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Transcranial magnetic stimulation focused on either the left anterior supramarginal gyrus or opercular part of the left inferior

frontal gyrus has been reported to transiently impair the ability to perform phonological more than semantic tasks. Here we tested

whether phonological processing abilities were also impaired following lesions to these regions in right-handed, English speaking

adults, who were investigated at least 1 year after a left-hemisphere stroke. When our regions of interest were limited to 0.5 cm3 of

grey matter centred around sites that had been identified with transcranial magnetic stimulation-based functional localization,

phonological impairments were observed in 74% (40/54) of patients with damage to the regions and 21% (21/100) of patients

sparing these regions. This classification accuracy was better than that observed when using regions of interest centred on acti-

vation sites in previous functional magnetic resonance imaging studies of phonological processing, or transcranial magnetic stimu-

lation sites that did not use functional localization. New regions of interest were generated by redefining the borders of each of the

transcranial magnetic stimulation sites to include areas that were consistently damaged in the patients with phonological impair-

ments. This increased the incidence of phonological impairments in the presence of damage to 85% (46/54) and also reduced the

incidence of phonological impairments in the absence of damage to 15% (15/100). The difference in phonological processing

abilities between those with and without damage to these ‘transcranial magnetic stimulation-guided’ regions remained highly

significant even after controlling for the effect of lesion size. The classification accuracy of the transcranial magnetic stimula-

tion-guided regions was validated in a second sample of 108 patients and found to be better than that for (i) functional magnetic

resonance imaging-guided regions; (ii) a region identified from an unguided lesion overlap map; and (iii) a region identified from

voxel-based lesion-symptom mapping. Finally, consistent with prior findings from functional imaging and transcranial magnetic

stimulation in healthy participants, we show how damage to our transcranial magnetic stimulation-guided regions affected per-

formance on phonologically more than semantically demanding tasks. The observation that phonological processing abilities were

impaired years after the stroke, suggests that other brain regions were not able to fully compensate for the contribution that the

transcranial magnetic stimulation-guided regions make to language tasks. More generally, our novel transcranial magnetic stimu-

lation-guided lesion-deficit mapping approach shows how non-invasive stimulation of the healthy brain can be used to guide the

identification of regions where brain damage is likely to cause persistent behavioural effects.
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Introduction
Previous research has shown that repetitive transcranial

magnetic stimulation (TMS) over either the left supramar-

ginal gyrus (SMG) (Hartwigsen et al., 2010a; Sliwinska

et al., 2015) or pars opercularis of the left inferior frontal

gyrus (pOp) (Gough et al., 2005; Hartwigsen et al., 2010b)

causes significant slowing in response times when healthy

volunteers perform tasks requiring phonological processing

(e.g. do two words sound the same?) relative to tasks

requiring semantic processing (e.g. do two words mean

the same?). These TMS findings are consistent with a

wealth of functional imaging studies that have shown

activation in SMG and/or pOp for phonological relative

to semantic tasks (Price et al., 1997; Poldrack et al.,

1999; Booth et al., 2002; Devlin et al., 2003; McDermott

et al., 2003; Seghier et al., 2004; Gitelman et al., 2005;

Simard et al., 2013).

In the current study, we hypothesized that, if SMG and

pOp are necessary for phonological processing, then stroke

damage to these regions should impair the ability to per-

form phonological tasks, unless other brain regions (e.g. in

the right hemisphere) can compensate. More generally, if

this proof-of-principle study finds that stroke damage to

regions associated with phonological processing in TMS

or functional MRI studies also impairs phonological pro-

cessing in stroke patients, then TMS and/or functional MRI

may provide a useful tool for identifying and understanding

lesion sites that predict outcome after stroke.

We also make a distinction between regions of interest that

were previously identified using TMS-based functional local-

ization (Gough et al., 2005; Sliwinska et al., 2015) and TMS

sites that were centred on areas of peak activation in previous

functional MRI studies (Hartwigsen et al., 2010a, b). This is

because TMS-based functional localization has shown that

the site that is most sensitive to TMS (averaged over subjects)

does not necessarily correspond to the site of peak activation

in functional MRI studies (averaged over subjects). For ex-

ample, the average TMS pOp site (�52, 16, 8) identified

after functional localization in Gough et al. (2005) is at

least 1 cm anterior and inferior to the functional MRI coord-

inates for pOp activation (�50, 6, 24) reported in Devlin

et al. (2003), with an Euclidean distance of 19 mm between

the two points. Likewise, the average TMS SMG site (�52,

�34, 30) identified after functional localization by Sliwinska

et al. (2015) is at least 1 cm inferior and lateral to the func-

tional MRI coordinates for SMG activation (�42, �40, 46)

reported in the functional MRI study by Devlin et al. (2003),

with an Euclidean distance of 20 mm between the two

points. In contrast, the TMS sites reported by Hartwigsen

et al. (2010a, b) without functional localization (�47, 6,

21 for pOp and �45, �39, 45 for SMG) are almost identi-

cal to those reported in the functional MRI study by Devlin

et al. (2003).

Previous lesion studies have shown that stroke damage

to SMG and/or pOp and/or the white matter underlying

these areas can cause deficits in tasks that require phono-

logical processing, including speech production (Mirman

et al., 2015), sentence production (Faroqi-Shah et al.,

2014), non-word repetition (Faroqi-Shah et al., 2014),

phonological decisions (Geva et al., 2011), and increase

the number of phonological errors produced during pic-

ture naming (Schwartz et al., 2012). However, these stu-

dies (i) summed effects across groups of patients and

therefore did not indicate how consistently damage

causes phonological impairments in individual subjects;

(ii) included patients who had large lesions affecting mul-

tiple brain regions, and therefore did not establish whether

damage to SMG alone or pOp alone is sufficient to impair

phonological processing; (iii) did not compare the location

of the stroke lesions with the location of the sites where

TMS impairs phonological processing abilities; and (iv)

did not analyse the level of processing that affected per-

formance on phonological tasks. Moreover, previous re-

search that has specifically focused on identifying the

brain areas where tissue loss is associated with phono-

logical and semantic abilities (Butler et al., 2014; Halai

et al., 2017) did not report the SMG or pOp sites from

the TMS studies that we focus on in the current paper

(Gough et al., 2005; Sliwinska et al., 2015). Nor did

they reverse the question to ask: How consistently and

persistently does damage to specific brain regions cause

behavioural symptoms that are indicative of phonological

impairments? The answers to such questions have import-

ant clinical implications for predicting language outcome

and recovery after stroke.

To summarize, in contrast to previous studies, we sought

to establish whether, and how consistently, stroke damage
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to the SMG and/or pOp sites identified in TMS studies that

used functional localization (Gough et al., 2005; Sliwinska

et al., 2015) impairs the ability to perform tasks that

require phonological processing. We also investigated

(i) whether phonological tasks were more severely affected

than semantic tasks; and (ii) how the TMS sites of interest

could be moved, tailored and expanded to account for

more patients with impaired phonological processing abil-

ities; while (iii) carefully controlling for lesion size when

comparing performance between groups of patients with

different lesion locations (Price et al., 2017). Finally, we

tested how well damage to these new ‘TMS-guided’ sites

predicted phonological processing abilities in a second

sample of 108 patients, many years after they had suffered

a left-hemisphere stroke.

By selecting regions of interest from TMS studies of

healthy participants, our lesion-deficit associations should

not be spatially biased towards brain areas that are most

susceptible to vascular events, unlike traditional univariate

voxel-based lesion-symptom mapping (VLSM) techniques

(Inoue et al., 2014; Mah et al., 2014). To demonstrate

this, we compare how well phonological impairments are

accounted for by lesions to our TMS-guided regions rela-

tive to lesions to other regions of interest from prior func-

tional MRI studies, a functional MRI-guided lesion overlap

map (LOM), an unguided LOM, and voxel-based lesion-

symptom mapping.

Our hypothesis is that if damage to SMG or pOp causes

persistent difficulties with tasks that rely on phonological

processing, then the function of these regions is not com-

pletely compensated for by other brain regions.

Alternatively, if damage to SMG or pOp does not impair

performance on phonologically demanding tasks, then re-

covery after stroke might involve the function of SMG and

pOp being successfully compensated for by other brain

areas. TMS studies in healthy participants cannot answer

these questions because they infer a region’s contribution to

task efficiency on the basis of slowed response times during

disruptive stimulation. In contrast, the use of lesions caused

by stroke allows us to infer that a region was essential for

task performance on the basis of a significant and persistent

impairment of accuracy following damage to the area.

Materials and methods

Participants

Data from all participants were extracted from the PLORAS
database (Predicting Language Outcome and Recovery After
Stroke; Price et al., 2010; Seghier et al., 2016). At a minimum,
the data available for each patient included: a full assessment
of speech and language abilities using the Comprehensive
Aphasia Test (CAT) (Swinburn et al., 2004); and a 3D
lesion image, in standard space, created from a T1-weighted
high resolution (1 mm isotropic voxels) anatomical whole-
brain volume, using our automated lesion identification soft-
ware (Seghier et al., 2008). The study was approved by the

London Queen Square Research Ethics Committee. All patients

gave written informed consent prior to participation and were
compensated £10 per hour for their time.

We report data from a total of 288 adult stroke survivors
who were all native speakers of English with normal or cor-
rected-to-normal vision and hearing. All were right-handed

(pre-morbidly) with no history of neurological or psychiatric
illness that was not related to their stroke. These 288 patients

were split into three main samples as follows:
Sample 1 comprised 154 patients (43 females) who were

assessed between 1 to 5 years after a left-hemisphere stroke
[mean = 2.7 years, standard deviation (SD) = 1.2] that was
greater than 1 cm3 (mean = 80.1 cm3, SD = 79.9,

range = 1.4–464.7). Their mean age was 59 years (SD = 12.7,
range = 21.3–90.0). This group was used to test how consist-

ently damage to different regions of interest was associated
with phonological impairments; and how the regions of inter-

est could be adapted to provide the best account of the data.
Within Sample 1, we selected two subsets of patients to

determine the percentage of damage to different regions of
interest that best accounted for the presence or absence of
phonological impairments. Sample 1A included those who

were categorized (using the criteria described in the next sec-
tion) with phonological impairments but not semantic impair-

ments. Sample 1B included those who were matched to Sample
1A for left-hemisphere lesion size but did not meet the criteria

we used to define phonological impairments. Lesion size
was matched between the two groups by finding the minimum

and maximum lesion volumes that were common to both
groups with no significant differences in mean lesion

size across groups. The resulting group size was 23 patients
(seven females) in Sample 1A and 32 patients (two females) in
Sample 1B; lesion size mean and range = 82.2 cm3, 44.3–128.7

cm3 in Sample 1A and 76.0 cm3, 44.0–135.7 cm3 in Sample
1B. The groups were also matched for age (mean = 54 and 58

years; range = 21.3–78.2 and 29.4–76.1) and time post-stroke
(mean = 2.4 and 3.0 years; range = 1.0–4.5 and 1.1–4.7).

Sample 2 comprised 108 patients (mean age = 61 years,
SD = 11.0, range = 33.2–83.6; 42 females) who differed from
those in Sample 1 because they were assessed more than 5

years after a left-hemisphere stroke (mean = 10.1 years,
SD = 6.0, range = 5.1–36.0). As in Sample 1, lesion size was

always 41 cm3 (mean = 129.3, SD = 106.5, range = 1.2–
405.0). This sample was used to validate the lesion-deficit as-

sociations identified with Sample 1, while also considering the
effect of time post-stroke (45 years versus 1–5 years).

Sample 3 comprised 42 patients (15 females) who, in add-

ition to having the standard PLORAS assessments were also
tested on the phonological and semantic decision tasks used in

the TMS studies from which our regions of interest were
derived. Comparison of their performance on the TMS and

CAT tasks allowed us to select the CAT tasks that best cap-
tured the variance in the TMS phonological task. Their mean

age was 63 years (SD = 12.3, range = 28.0–84.0) and the mean
time they were tested after a stroke to the left hemisphere (18

patients), right hemisphere (22 patients) or both (two patients)
was 9.7 years (SD = 6.9, range = 1.1–35.1). Their mean lesion
size was 76.4 cm3 (SD = 79.1, range = 3.7–302.8). There was

no overlap between Samples 1 and 3 (because none of the
patients in Sample 3 met the criteria for Sample 1). The over-

lap between Samples 2 and 3 was 16 patients.
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Defining phonological and semantic
impairments

To assess phonological processing independently of semantics,
we selected tasks from the CAT (Swinburn et al., 2004) that
required phonological processing with minimum demands on
semantics. These are ‘non-word reading’, ‘non-word repetition’
and ‘digit span’. Figure 1 shows how scores on these three
tasks, and every possible combination of them, correlated
with scores on the TMS phonological task in the 42 patients
in Sample 3 who were tested on both the CAT and TMS
tasks (Gough et al., 2005; Sliwinska et al., 2015). The CAT
measures that were most strongly correlated with the TMS
phonological task were non-word reading [r(40) = 0.64] and
the combination of non-word reading and digit span
[r(40) = 0.62]. Both these phonological measures were also sig-
nificantly more correlated with the TMS phonological task
than the TMS semantic task (z = 2.89, P = 0.004 and
z = 3.00, P = 0.003, respectively).

We chose to use the combined non-word reading and digit
span measure because (i) impaired phonological processing
should affect both tasks; and (ii) an impairment on non-
word reading but not digit span could arise from a non-
phonological level (e.g. visual perceptual/orthographic process-
ing level) (see Supplementary Fig. 1 for our task analysis). The
contribution of deficits in perceptual processing (either visual
or auditory) was also controlled by showing that performance
was significantly worse on our combined phonological meas-
ure than three semantic picture matching tasks (see below for
task details). Finally, to assess whether phonological process-
ing impairments were at the level of overt or covert speech
production, we also report the results of a writing task that
required patients to silently write down the words they have

heard. This involves phonological processing without overt
speech production.

Although the phonological and semantic tasks were different
in this lesion study to the tasks used to define the regions in
the TMS studies, a cross task validation ensures that the func-
tion of the regions being investigated is involved in the com-
putation of phonological processes that are shared by a range
of different language tasks. It is also more feasible to generalize
over tasks because of the challenges of using the CAT speech
production tasks in a TMS study and, conversely, the TMS
phonological tasks in the stroke patient study. Specifically,
speech response times for the CAT tasks are difficult to meas-
ure in TMS studies because voice onset times are hidden by
noise and jaw movements. Conversely, the problem adminis-
tering the TMS phonological tasks to patients is that most
patients with post-stroke aphasia do not generate enough cor-
rect responses that can be used to measure response times.

Task details

The CAT non-word reading task visually presents five non-
sense words (e.g. fask), one at a time, with instructions to
read them aloud. Immediate correct responses were given a
score of 2; incorrect responses were given a score of 0; correct
responses after a self-correction or a delay (45 s) were given a
score of 1. Articulatory errors (e.g. dysarthric distortions) not
affecting the perceptual identity of the target were scored as
correct. Verbal, phonemic, neologistic and apraxic errors were
scored as incorrect. T-scores 456 constitute the impaired
range.

The CAT digit span task involves hearing digit strings and
repeating what has been heard. There are six progressive levels
of difficulty that start with two digits and build up to seven
digits. The total score is obtained by multiplying the number
of digits in the digit string of maximum length successfully
repeated by two. Phonemic, apraxic and dysarthric errors
were not penalized. T-scores 450 constitute the impaired
range.

The CAT writing heard words task involved hearing five
words (one at a time) and writing them down as accurately
as possible. The test items comprise a concrete word ‘man’, an
irregular concrete word ‘yacht’, an abstract word ‘idea’, a
morphologically complex word ‘undrinkable’, and a non-
word ‘blosh’. Letters in the correct position were given a
score of 1 each. Substitutions, omissions and transpositions
were given a score of 0. One point was deducted from the
total score if one or more letters were added to the target
word. T-scores 457 constitute the impaired range.

The CAT visual word-to-picture matching task involves a
written word at the centre of the page surrounded by four
possible pictures. The subject has to pick the picture that
matches the meaning of the written word. There are a total
of 15 test trials plus a practice one at the beginning. The
scoring system for this task was identical to that used in the
non-word reading task. T-scores 453 constitute the impaired
range.

The CAT auditory word-to-picture matching task involves
hearing a word produced by the examiner and selecting the
picture among four possible alternatives that best matches the
meaning of the heard word. There are a total of 15 test trials
plus a practice one at the beginning. The scoring system for

Figure 1 Correlation coefficients for the CAT and TMS

phonological measures. The TMS phonological measure was the

homophone judgement task used by Gough et al. (2005) and

Sliwinska et al. (2015). Scores on this task (i.e. per cent accuracy U

median correct reaction time, � 1000) were correlated with seven

different phonological measures from the CAT: non-word reading

(Read-N), non-word repetition (Rep-N), digit span (Dig-Sp), and

every combination of them (T-scores were averaged for each task

pair/triplet). Two patients were classified as outliers because they

had scores 43 SD below the group mean on the non-word reading

task and were therefore removed from all correlation analyses.

Error bars represent 95% CI.
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this task was identical to that used in the non-word reading
task. T-scores 451 constitute the impaired range.

The CAT semantic associations task presented five pictures
of objects. The instructions were to match the picture at the
centre (e.g. mitten) with one of four possible alternatives ac-
cording to the strongest semantic association (e.g. hand, sock,
jersey, and lighthouse). The inclusion of a semantically related
distractor (e.g. sock) encouraged deeper levels of semantic pro-
cessing. There are a total of 10 test trials plus a practice one at
the beginning. Correct responses were given a score of 1; in-
correct responses were given a score of 0. T-scores 447 con-
stitute the impaired range.

Each patient was assigned a total score for every task they
completed as part of the CAT assessment. For ease of com-
parison across tasks, standardized procedures from the CAT
convert these raw scores into T-scores, which represent each
patient’s assessed skill on each task relative to a reference
population of 113 aphasic patients, 56 of whom were tested
more than once on the CAT. The threshold for impairment is
defined relative to a second population of 27 neurologically
normal controls, as the point below which the score would
place the patient in the bottom 5% of the control population
(Swinburn et al., 2004). Lower scores indicate poorer
performance.

MRI data acquisition, preprocessing
and lesion identification

T1-weighted high resolution anatomical whole-brain volumes
were obtained for all patients (n = 288). Four different MRI
scanners (Siemens Healthcare) were used to acquire the struc-
tural images: 150 patients were imaged on a 1.5 T Sonata
scanner, 115 on a 3 T Trio scanner, 18 on a 1.5 T Avanto
scanner, and five on a 3 T Allegra scanner. As for the 1.5 T
Avanto scanner, a 3D magnetization-prepared rapid acquisi-
tion gradient-echo (MPRAGE) sequence was used to acquire
176 sagittal slices with a matrix size of 256 � 224, yielding a
final spatial resolution of 1 mm isotropic voxels (repetition
time/echo time/inversion time = 2730/3.57/1000 ms). In all
other cases, an optimized 3D modified driven equilibrium
Fourier transform (MDEFT) sequence was used to acquire
176 sagittal slices with a matrix size of 256 � 224, yielding
a final spatial resolution of 1 mm isotropic voxels: repetition
time/echo time/inversion time = 12.24/3.56/530 ms and 7.92/
2.48/910 ms at 1.5 T and 3 T, respectively (Deichmann
et al., 2004). The structural image for each patient was then
converted to a 3D binary lesion image (specifying where
damage was likely in the brain, in comparison to healthy con-
trols), in standard MNI space, using our automated lesion
identification procedure that has been described in full else-
where (Seghier et al., 2008).

Regions of interest from prior TMS
and functional MRI studies

Our TMS regions of interest were spheres (radius of 5 mm, 0.5
cm3 in volume), centred on the mean MNI coordinates for
SMG [�52, �34, 30] and pOp [�52, 16, 8] that were reported
in studies that used TMS-based functional localization (Gough
et al., 2005; Sliwinska et al., 2015) (Fig. 2A). The size of the
regions (5 mm radius) was chosen based on the expected spatial

resolution of TMS, which has been argued to be in the order of
5–10 mm (Brasil-Neto et al., 1992a,b; Wilson et al., 1993;
Ravazzani et al., 1996; Thielscher and Kammer, 2002). We
also investigated how our results would change if our regions
of interest had been based on previous functional MRI studies
rather than previous TMS studies. The functional MRI x, y, z
MNI coordinates for SMG were [�57, �21, 39; �42, �40, 46;
�54, �36, 40; mean = �51, �32, 42] from Booth et al. (2002),
Devlin et al. (2003), and Seghier et al. (2004), respectively (Fig.
2B). Those for pOp were [�58, 5, 13; �50, 6, 24; �57, 9, 24;
�41, 3, 20; mean = �52, 6, 20] from McDermott et al. (2003),
Devlin et al. (2003), Gitelman et al. (2005), and Simard et al.
(2013), respectively (Fig. 2B). The coordinates reported in
McDermott et al. (2003) and Seghier et al. (2004) were con-
verted from Talairach space to MNI space using the tal2icbm
transformation (Lancaster et al., 2007).

Regions of interest from data-driven
analyses

Four types of regions were generated to best account for the
presence or absence of phonological impairments according to
the presence or absence of damage: (i) TMS-guided regions; (ii)
functional MRI-guided regions; (iii) an unguided-LOM region
from a LOM that was independent of the TMS regions; and
(iv) a VLSM region from a VLSM analysis.

The TMS-guided regions were based on two different LOMs
(from patients in Sample 1). One for those who had phono-
logical impairments following above-threshold damage (see
below for critical damage thresholds) to the 0.5 cm3 TMS
SMG region and one for those who had phonological impair-
ments following above-threshold damage (see below for critical
damage thresholds) to the 0.5 cm3 TMS pOp region. The new
TMS-guided regions included the grey and white matter,
around the original TMS sites, that was most consistently
damaged in the LOMs. For pOp, the new region extended
to 20.6 cm3 and was 100% damaged in 12/13 of the patients
with lesions to the original TMS pOp region and phonological
impairments. For SMG, the new region extended to 24.9 cm3

and was at least 85% damaged in 11/12 of the patients with
lesions to the original TMS SMG region and phonological
impairments (Fig. 2A and Supplementary Fig. 2).

The functional MRI-guided regions were identified in the
same way as the TMS-guided regions, with the only exception
that patients (from Sample 1) with damage to spherical regions
of interest centred on the mean functional MRI coordinates
(�52, 6, 20 for pOp and �51, �32, 42 for SMG) were used
to create the LOMs. For pOp, the new region extended to 18.1
cm3 and was 100% damaged in 17/17 of the patients with
lesions to the original functional MRI pOp region and phono-
logical impairments (Fig. 2C). For SMG, the new region was
based on one patient only, because no other patients with
phonological impairments had selective damage to the original
functional MRI SMG region. Consequently, the new SMG
region was very large (161.8 cm3) and encompassed most of
the left perisylvian cortex, including 94% of the functional
MRI-guided pOp region (Fig. 2C). Therefore, this additional
region added no explanatory power.

The unguided-LOM region was based on a single (unguided)
overlap map of the lesion images from all 23 patients in
Sample 1A (with phonological but not semantic impairments).
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The purpose of this analysis was to identify brain regions com-

monly damaged in patients with selective phonological impair-
ments. We found that the maximum number of patients who

had damage at any given voxel was 19 (out of 23). This degree

of overlap, however, was only observed in a very small region
(i.e. 0.1 cm3). Comparison of the classification accuracy for

different degrees of overlap identified that an overlap of 16

patients (out of 23), observed over a 7.3 cm3 region (Fig.
2B), was the best predictor of performance.

Finally, the VLSM region was based on a univariate VLSM
analysis (Bates et al., 2003; Rorden et al., 2007) that identified

voxels where the frequency of lesions was significantly greater

in the 23 patients with phonological but not semantic impair-

ments (Sample 1A) than the 32 patients who did not meet the
criteria for phonological impairments (Sample 1B). This ana-

lysis was conducted using procedures described in Rorden

et al. (2007) including limiting the analysis to voxels that
were damaged in at least 20% of the 55 patients (as in

Geva et al., 2011). The resulting VLSM region of interest

(1.0 cm3) comprised all the voxels that surpassed a statistical
threshold of P50.001 uncorrected, one-tailed (Fig. 2B). We

obtained virtually the same result when we searched for re-

gions where tissue loss correlated with our phonological scores

in a single group analysis that combined Samples 1A and 1B.
Neither the two-group nor one-group analyses identified effects

that were significant after correction for multiple comparisons

(i.e. P50.05, FWE-corrected).

Determining the threshold for critical
damage

The degree to which any region was damaged varied across
patients from 100% to 0%. For each region, we searched for
the percentage of damage that best accounted for the presence
or absence of phonological impairments in Samples 1A and
1B. Classification accuracy (for each threshold) was expressed
in terms of positive and negative predictive values, sensitivity,
specificity and the odds ratio (Altman and Bland, 1994a, b;
Bland and Altman, 2000; Glas et al., 2003). The threshold was
set at the degree of damage that had the highest odds ratio.

Other analyses

Having identified different regions and their critical damage
thresholds, we compared the classification accuracy (using
the odds ratio) for each region. The incidence and severity
of impairments on phonologically and semantically demand-
ing tasks was also compared. All statistical analyses of be-
haviour were conducted in IBM SPSS Statistics for Windows,
Version 22.0 (Armonk, NY: IBM Corp). The comparison of
predictive values between different regions was performed
using the method proposed by Leisenring et al. (2000) as
implemented in the R package ‘DTComPair’ (Stock and
Hielscher, 2014).

Figure 2 Regions of interest. (A) The TMS and TMS-guided regions are shown in cyan and red for pOp, with the 80% overlap of these

regions in white; and yellow and blue for SMG, with the 82% overlap of these regions in white. (B) Other regions of interest are shown in cyan

(functional MRI pOp), yellow (functional MRI SMG), green (VLSM) and violet (unguided LOM), with areas of overlap in white. (C) The functional

MRI-guided regions are shown in red for pOp and blue for SMG, with areas of overlap in violet. fMRI = functional MRI; ROI = region of interest.
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Results
The thresholds for the degree of damage to each of our six

sets of regions (TMS, functional MRI, TMS-guided, func-

tional MRI-guided, unguided-LOM, and VLSM) that best

explained the presence or absence of phonological impair-

ments was: 80%, 80%, 80%, 90%, 90% and 70%,

respectively (Table 1). Henceforth, we refer to ‘damage’

when the degree of damage to the region of interest was

equal to or greater than the threshold selected for that

region.

When classifying a patient with ‘phonological impair-

ments’, we are referring to patients who had impaired

scores on both the non-word reading and digit span CAT

tasks. The severity of phonological impairments was mea-

sured by averaging T-scores across the non-word reading

and digit span tasks.

Sample 1

Classification accuracy when using regions from

previous TMS studies

Overall, the incidence of phonological impairments in pa-

tients with above-threshold damage to the SMG, pOp or

SMG and pOp regions versus below-threshold damage to

both regions was 74% (40/54) and 21% (21/100), respect-

ively. Specifically, we found that the incidence of phono-

logical impairments for damage to (SMG and pOp), (SMG

not pOp), and (pOp not SMG) was: 88% (15/17), 75%

(12/16) and 62% (13/21), respectively. In those with

below-threshold damage to both regions, the incidence

of phonological impairments after 20–79% damage

versus 0–19% damage to either SMG or pOp was: 41%

(11/27) and 14% (10/73), respectively.

Classification accuracy when using regions from

previous functional MRI studies

Overall, the incidence of phonological impairments was 44/

69 (64%) patients with above-threshold damage to the

functional MRI regions and 17/85 (20%) in those with

below-threshold damage to these regions. As shown in

Table 1, the positive predictive value of the TMS regions

(74%) was significantly higher than that of the functional

MRI regions (64%; �2 = 4.51, P = 0.034). This resulted in a

lower odds ratio for the functional MRI regions than

the TMS regions (7.0 versus 10.7; Table 1), suggesting

that the TMS regions provide a better account of the

data than the functional MRI regions. Moreover, using

both TMS and functional MRI regions did not improve

the classification accuracy relative to using only the TMS

regions (9.5 versus 10.7; Table 1).

Classification accuracy when using the TMS-guided

regions

The TMS-guided regions differed from the spherical TMS

regions because only the TMS-guided regions extended

deep into the underlying white matter, including the anter-

ior, posterior and long segments of the superior longitu-

dinal fasciculus/arcuate fasciculus and the inferior fronto-

occipital fasciculus (Fig. 2A and Supplementary Fig. 2). The

TMS-guided SMG region additionally included parts of the

inferior longitudinal and uncinate fasciculi; while the TMS-

guided pOp region additionally included the external and

internal capsule.

Overall, the incidence of phonological impairments in

patients with above-threshold damage to one or both of

the TMS-guided regions versus below-threshold damage

to both TMS-guided regions was 85% (46/54) and 15%

(15/100), respectively. When we considered the effect of

each lesion site separately, we found that the incidence of

phonological impairments after damage to (SMG and

pOp), (SMG not pOp), and (pOp not SMG) was: 89%

(17/19), 90% (9/10) and 80% (20/25), respectively. In

those with below-threshold damage to both regions, the

incidence of phonological impairments after 20–79%

damage versus 0–19% damage to either SMG or pOp

was: 21% (13/62) and 5% (2/38), respectively.

As expected when data are fitted, the classification accur-

acy was higher for the TMS-guided regions than the ori-

ginal TMS regions [odds ratio (OR) = 32.6 versus 10.7].

Importantly, however, the fitting of the data was only

based on a subset of patients. In patients who were not

used to define the TMS-guided regions, 10 had below-

threshold damage to both TMS sites but above-threshold

damage to the TMS-guided sites (one SMG, eight pOp and

one both) (Table 2). The classification accuracy in these 10

patients was higher for the TMS-guided regions (8/10 with

damage had phonological impairments) than for the TMS

regions (2/10 without damage did not have phonological

impairments). Over all 154 patients, the incidence of

phonological impairments rose to 85% (46/54) from 74%

(40/54) in those with above-threshold damage to the TMS-

guided versus TMS regions while falling to 15% (15/100)

from 21% (21/100) in those with below-threshold damage

to the TMS-guided versus TMS regions (Fig. 3). The clas-

sification accuracy of the TMS-guided regions cannot be

explained by lesion size because, even when lesion size

was matched, the incidence and severity of phonological

impairments was significantly worse when either of the

TMS-guided regions were damaged compared to spared

(Tables 3 and 5).

Classification accuracy when using the functional

MRI-guided regions

The functional MRI-guided pOp region was similar,

though not identical, to the TMS-guided pOp region

(Fig. 2). Consequently, both regions had comparable posi-

tive predictive values when considered without SMG (37/44

for TMS-guided pOp and 28/32 for functional MRI-guided

pOp). However, more patients were accounted for by

the TMS-guided pOp region (37) than the functional

MRI-guided pOp region (28). When we also took into

account the SMG regions, the explanatory power of the
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TMS-guided regions increased further (OR = 32.6), but this

was not the case for the functional MRI-guided regions

(OR = 18.9) (Table 1).

Classification accuracy when using the unguided

lesion overlap map region

The unguided-LOM region differed from the TMS-guided

regions (Fig. 2) because, without using the TMS sites from

prior studies to stratify the patients into different groups,

the most frequent area of overlap was the white matter

between the two TMS regions (see Mah et al., 2014 for

illustrations of how and why this happens). This unguided-

LOM region included portions of the anterior, posterior

and long segments of the superior longitudinal fasciculus/

arcuate fasciculus, as well as the periventricular white

matter.

Table 1 Classification accuracy for each region of interest

Region of interest Threshold, % n PPV, % NPV, % Sensitivity, % Specificity, % Odds

ratio

Sample 1 (1–5 years post-stroke), regions of interest from previous studies (independent of data)

(1) TMS 100 55 25 57 4 91 0.4

90 55 47 60 30 75 1.3

80 55 57 68 52 72 2.8

70 55 48 63 52 59 1.6

All at 80 154 74 79 66 85 10.7

(2) Functional MRI 100 55 29 54 17 69 0.5

90 55 41 57 48 50 0.9

80 55 45 64 65 44 1.5

70 55 42 58 65 34 1.0

All at 80 154 64 80 72 73 7.0

(1) and (2) 80 154 64 84 80 70 9.5

Sample 1 (1–5 years post-stroke), data-driven regions of interest

(3) TMS-guided 100 55 70 64 30 91 4.2
90 55 69 67 39 88 4.5

80 55 70 74 61 81 6.7

70 55 54 70 65 59 2.7

All at 80 154 85 85 75 91 32.6

(4) Functional MRI-guided 100 55 100 60 9 100 –

90 55 67 61 17 94 3.2

80 55 57 60 17 91 2.0

70 55 55 61 26 84 1.9

All at 90 154 88 73 46 96 18.9

(5) Unguided-LOM 100 55 100 63 17 100 –

90 55 70 64 30 91 4.2

80 55 56 65 43 75 2.3

70 55 52 67 57 63 2.2

All at 90 154 89 76 54 96 26.2

(6) VLSM 100 55 75 61 13 97 4.7

90 55 67 63 26 91 3.4

80 55 69 67 39 88 4.5

70 55 71 68 43 88 5.4

All at 70 154 85 76 54 94 17.1

(3) and (4) 80/90 154 85 86 77 91 35.7

(3) and (5) 80/90 154 83 87 80 89 33.9

(3) and (6) 80/70 154 83 91 87 88 49.4

Sample 2 (`5 years post-stroke), regions of interest from Sample 1 (independent of data)

(3) 80 108 64 94 93 69 27.6

(4) 90 108 65 76 55 82 5.7

(5) 90 108 72 81 65 85 10.8

(6) 70 108 66 75 53 84 5.7

(3) and (4) 80/90 108 64 94 93 69 27.6

(3) and (5) 80/90 108 63 96 95 68 39.7

(3) and (6) 80/70 108 59 95 95 62 30.7

n = number of patients included in each analysis (55 = 23 + 32 from Samples 1A and 1B; 154 = all those 1–5 years post-stroke; 108 = all those 45 years post-stroke).

PPV/NPV = positive and negative predictive values. Threshold = cut-off (in % damage) for categorizing region of interest as damaged or not.
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Phonological impairments were observed in 33/37 (89%)

patients with above-threshold damage to the unguided-

LOM region and 28/117 (24%) patients with below-thresh-

old damage to this region. This resulted in a lower odds

ratio for the unguided-LOM region (26.2) than the TMS-

guided regions (32.6), with a negligible improvement when

the analysis used both the unguided-LOM region and the

TMS-guided regions (OR = 33.9) (Table 1). The unguided-

LOM region did nevertheless have higher classification ac-

curacy than the functional MRI-guided regions (OR = 26.2

versus 18.9) (Table 1).

Classification accuracy when using the VLSM region

The VLSM region (where the frequency of lesions is most

significantly different in patients with versus without

phonological impairments) was identified in the left super-

ior temporal gyrus including portions of the planum tem-

porale and Heschl’s gyrus. This region is completely

different from the other regions (Fig. 2), because VLSM

takes into consideration the variance in lesion site within

and between groups as well as the overlap in lesion site

(Rudrauf et al., 2008).

The incidence of phonological impairments was 33/39

(85%) in patients with above-threshold damage to the

VLSM region and 28/115 (24%) in patients with below-

threshold damage to the VLSM region. The odds ratio for

the VLSM region was substantially lower than that of the

TMS-guided regions (17.1 versus 32.6) and the unguided-

LOM region (17.1 versus 26.2), but only slightly lower

than that of the functional MRI-guided regions (17.1

versus 18.9) (Table 1). However, because the VLSM

region accounted for seven patients with phonological im-

pairments that did not have above-threshold damage to the

TMS-guided regions, and the TMS-guided regions ac-

counted for 20 patients with phonological impairments

who did not have above-threshold damage to the VLSM

region (Supplementary Table 1), the odds ratio was highest

(49.4) when the analysis used both the VLSM region and

the TMS-guided regions.

Sample 2

Classification accuracy

In Sample 2, the prevalence of phonological impairments

(40/108 = 37%) was approximately the same as in Sample

1 (61/154 = 40%). The key point of interest, however, was

the classification accuracy for different regions of interest

(Table 1). We found that, even when all the regions were

entirely independent of the data, the odds ratio was still

substantially higher for the TMS-guided regions (27.6) than

the functional MRI-guided regions (5.7), the unguided-

LOM region (10.8) or the VLSM region (5.7).

Interestingly, the best fit of the data (OR = 39.7) was

when the analysis included the unguided-LOM region as

well as the TMS-guided regions (Table 1) and this was

not improved further by adding the VLSM region

(OR = 30.7) or the functional MRI-guided regions

(OR = 39.7).

Finally, the independence of Sample 2 from the region

selection process allows us to compare the odds ratio for

the original TMS regions (spherical volumes in grey matter)

with that of the TMS-guided regions (that extended deep

into the white matter). This confirmed that the classification

accuracy was substantially better when using the TMS-

guided regions than the original TMS regions (OR = 27.6

versus 8.2).

The effect of damage to the TMS-
guided regions on writing heard
words

As expected, damage to either of the TMS-guided regions

did not differentially affect the incidence of phonological

impairments (i.e. impaired non-word reading and digit

span) and the incidence of impaired performance on the

writing heard words task that involved covert phonological

processing without speech production (Tables 4 and 5).

However, test scores were, overall, significantly lower on

Figure 3 Classification accuracy for TMS and TMS-guided

regions. Improvements in the classification accuracy can be seen

when the lesion categorization changed from original TMS regions

to TMS-guided regions. Patients with above-threshold damage to

the TMS-guided regions had higher incidence of phonological

impairments (i.e. impaired non-word reading and digit span)

than patients with above-threshold damage to the original TMS

regions.

Table 2 Lesion categorization

Damage to: TMS-guided

SMG

TMS-guided

pOp

TMS-guided

SMG and pOp

Neither

TMS SMG 9 (8) 0 3 (3) 4 (1)

TMS pOp 0 15 (12) 0 6 (1)

TMS SMG

and pOp

0 2 (2) 15 (13) 0

Neither 1 (1) 8 (6) 1 (1) 90 (13)

The numbers of patients who moved from one group to another, with number of

patients who were impaired on the CAT phonological measure (i.e. combined non-

word reading and digit span) shown in parentheses.
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the combined non-word reading and digit span measure

than the writing heard words task (Tables 4 and 5); plaus-

ibly because accessing the semantic representations of the

familiar words lessen the demands on phonological

processing.

The effect of damage to the TMS-
guided regions on semantically
demanding tasks

Crucially, patients with damage to either of the TMS-

guided regions performed worse on phonologically de-

manding tasks than semantically demanding tasks (Tables

4 and 5); and these differences in task performance were

significantly larger than those observed in patients with

other lesions (i.e. below-threshold damage to both regions)

(Table 5). These lesion-specific task effects suggest that the

relative sparing of semantic compared to phonological pro-

cessing abilities in patients with damage to the TMS-guided

SMG or pOp regions was not merely driven by differences

in task difficulty.

Differences in the effect of damage to
supramarginal gyrus or pars
opercularis

Performance on all 27 subtests from the CAT was compared

in patients with lesions to the TMS-guided SMG region

(n = 8) versus TMS-guided pOp region (n = 13) after match-

ing for lesion size (Table 3). There were no statistically sig-

nificant differences in the incidence or severity of impairments

after Bonferroni correction for multiple comparisons

(Supplementary Fig. 3). Without Bonferroni correction,

non-word repetition scores were lower after damage to

SMG (mean = 43.8, SD = 7.2) than pOp [mean = 54.5,

SD = 8.2; t(19) = 3.039, P = 0.007], but there were no other

statistically significant group differences for any of the tasks.

Discussion
In this study we have shown how the effect of functionally

localized TMS-induced transient lesions in healthy participants

guided the identification of lesion sites that caused persistent

Table 3 Summary of demographic and clinical data for each TMS-guided group

Size matched Excluded from size-matched groups

SMG pOp Control SMG pOp SMG and pOp Control

n = 8 n = 13 n = 30 n = 2 n = 12 n = 19 n = 70

Lesion size (cm3) Mean 85.1 90.8 77.6 133.9 176.2 230.2 19.9

SD 29.2 20.9 19.8 2.5 34.0 83.9 14.8

Minimum 44.3 57.6 51.5 132.1 132.2 116.5 1.4

Maximum 117.8 128.7 127.0 135.7 226.0 464.7 50.8

Age (years) Mean 59.9 50.6 60.3 68.6 56.2 59.7 59.9
SD 10.2 14.5 12.0 2.8 8.4 12.6 13.4

Minimum 46.5 30.7 29.4 66.7 40.1 38.9 21.3

Maximum 78.3 74.1 78.2 70.6 65.1 85.5 90.0

Time post-stroke (months) Mean 30.3 27.2 32.0 51.3 25.7 42.2 32.1

SD 15.3 11.3 12.5 6.6 10.5 13.3 14.0

Minimum 13.5 13.5 12.4 46.6 12.5 14.4 12.0

Maximum 53.6 45.9 55.6 55.9 50.3 60.0 57.4

Gender Males 7 9 26 2 10 16 41

Females 1 4 4 0 2 3 29

Phonological measure Imp (not) 8 (0) 10 (3) 10 (20) 1 (1) 10 (2) 17 (2) 5 (65)

Mean 45.1 46.9 53.1 54.0 47.3 42.5 59.4

SD 4.2 7.0 7.3 4.2 5.8 4.6 6.4

Minimum 37.5 37.5 37.5 51.0 37.5 37.5 41.5

Maximum 50.0 60.0 67.0 57.0 58.0 55.5 67.0

% damage to SMG Mean 93.8 30.8 46.8 100 47.8 93.5 10.4

SD 6.1 27.3 26.2 0.0 26.8 6.9 16.5

Minimum 86.0 0.0 0.0 100 3.0 83.0 0.0

Maximum 100 72.0 79.0 100 78.0 100 76.0

% damage to pOp Mean 19.8 93.3 33.2 11.0 93.9 95.2 16.3
SD 23.9 8.2 28.3 15.6 8.0 6.7 22.1

Minimum 1.0 80.0 0.0 0.0 80.0 80.0 0.0

Maximum 60.0 100 78.0 22.0 100 100 74.0

All data are from Sample 1 (n = 154). The three groups listed on the left-hand side were matched for lesion size [F(2,48) = 1.78, P = 0.180]. The four groups listed on the right-hand

side comprise the patients that were excluded from the size matched groups. Imp = number of patients with impaired phonological scores; not = number of patients who did not

meet our criteria for phonological impairments.
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Table 5 Statistical analyses

Incidence (chi-square test) Severity (t-test)

n �2 df OR P t df d P

Comparison of the incidence and severity of phonological impairments in patients with damage to one of

the TMS-guided regions relative to size-matched controls (see also Table 3)

TMS-guided SMG 8 versus 30 a a a 0.001 2.91 36 1.16 0.006

TMS-guided pOp 13 versus 30 6.93 1 6.67 0.008 2.56 41 0.85 0.014

Comparison of the incidence and severity of impairments on the phonological measure relative to that on

each of the control tasks in patients with damage to one of the TMS-guided regions (see also Table 4)

TMS-guided SMG:

Phon versus Writ-HW 10 2.00b 1 – 0.157 2.45 9 0.77 0.037

Phon versus VW-P 10 4.00b 1 – 0.046 3.69 9 1.17 0.005

Phon versus AW-P 10 4.00b 1 – 0.046 2.25 9 0.71 0.051

Phon versus Sem-A 8 6.00b 1 – 0.014 3.19 7 1.13 0.015

TMS-guided pOp:

Phon versus Writ-HW 25 0.00b 1 – 1.000 4.73 24 0.95 _0.001

Phon versus VW-P 25 0.82b 1 – 0.366 2.95 24 0.59 0.007

Phon versus AW-P 25 8.33b 1 – 0.004 4.10 24 0.82 _0.001

Phon versus Sem-A 24 15.21b 1 – _0.001 5.32 23 1.09 _0.001

Comparison of the within-subject difference between phonological and semantic scores in patients with

damage to one of the TMS-guided regions relative to controls (see also Table 4)

TMS-guided SMG:

Phon � VW-P 10 versus 100 – – – – 2.82 108 0.93 0.006

Phon � AW-P 10 versus 100 – – – – 2.18 108 0.72 0.031

Phon � Sem-A 8 versus 97 – – – – 3.29 103 1.21 0.001

TMS-guided pOp:

Phon � VW-P 25 versus 100 – – – – 2.58 123 0.58 0.011

Phon � AW-P 25 versus 100 – – – – 3.12 123 0.70 0.002

Phon � Sem-A 24 versus 97 – – – – 5.72 119 1.30 _0.001

Phon = combined non-word reading and digit span; Writ-HW = writing heard words; VW-P = visual word-to-picture matching; AW-P = auditory word-to-picture matching;

Sem-A = semantic associations; d = Cohen’s d.
aFisher’s exact test.
bMcNemar’s chi-square test.

Table 4 Functional impairments after damage to the TMS-guided SMG or pOp regions

Measure SMG pOp Control

n = 10 n = 25 n = 100

Phonological (non-word reading and digit span) Number of patients imp (not) 9 (1) 20 (5) 15 (85)

Mean score across group 46.9 47.1 57.5

SD 5.5 6.3 7.3

Writing heard words (Writ-HW) Number of patients imp (not) 7 (3) 20 (5) 34 (65)a

Mean score across group 52.8 52.1 60.1

SD 9.3 8.2 7.2

Visual word-to-picture matching (VW-P) Number of patients imp (not) 5 (5) 17 (8) 28 (72)

Mean score across group 54.9 52.4 58.1

SD 7.0 6.4 6.7

Auditory word-to-picture matching (AW-P) Number of patients imp (not) 5 (5) 10 (15) 12 (88)

Mean score across group 53.6 53.4 58.3

SD 8.1 6.4 5.8

Semantic associations (Sem-A) Number of patients imp (not) 1 (7)a 2 (22)a 7 (90)a

Mean score across group 56.4 56.3 57.0

SD 7.3 5.9 5.5

All data are from Sample 1. The table shows the numbers of patients who had impairments (or did not meet the criteria for impairments) on five different measures that differentially

require phonological and semantic processing. imp = patients with impaired phonological scores; not = patients who did not meet our criteria for phonological impairments.
aMissing scores: one control for Writ-HW, and two SMG, one pOp and three controls for the Sem-A task.
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phonological impairments after stroke. Below, we discuss: how

damage to regions from prior TMS and functional MRI studies

affects phonological processing; the lesion sites that best explain

the incidence of phonological impairments after stroke; and the

functional impairments caused by SMG or pOp damage.

How damage to regions from prior
TMS and functional MRI studies
affects phonological processing

Our regions of interest were 0.5 cm3 spheres centred on

MNI coordinates from previous TMS and functional MRI

studies of phonological processing. The TMS sites were not

the same as the functional MRI sites (Fig. 2) because they

had been functionally localized to the position where TMS

impaired phonological decisions (Gough et al., 2005;

Sliwinska et al., 2015). We found that lesions to the TMS

regions accounted for the incidence of persistent phono-

logical impairments better than lesions to the functional

MRI regions and that the explanatory power of the TMS

sites was not improved by adding the functional MRI sites

(Table 1). This suggests that TMS-based functional localiza-

tion in healthy participants helped to identify which parts of

pOp and SMG were necessary for phonological processing.

Although the TMS sites were more predictive than the

functional MRI sites, the incidence of phonological impair-

ments after damage to the TMS regions (i.e. the positive

predictive value) was still below 80%. This between-subject

inconsistency in the mapping between lesion and impair-

ment might reflect (i) intersubject variability in the ability

to recover phonological processing skills after damage to

the TMS regions; (ii) intersubject variability in the brain

regions that support phonological processing; (iii) the sen-

sitivity of our phonological measure (based on the accuracy

of non-word reading and digit span) being lower than that

used in the TMS studies (i.e. response times to phonological

decisions tasks); or (iv) the use of suboptimal regions that

do not include the full extent of grey and white matter that

is necessary for phonological processing. We pursue the

selection of the most optimum regions below, while

noting that intersubject variability is also likely to play an

important role, as shown in prior TMS (Sliwinska et al.,

2015), functional MRI (Seghier and Price, 2016) and con-

tinuous theta burst stimulation (Hartwigsen et al., 2013)

studies of healthy participants, in addition to studies of

recovery after stroke (Forkel et al., 2014).

The lesion sites that best explain the
incidence of phonological
impairments

Having tested how phonological processing abilities are af-

fected by damage to regions identified in previous studies,

we sought to adapt the regions until they provided a better

explanation of which patients did and did not have phono-

logical impairments. This involved tailoring the regions of

interest to areas that were most consistently damaged in

patients with phonological impairments. We generated

four different types of data-driven regions using (i) two

TMS-guided LOMs; (ii) a functional MRI-guided LOM;

(iii) an unguided LOM; and (iv) VLSM, which identified

an area in the left superior temporal cortex that was not

part of the TMS-guided or unguided LOMs.

We found that the presence or absence of phonological

impairments was explained by the TMS-guided regions

better than any of the other sets of regions (functional

MRI-guided regions, unguided-LOM region or VLSM

region) (Table 1). However, the best fit of the data was

when the analysis took into account the VLSM region (in

superior temporal cortex) as well as the TMS-guided regions

(pOp and SMG). This is because damage to the TMS-guided

regions explained phonological impairments in 20 patients

who did not have damage to the VLSM regions; while, con-

versely, damage to the VLSM region explained phonological

impairments in seven patients who did not have damage to

the TMS-guided regions (see Supplementary material for full

breakdown). Together the TMS-guided and VLSM regions

were able to account for the incidence of phonological im-

pairments after stroke with nearly 90% sensitivity and spe-

cificity (Table 1). This is quite remarkable given that the

phonological impairments were defined using different

tasks and measures (accuracy versus response times) than

those used in the previous TMS studies. Moreover, our

lesion-deficit associations provide a much more consistent

explanation of the incidence of aphasic symptomatology

than that expected on the basis of recent reviews (Watila

and Balarabe, 2015) and may, in future, help to improve

our ability to predict outcome after stroke.

By additionally including a second sample of patients (those

who were 45 years post-stroke) we were also able to show

that lesions to the TMS-guided regions explained phono-

logical impairments (in a new sample) better than lesions to

the original TMS regions. This indicates that phonological

impairments were, in part, caused by damage to the white

matter underlying the original TMS regions, and it raises the

possibility that the effect of TMS in healthy participants might

also be emerging from disruption to much more extensive

areas than the recorded site of stimulation. Indeed, prior stu-

dies have already claimed that the effect of TMS is not limited

to the cortical mantle but spreads through the network

(Siebner et al., 2009; Wagner et al., 2009; Nummenmaa

et al., 2014). Further analyses of lesion sites are needed to

determine whether phonological impairments result from

damage to the cortex only, underlying white matter only or

both. The results might also offer new insights into how TMS

affects phonological processing in healthy participants.

In summary, prior TMS studies have shown that pOp

and SMG contribute to the speed of phonological process-

ing but were not able to test whether these regions are

essential for generating accurate responses. The novel con-

tribution of the current study is to identify the extent of

pOp and SMG damage that impairs accurate phonological

processing, even years after stroke. Our findings
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demonstrate that the pOp and SMG regions we have iden-

tified play a unique role in phonological processing that

cannot typically be subsumed by other brain areas.

The functional impairment caused
by supramarginal gyrus and pars
opercularis damage

The observation that damage to our TMS-guided SMG and

pOp regions impaired phonological more than semantic

tasks mirrors prior findings from TMS (Gough et al.,

2005; Sliwinska et al., 2015) and functional MRI (Devlin

et al., 2003; McDermott et al., 2003) studies of healthy

participants. Likewise, the fact that damage to our TMS-

guided SMG and pOp regions impaired the ability to write

words to dictation is consistent with previous studies asso-

ciating SMG and pOp with covert rather than overt phono-

logical processing (Crottaz-Herbette et al., 2004; Gough

et al., 2005; Wimmer et al., 2010; Geva et al., 2011;

Sliwinska et al., 2015).

We did not find any evidence that lesions to the SMG or

pOp regions had differential effects on behaviour, despite

comparing patient performance on a set of tasks that sys-

tematically varied the demands on a wide range of sensory,

motor and cognitive functions. Nor did we find any indi-

cation that concurrent damage to our SMG and pOp re-

gions impaired phonological processing more than damage

to each region alone. This finding mirrors that observed in

TMS studies of healthy participants (Hartwigsen et al.,

2016), suggesting that SMG and pOp form part of the

same phonological processing system, which breaks down

following damage to any critical part.

Conclusion
In conclusion, we have shown that: (i) findings from TMS

studies of healthy participants helped to identify lesion sites

that explained phonological processing abilities after stroke;

(ii) damage to the TMS-guided SMG and pOp regions af-

fected performance on phonological more than semantic

tasks; (iii) the stroke lesions impacting upon phonological

abilities extended, in the majority of cases, deep into the

white matter; and finally, (iv) most patients with lesions to

these extended SMG and pOp regions incorporating both

grey and white matter were not able to recover their phono-

logical processing abilities even years after stroke. The

TMS-guided regions we have identified therefore appear to

be critical for normal phonological processing.
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