [6]. Four major platforms are currently
exploited for site-specific DNA-editing purposes:
meganucleases, zinc finger nucleases (ZFNs), transcription
activator-like effector (TALE)-nucleases (TALENs), and most
recently the clustered regularly interspaced short palindromic
repeats (CRISPR/Cas) system.

Meganucleases

Meganucleases are homing endonucleases derived from I-
CreI [7] and I-CeuI [8] and operate as homodimers that rec-
ognize DNA sequences with palindromic sequences. Variants
containing two motifs, such as I-SceI, act as monomers
consisting of a pair of nuclease domains with symmetry-
independent targeting [9]. DNA recognition domains have a
range of between 14 and 40 bp, leading to double-stranded
DNA cleavage, generating 3′ cohesive ends with 4 bp over-
hangs (Fig. 1a), a feature that may favor recombinogenic
HDR compared to other methods (discussed later). This cleav-
age event initiates the transposition of the endonuclease mo-
bile sequence into the cut site, a mechanism termed Bhoming^
[14]. Site-specific meganucleases have challenging design
criteria owing to the single-chained recognition and cleavage
domains, although successful modification has been described
for a number of applications [15–17]. In the context of gene
therapy, meganucleases have for example been modeled for
targeted recombination and correction of the RAG1 gene as-
sociated with severe combined immunodeficiency (SCID)
[18] in hematopoietic stem cells (HSCs) and the XPC gene
associated with Xeroderma Pigmentosum in skin cells [19].
Applications within T cell therapies include prevention of
graft-versus-host disease (GvHD) via meganuclease-
mediated TCRα-chain knockout under conditions for optimal
T cell stimulation and meganuclease cleavage efficiency [15].
While engineering of site-specific meganucleases has had
some success, their use remains limited within mammalian
cells, largely due to complexity of design criteria.

Zinc Finger Nucleases

ZFNs are hybrid proteins consisting of a nonspecific FokI
cleavage domain and a sequence-specific zinc finger protein
that recognizes a predetermined genomic region. The FokI
domain requires two DNA-binding events followed by dimer-
ization in order to cleave DNA [20]. Linked to the FokI

domain is a zinc finger that consists of approximately 30 ami-
no acids arranged in a ββα configuration. Each zinc finger
recognizes approximately 3 bp and binds to the DNA through
insertion of the α-helix into the DNA major groove [21]
(Fig. 1b). A modular-targeting array binds to specified se-
quences with high affinity and catalytically induces DNA
cleavage and subsequent DNA repair that ultimately results
in gene disruption or template-mediated HDR. The specificity
of the ZFN may be context-dependent, which adds another
level of design complexity [22]. Off-target events are known
to occur [23], with obligate heterodimerizing Fok1 [20] help-
ing to address this. Examples of future therapeutic applica-
tions include Sangamo BioSciences’ targeting of the albumin
gene locus in hepatocytes with in vivo applications for the
treatment of Hemophilia A, Fabry disease, and Gaucher dis-
ease [24]. Trials are in progress for treatment of HIV
(NCT01044654 and NCT01252641) and planned for hemo-
philia B (NCT02695160). Despite some early clinical appli-
cations using ZFNs, the difficulty of engineering ZFNs to
produce domains with high specificity and affinity may be a
limitation for wider deployment.

TALENs

TALEs are proteins secreted by bacterial plant pathogens such
as Xanthomonas and Ralstonia sp. In 2009, two independent
research groups detailed the mechanism of TALE DNA rec-
ognition [25, 26]. They determined that polymorphisms oc-
curred primarily within hypervariable amino acid residues,
located at positions 12 and 13 within each tandem repeat.
These residues were termed repeat-variable diresidues
(RVDs) and corresponded to a single nucleotide target site
[25]. Their codes are well-defined, with NN recognizing G
or A, NI for A, HD for C, and NG for T [25, 26]. More
recently, the RVD NH has also been shown to achieve robust
guanine-specific recognition [27]. Further modifications to
expand the RVD repertoire have subsequently been developed
and have demonstrated substantially reduced off-target cleav-
age events [28]. The synthesis of a hybrid protein containing
the TAL effector fused to the FokI DNA cleavage domain has
resulted in the development of TALENs (Fig. 1c).

Advantages of TALENs over ZFNs as a genome
editing tool lies in their simpler design criteria compared
to de novo synthesis of ZFNs. The lack of recognition
code context dependency makes this technology more us-
er-friendly, cost-effective, with more predictable targeting.
Additionally, TALENs have demonstrated a higher
genome-editing activity [29] while imposing less
nuclease-associated toxicity, presumably owed to the lower
off-target cleavage affects [30]. TALENs have been sub-
stantially utilized in T cell therapies against HIV [31], and
virus-specific T cells with resistance to the immunosup-
pressive effects of corticosteroids have been developed
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through glucocorticoid receptor knockout [32]. The first
clinical application of T cells modified by TALENs has
seen successful remission of leukemia in an 11-month-old
infant [33••]. The disadvantages of TALENs, however, in-
clude the highly repetitive sequence and large size relative
to ZFNs which may impede delivery, particularly via size-
restricted or reverse-transcribing vectors [34].

CRISPR/Cas9

As an alternative to protein-guided methodologies, a num-
ber of nucleotide-mediated genome editing techniques
have been developed, with the most common used being
the CRISPR/Cas9 [35•] system, and more recently
CRISPR/Cpf1 [36], and NgArgonaute [37]. While each
has their advantages, CRISPR/Cas9 remains the most ex-
tensively characterized and widely used system to date.
The CRISPR/Cas9 system is a component of the bacterial
adaptive immune system used to distinguish between self
and nonself. The combination of Cas9 and synthetic guide
RNA (gRNA) has been harnessed to provide a two-
component programmable system engineered for exploita-
tion in a diverse range of molecular biology applications
[38, 39••, 40••]. Cas9 requires formation of a secondary
structure via complementary base pairing of the trans-

activating (tracrRNA) with the pre-crRNA. This RNA chime-
ra triggers further processing of the crRNA by RNase and
induces silencing of foreign DNA by Cas9 [41]. DNA
targeting is determined by gRNA complementarity to the ge-
nome. The caveat to Cas9 cleavage is that a protospacer adja-
cent motif (PAM) sequence is required to be juxtaposed to the
tracrRNA:crRNA secondary structure on the 3′ end. The
Streptococcus pyogenes spCas9 consensus PAM sequence is
5′-NGG-3′ which lies adjacent to the region of gRNA com-
plementarity [41]. In the presence of Cas9 and its respective
PAM, targeted cleavage of double-stranded DNA occurs be-
tween the 3rd and 4th base upstream of the PAM, leading to
activation of the DNA damage response pathways [39••]
(Fig. 1d). Deactivated Cas9 (dCas9) variants have also been
generated through incorporation of inactivating mutations in
the Cas9 sequence. Fusions of dCas9 to chromatin modifying
activation or repression domains permit regulation of gene
expression in the absence of DSBs [42]. The CRISPR ap-
proach has risen as the tool of choice for genome editing
applications due to its design simplicity, ease of use, and effi-
cacy [43]. Trials of gene edited T cells in lung cancer patients
are underway at Sichuan University in Chengdu, China and a
US immunotherapy trial using CRISPR-mediated TCR
knockout and TCR-modified T cells targeting melanoma, my-
eloma, and sarcoma has recently been proposed [44].

Fig. 1 Genome editing technologies. Introduction of double-stranded
breaks enables the formation of Indels in the absence of a suitable
repair template, leading to knockout of gene function. Several genome
editing technologies are currently available, each with a specific mode of
action. a Meganucleases are homing endonucleases that form dimers in
order to cleave. The single nuclease domain is made up of the DNA
recognition and cleavage domains. (from Bertoni C. Front. Physiol.
2014, 5:148) [10]. b ZFNs require dimerization of two Fok1 domains at
targeted loci in order for scission to occur. Each zinc finger contacts three
nucleotides of the target sequence. (from Didigu CA, Doms RW. Viruses

2012, 4(2), 309–324) [11]. c TALEN cleavage is also FokI mediated;
however, each TALE contains 34 amino acid repeat sequences, with each
RVD targeting a single base in the target sequence. (reprinted by
permission from Macmillan Publishers Ltd.: Hyongbum K, Jin-Soo K.
Nature Reviews Genetics 2014, 15, 321–334) [12]. d CRISPR/Cas9
technology is RNA-guided with Cas9 mediating double-stranded
cleavage of the target site. The target site is flanked by a PAM
sequence, with double-stranded cleavage occurring three bases
upstream from this motif (from Agrotis A, Ketteler R. Front. Genet.
2015, 6:300) [13]
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Applications

Adoptive immunotherapy relies on the isolation of antitumor
lymphocytes, their ex vivo expansion, and subsequent infu-
sion into patients. Naturally occurring tumor lymphocytes,
however, have been shown to have weak immunogenicity
and limited persistence. Genetic manipulation of T cells to
express various tumor-targeting moieties has been extensively
used to enhance their antigen avidity, specificity, and down-
stream effector functions. Harnessing the capabilities of ge-
nome editing technologies has further enhanced the scope of T
cell therapies, particularly in the development of allogeneic
universal T cells and antiviral therapies. Targets, implementa-
tion strategies and clinical efficacy of genome-edited T cell
therapies shall be discussed in further depth in this section.

TCR Redirected T Cells

TCRs detect antigens that have been processed and presented
as peptides on cell-surface MHC molecules, inducing activa-
tion of Tcells in response to antigens. The TCR CD3 complex
(CD3ε, CD3δ, CD3γ, and CD3ζ) contains immunoreceptor
tyrosine-based activation motifs (ITAMs) that remain dephos-
phorylated in resting Tcells. Upon TCR ligation, the cytoplas-
mic tails of CD3ε and CD3ζ undergo a conformational
change rendering them accessible for phosphorylation via pro-
tein tyrosine kinases [45]. ITAM phosphorylation prompts
recruitment of complexes involved in organizing effector mol-
ecules, allowing accurate spatiotemperal activation of affector
signal transduction (Fig. 2a).

Tumor-associated antigens are often expressed during fetal
development or at low levels on normal tissues, leading to
central tolerance. The first TCR-redirected T cells were
against the melanoma antigen, MART-1, which yielded a re-
sponse rate of 13% [48]. Increased avidity TCRs were subse-
quently developed for MART-1 and gp100 with reported re-
sponses of 30 and 19%, respectively [49]. The limited expres-
sion of the cancer-testis antigen, NY-ESO-1, also made this an
ideal target antigen. TCRs against this antigen have been
trialed in patients with metastatic synovial cell sarcoma
(MSCS) and melanoma, with clinical responses reported in
4 of 6 patients with MSCS and 5 of 11 with melanoma, 2 of
which demonstrated complete remission after 1 year
(NCT00670748) [50]. The June group recently demonstrated
sustained antitumor effects and T cell persistence using
lentiviral delivery of the NY-ESO-1 targeting TCR within a
multiple myeloma phase I/II trial (NCT01352286) [51•].
Also, anti-MAGE-A3 TCRT cells targeting metastatic cancer
resulted in clinical regression in 5 of 9 patients; however, there
were 2 fatalities and 3 cases of neurological complications,
raising concerns for its use in subsequent immunotherapies
(NCT01273181) [52].

TCR mispairing, where there is heterologous pairing
between the endogenous and recombinant TCRs, is ca-
pable of generating novel-targeting specificities and in-
ducing autoreactivity [53]. While codon optimization,
murinization of human TCRs, and the addition of cys-
teine residues have been found to reduce mispairing
[54], complete knockout of the endogenous TCR would
be advantageous. Further work exploring genome
editing to knockout endogenous TCRα/β chains has
been achieved using ZFNs [55, 56], TALENs [57, 58],
megaTAL, and CRISPR/Cas [59] nucleases. Bonini
et al. developed α- and β-chain specific ZFNs against
endogenous TCR genes and subsequently introduced the
Wilms tumor-1-specific TCR via lentiviral gene transfer.
This resulted in high avidity lymphocytes which had
reduced alloreactivity but superior expansion and anti-
gen recognition compared to unedited, donor-matched
cells that underwent TCR gene transfer alone both
in vitro and in NSG mice [56]. Fehse and colleagues
performed TCR knockout using TALENs delivered by
electroporation of mRNA, resulting in 58 and 41%
knockout of the α- and β-chains respectively in primary
T cells [57]. Recently, researchers at UPenn gained ap-
proval for a phase I trial to generate and transplant
autologous T cells devoid of both endogenous TCR
and the checkpoint inhibitor, programmed cell death
protein-1 (PD-1), using CRISPR, while simultaneously
overexpressing a TCR against the NY-ESO-1 peptide
[44]. These trials will aim to demonstrate improved bio-
safety profiles of TCR-edited T cells.

CAR T Cell Therapies

Tumor-associated target antigens are typically associated
with MHCs, restricting T cell therapies to cancers express-
ing a particular antigen. Furthermore, tumor cells can
downregulate HLA class I expression during tumor pro-
gression [60]. The need to develop receptors that could
target a number of antigens in a MHC-independent man-
ner was critical in the development of the first CAR [61,
62]. Eshhar et al. demonstrated that chimeric T cell recep-
tors in a cytotoxic T cell hybridoma could target in a non-
MHC restricted manner giving CAR T cells the ability to
directly and potently target tumors which share common
target antigens [62].

Structurally, a CAR consists of up to four domains—the
antigen recognition domain, a hinge domain, a transmem-
brane element, and the signaling endodomain (Fig. 2b). The
chimeric single chain antibody fragment (scFv) uses a linker
to allow self-association of the variable heavy and light
chains [63]. Coupling of the scFv to the signal-transducing
TCR CD3ζ chain confers therapeutic and potent effector
function [64]. Activation of the endodomains induces T cell
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activation, cytokine release, and non-MHC target cell lysis.
Second-generation CARs were constructed to include a co-
stimulatory domain arising from the CD28 or 4-1BB do-
main. Third-generation CARs were configured to express
two co-stimulatory domains for enhanced T cell functional-
ity and signal amplification [65].

In brief, the first clinical trials using CAR T therapies
were against HIV [66] and subsequently metastatic ovarian
[67] and renal cancers [68]. Rosenberg showed proof of
clinical efficacy using CARs to treat lymphoma in a single
patient in 2010 [69], while June and colleagues reported
complete remission of 2/3 patients treated using CARs
against chronic lymphocytic leukemia in 2011 [70].
Sadelain et al. later published results demonstrating the an-
titumor efficacy of a CD19-CAR in 5 patients with relapsed
B cell acute lymphoblastic leukemia (B-ALL) [71]. Cooper
et al. genetically altered T cells to target B cell malignancies
by expressing a CD19-specific CAR delivered by Sleeping
Beauty transposition. Infusion of these modified T cells re-
sulted in clinical responses in patients with ALL (n = 12)
and B cell lymphoma (n = 13). This was the first clinical
trial to employ the Sleeping Beauty transposon system for
the delivery of a CD19-CAR to redirect specificity of isolat-
ed T cells [72]. We [73] and others [74] have reviewed trials
involving CAR T cell therapies and their outcomes and
highlighted key published trials using CAR T cells redirected
against CD19 and CD20 (Table 1).

Gene-Edited CAR T Cells

While CARTcell therapies have demonstrated immense ther-
apeutic potential, the cost implications and complexity of be-
spoke T cell therapies for autologous transplantation remains
problematic for broader application. The development of a
Buniversal^ CAR T cell platform has recently harnessed the
gene editing capabilities of TALENs in order to create an Boff-
the-shelf^ adoptive T cell immunotherapy which was validat-
ed in vitro [58] and successfully applied to B-ALL [33••]. In
order to overcome immune barriers intrinsic to allogeneic
transplantations, targeted knockout of the endogenous αβ
TCR within donor-derived T cells was performed [91]. In this
way, potential induction of GvHD was abrogated. CD52,
which is highly expressed on mature B, T, and dendritic cells
and is the target of the lymphodepleting CD52 monoclonal
antibody, Alemtuzumab, was also targeted for gene disruption
[92]. Therefore, CD52 negative cells survive host T cell de-
pletion by Alemtuzumab [91]. Formal clinical trials are now
underway in children and adults (NCT02808442,
NCT02746952).

Additional targets include the extensively polymorphic
HLA region encoding HLA class 1 A, B, C. In the ab-
sence of an HLA-identical donor, a HLA-matched unrelat-
ed donor may be available [93]. Genetic engineering of
HLA expression provides a means of generating allogeneic
cells and can be targeted directly (e.g., β2-microglobulin

Fig. 2 Structure of TCRs and CARs. a The TCR is comprised ofα andβ
chains that closely associate with the ε-δ-γ- and ζ-chains of the CD3
complex. Antigen-mediated activation of the α/β chains induces
phosphorylation of the ITAMs by LCK. Subsequent activation of ZAP-
70 and its downstream targets, LAT and SLP-76, induces an intracellular
signaling cascade resulting in the upregulation of genes associated with T
cell effector function. (reprinted from Lineberry N, Fathman GC:
Immunity 2006, 24(5):501–503, with permission from Elsevier) [46]. b
Design of the chimeric antigen receptor includes the single-chain variable

fragment with antigen-binding affinity, fused to a spacer and
transmembrane domain. Effector function is conferred via the TCR
CD3ζ domain, while the addition of one (2nd generation) or two (3rd
generation) costimulatory domains drives signal activation and
amplification of various effector signaling cascades (with permission
from Juno Therapeutics: Chimeric Antigen Receptor Technology
(CARs) https://www.junotherapeutics.com/our-science/car-technology/)
[47]
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(B2M)) or indirectly via transcription factors and transport-
er pathways. B2M is required for successful surface assem-
bly of MHC class I molecules [94], with B2M knockout
resulting in cells devoid of major histocompatibility
complex-I (MHC-I) expression [95]. Some groups have
endeavored to downregulate the B2M and HLA loci in
primary T cells [96, 97]. However, the posttranscriptional
nature of this approach leads to a reduction in antigen
levels and not necessarily a complete knockdown. This is

problematic as it has been demonstrated that a single
peptide-MHC complex can trigger αβ T cell activation
and induce the cytolytic response [98]. With the purpose
of generating nonself cells that evade host clearance,
Torikai and colleagues genetically engineered donor-
derived T cells using designer ZFNs to eliminate expres-
sion of HLA-A. HLA-Aneg cells evaded lysis by HLA-
restricted cytotoxic T cells, demonstrating conceptually that
these modifications have clinical potential as donor-derived

Table 1 Published clinical trials using CD19/20 CAR T cells

Target
antigen

Target
disease

n CAR structure Delivery
method

Origin of T cell Cell dose Trial number Center Reference

CD19 FL 2 CD3ζ EP Autologous 100–2000 × 106/m2 NCT00182650 NCI Jensen (2010) [75]

CD19 FL 1 CD28 + CD3ζ RV Autologous 5 × 106/kg NCT00924326 NCI Kochenderfer
(2010) [69]

CD19 FL;
DLBCL

6 CD28 + CD3ζ RV Autologous 2–20 × 107/m2 BCM Savoldo (2011) [76]

CD19 CLL; ALL 10 CD28-CD3ζ RV Autologous 0.4, 1, 3 × 107/kg
over 2 days

NCT01044069 MSKCC Brentjens (2011)
[77]

CD19 CLL 3 4-1BB + CD3ζ LV Autologous 0.15–16 × 106/kg NCT01029366 Upenn Porter (2011) [78];
Kalos (2011) [70]

CD19 CLL; ALL 9 CD28 + CD3ζ RV Autologous 2–30 × 106/kg NCT00466531 MSKCC Brentjens (2011)
[77]

CD19 FL; CLL;
SMZL

8 CD28 + CD3ζ RV Autologous 5–55 × 106/kg NCT00924326 NCI Kochenderfer
(2012) [79]

CD19 ALL 5 CD28 + CD3ζ RV Autologous 1.5–3 × 106/kg NCT01044069 MSKCC Brentjens (2013)
[71]

CD19 CLL; MCL;
DLBCL

10 CD28 + CD3ζ RV Allogeneic 1–100 × 106/kg NCT01087294 NCI Kochenderfer
(2013) [80]

CD19 ALL; CLL 8 CD28-CD3ζ RV Allogeneic 1.5, 4.5,
12 × 107/m2

NCT00840853 BCM Cruz (2013) [81]

CD19 CLL; ALL;
DLBCL;
FL; MCL

110 4-1BB-CD3ζ RV Autologous 1.5–500 × 107 total
cells

NCT01029366 Upenn Maude (2014) [82•]

CD19 ALL 2 4-1BB-CD3ζ LV Autologous 10–100 × 106/kg NCT01626495 Upenn Maude (2014) [82•]

CD19 ALL 30 4-1BB-CD3ζ LV Autologous 0.76–20.6 × 106/kg NCT01626495 Upenn Maude (2014) [82•]

CD19 ALL; CLL 14 CD28-CD3ζ RV Autologous 0.2, 1, 2 × 108/m2 NCT00586391 BCM Xu (2014) [83]

CD19 CLL 4 CD28-CD3ζ RV Autologous 1–4 × 106/kg NCT00924326 NCI Kochenderfer
(2015) [84]

CD19 ALL 21 CD28-CD3ζ RV Autologous 1, 3 × 106/kg NCT01593696 NCI Lee (2015) [85]

CD19 MM 10 4-1BB-CD3ζ LV Autologous 1–5 × 107 NCT02135406 Upenn Garfall (2015) [86]

CD19 NHL 7 CD28-CD3ζ SBT Autologous/allogeneic 1 × 106/m2 NCT00968760 MDACC Kebriaei (2016)
[87]19 1 × 106/m2 NCT01497184

CD19 CLL, SLL,
MM

42 4-1BB-CD3ζ LV Autologous 1–5 × 107/8 NCT01747486 Upenn Fraietta (2016) [88]

CD20 MCL;
B-NHL

3 CD28–4-1BB-CD3ζ EP Autologous 108, 109,
3.3 × 109/m2

NCT00621452 FHCRC Till (2012) [89]

CD20 DLBCL 7 4-1BB-CD3ζ LV Autologous ∼0.3–2.2 × 107/kg NCT01735604 CPLAGH Wang (2014) [90]

FL follicular lymphoma,MCL mantle cell lymphoma, CLL chronic lymphocytic leukemia, ALL acute lymphoblastic leukemia, BL Burkitt lymphoma,
DLBCL diffuse large B cell lymphoma, HL Hodgkin’s lymphoma, NHL non-Hodgkins lymphoma, MM multiple myeloma, EP electroporation, RV
retrovirus, LV lentivirus, SBT Sleeping Beauty transposition, BCMBaylor College ofMedicine,NCINational Cancer Institute,FHCRC FredHutchinson
Cancer Research Center,UPennUniversity of Pennsylvania,MSKCCMemorial Sloan Kettering Cancer Center,MDACCMDAnderson Cancer Center,
CPLAGH Chinese PLA General Hospital
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T cells with a disparate HLA repertoire could be adminis-
tered to multiple recipients [99].

Another target of interest for improved and sustained CAR
T cell effectiveness is PD-1. PD-1 is an immune-checkpoint
receptor. Its expression is upregulated following T cell activa-
tion, limiting T cell effector function, and resulting in T cell
exhaustion [100]. Tumor cells upregulate PD-1 ligands lead-
ing to diminished immune responses within the tumor micro-
environment [101]. As a result, cancer immunotherapeutics
have focused on blocking PD-1 activity using monoclonal
antibodies [102] and have shown improved efficacy of adop-
tive CAR T cell therapies [103]. Genome editing however
offers a means of permanent deletion of PD-1. This strategy
was validated in vitro using primary patient T cells which
demonstrated increased IFN-γ production and enhanced cy-
totoxicity [104]. The June labs successfully edited the HLA,
α-, andβ-TCR, B2M, and PD-1 loci using CRISPRwith 80%
gene disruption when co-administered with Cas9 mRNA, and
over 70% dual disruption of TCR and HLA-1. These double-
negative cells transduced with CD19-CAR demonstrated po-
tent anti-leukemic activity, demonstrating that simultaneous
disruption does not affect CAR T cell efficacy. Moreover,
these universal T cells exhibited reduced alloreactivity and
did not induce GvHD in various NSG mouse models [105].
A trial underway in Chengdu China is using CRISPR to pro-
duce PD-1 knockout T cells that are expanded and infused
back into patients with resistant and refractory metastatic
nonsmall cell lung carcinoma (NCT02793856) [106]. Other
proposed trials using CRISPR-mediated PD-1-deficient T
cells include those for prostate cancer (NCT02867345), blad-
der cancer (NCT02863913), and renal cell carcinoma
(NCT02867332).

Genome Editing Targeting HIV

HIV is a single-stranded RNA virus that reverse transcribes
RNA to DNA and subsequently integrates into the host ge-
nome. It gains cell entry when gp120, an envelope glycopro-
tein, binds CD4 and co-receptors C-C chemokine receptor 5
(CCR5)(R5), or C-X-C chemokine receptor 4 (CXCR4)(X4).
HIV infects a number of immune cells but preferentially rep-
licates within activated CD4+ Tcells [107]. Over time, there is
progressive loss of CD4+ T cells due to their destruction, ren-
dering the individual immune compromised. Individuals ho-
mozygous for the naturally occurring CCR5Δ32 mutation are
resistant to HIV infection [108–110], making CCR5 a prom-
ising therapeutic target. Transplantation from such a donor has
been reported to allow effective HIV eradication in a single
case, the BBerlin patient^ [111]. ZFNs have been used to
knockout CCR5 expression in T cells and mediate HIV resis-
tance in vitro with minimal off-target effects [112, 113]. Mice
reconstituted with CCR5-ZFN-modified resting human CD4+

T cells, isolated from HIV-1 seronegative individuals,

demonstrated resistance when challenged with HIV.
Moreover, viral replication was decreased in mice that re-
ceived CCR5-ZFN-modified T cells of HIV-1 seropositive
origin [112]. First-in-human studies assessed the safety of
CCR5 ZFNs delivered ex vivo to T cells using adenoviral
vector gene transfer [114••]. Infusion of autologous CCR5-
ZFN-modified T cells into patients with chronic aviremic
HIV isnfection was performed with half the cohort continuing
antiretroviral therapy (ART) in conjunction with T cell trans-
fusion, while the remainder underwent an interruption in ART
treatment.Modified cells persisted for a mean of 48weeks and
had increased stability compared to unmodified CD4+ T cells.
CCR5 deletion appears to have conferred a survival advantage
to CD4+ T cells in individuals infected with HIV and expan-
sion and persistence of modified T cells resulted in improved
long-term CD4 counts. Heterozygous CCR5Δ32 individuals
were able to maintain a viral load of either undetectable or
up to 1000 copies/ml during interruption of ART treatment
[114••]. Further studies are ongoing including the ZFN-
modified autologous HSCs to determine if CCR5 knockout
cel ls can suppor t HIV-protec ted immunologica l
reconstitution.

TALENs have also been used to edit the CCR5 co-receptor.
Mussolina and colleagues compared ZFNs and TALENs
targeting the CCR5 locus within HEK293T cells and demon-
strated comparable gene disruption (15–30%). However,
TALENs exhibited lower cytotoxicity and reduced off-target
activity at the CCR2 locus [30]. Mock et al. used mRNA
electroporation to deliver a CCR5-TALEN, resulting in HIV
resistance in knockout cells. This strategy resulted in targeting
efficiencies of >90% in CD4+ PM1 cells, commonly utilized
in HIV infection assays, and >50% in primary T cells [115].
Others have developed amegaTAL through substitution of the
FokI catalytic domain for a meganuclease which has high
intrinsic affinity and specificity [116]. Adeno-associated virus
(AAV) delivery of a GFP-encoding donor template for
homology-directed insertion at the CCR5 locus was delivered
in conjunction with nuclease mRNA. This resulted in 80% of
biallelic alterations and 8–60% HDR into the CCR5 locus
within T cells. Within CD34+ HSCs, HDR into the CCR5
locus resulted in 14% modification offering the possibility of
targeted gene insertion of C46, an HIV fusion inhibitor than
can confer dual protection against R5 and X4-tropic HIV-1
[117]. Targeting of the CCR5 locus using CRISPR/Cas9 has
also yielded robust HIV resistance, with mutation efficiencies
ranging from 18 to 74.1% [118–120].

ZFNs specifically targeting the CXCR4 receptor also re-
sulted in T cells resistance to X4-tropic HIV strains in vitro
and in vivo, with lower viral titers observed in mice following
T cell engraftment [121, 122]. While this would provide clin-
ical benefit, as X4-tropic HIV is associated with greater path-
ogenicity and positively correlates with progression to ac-
quired immune deficiency syndrome (AIDS), it was shown
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that CXCR4-ZFN humanized mice lost X4 HIV-1 protective-
ness through the emergence of R5-tropic viral mutants [122].
Didigu et al. addressed this issue by simultaneously targeting
the CCR5 and CXCR4 coreceptors using ZFNs, resulting in
X4- and R5-tropic HIV resistant CD4+ T cells in vitro [123].
An alternative approach was demonstrated by Voit et al. uti-
lized ZFNs to introduce three anti-HIVrestriction factors, Rev.
M10, TRIM5α, and APOBEC3G D128K into the CCR5 lo-
cus, with simultaneous CCR5 knockout and cells exhibited
dual R5 and X4 HIV-1 resistance [124]. CRISPR/Cas9 has
also been used in studies targeting the CXCR4 locus, with
human primary T cells refractory to subsequent HIV-1 infec-
tion [125]. Targets downstream of viral entry have also been
exploited with LEDGF, the protein involved in viral integra-
tion and encoded by PSIP1, inactivated by TALENs.
Modified Jurkat cells demonstrated inhibited HIV-1 integra-
tion and severely impaired viral replication [126].

HIV can remain transcriptionally dormant creating latent
HIV reservoirs, with alternative strategies designed to target
proviral DNA.Wayengera and colleagues used computational
modeling to generate a ZFN that would specifically target an
18 bp sequence within the HIV pol gene or 15 other ZFNs
targeting other regions of the proviral genome. Lentiviral de-
livery resulted in abrogation of pol activity and excision of
over 80% of proviral DNA from latently infected cells [127].
The conserved regions of Gag, Pol, and Rev. have been
targeted using ZFNs [128]. Others still have targeted the
HIV-1 5′ and 3′ long terminal repeat (LTR), excising full-
length proviral DNA with an efficiency of 45.9% [129].
Ebina et al. generated two gRNA targets within the TAR se-
quence of the R-region and within the NF-κB response ele-
ment in the U3 region. Efficiency was tested on cells trans-
duced with a lentiviral vector encoding TAT-IRES-GFP under
transcriptional regulation of the LTR, with mean fluorescence
intensity used to determine gRNA efficiency. The authors not-
ed a reduction of GFP+ cells from 45.6 to 20% using the TAR-
targeting gRNA [130], while Strong et al. used TALENs
targeting the same region resulting in 42% cleavage [131].
This proviral targeting strategy was mimicked with both
TALENs [132] against integrated lentiviral LTRs and
CRISPR/Cas9 in single and multiple configuration [133].
The authors identified targets within the viral U3 LTR that
resulted in excision of the entire 9709 bp proviral HIV DNA
and prevented reinfection within latently infected T cells
[133].

While editing of T cells had shown promise for HIV resis-
tance, two independent publications demonstrated NHEJ-
mediated viral escape of Cas9/gRNA suppression [134,
135]. Sequencing of escaped viral mutants identified that the
mutations clustered around the gRNA target cleavage site
where indels are formed. Destruction of the original guide site
yielded novel mutations arising in the viral genome through
indel formation, and loss of the guide recognition site rendered

CRISPR/Cas therapy ineffective [136]. One alternative to di-
minish NHEJ-mediated viral escape would be to design mul-
tiple target sites within highly conserved regions of the HIV-1
genome. This multiplex approach can yield increased suppres-
sion of HIV-1 infection with a decreased GFP intensity, with
gRNAs targeted to the LTR shown to be most effective [137].
Finally, recent reports of a designer Brec recombinase effi-
ciently targeting and excising LTRs on scale holds promise
for tackling latent proviral HIV [138].

Gene Editing Inherited T Cell Defects

Primary immunodeficiencies (PIDs) are model disorders for
treatment by HSC transplantation and gene therapy although
current Bgene-addition^ approaches have been associatedwith
insertional mutagenesis in some conditions, following viral
integration near LMO2 proto-oncogenes, among others,
resulting in malignancy [139]. Gene-editing approaches
should eventually allow in situ gene repair and stem cell-
derived reconstitution for SCID disorders and other PIDs. In
the first instance, gene repair of T cells in conditions where
cells are present but functionally impaired is being investigat-
ed, given the efficiency of editing reagents in these cells. One
such condition is HyperIgM syndrome or CD40 ligand defi-
ciency. This defect in cellular immunity renders individuals
particularly susceptible to opportunistic infections [140].
Antigen presentation initiates the upregulation and expression
of CD40L with its expression finely regulated and activation
state dependent. A primary function of CD40L is to convey
activation signals to B cells [141]. Mutations within CD40L
result in an inability to undergo immunoglobulin class
switching, the mechanism used in B cells to switch from the
production of one immunoglobulin to another [142]. TALEN
editing ofCD40L has yielded successful gene correction with-
in primary Tcells via homology-directed insertion of a recom-
binant transgene. Inclusion of the region upstream of Exon 1
permitted the maintenance of endogenous regulation, while
inclusion of the 3′-UTR conserved posttranscriptional regula-
tion. Edited cells mimicked the response of wild-type T cells
in their activation response, while rescuing the class-switching
capabilities of B cells in vitro [143]. Kuo et al. have used
CRISPR/Cas9 technology to target patient-specific splice-site
mutations within exon 3 of CD40L. A template containing a
unique restriction enzyme site was co-electroporated into
K562 cells, with HDR confirmed via restriction digest [144].
Other disorders with similar T cell defects could also be
targeted by a similar approach and offer a route to therapy.

While most applications of genome editing rely on gene
knockout or HDR, these technologies are also amenable to
gene repair without induction of double-stranded DNA
breaks; a technology termed Bbase editing^. Komor and col-
leagues demonstrated that merging the guide RNA-mediated
targeting ability of dCas9 or Cas9 nickase to the cytidine
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deaminase enzyme, APOBEC1, results in the ability of the
enzyme to convert cytidine to uridine in a site-specific manner
[145]. Single-base editors are particularly attractive for perma-
nent correction of diseases caused by point mutations, such as
HIGM1, and broaden the scope of genome editing technolo-
gies for clinical applications.

Conclusions

Genome editing modalities have emerged as fundamental
tools with which to modify gene expression in a highly spe-
cific manner. Recent clinical successes have shown the utility
of genome-edited cell-based therapies, undoubtedly an impe-
tus to treat a wider variety of conditions in the future.
Improved genome-editing specificity and design of superior
genome editing systems will enhance the translational poten-
tial and safety profiles of future T cell-based therapies, further
driving the transition from research to clinical translation.
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