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I. INTRODUCTION

Oxygen is known to play a key role in cellular energetics. Both oxidation and other forms of 

energy production depend on a continuous supply of oxygen to the cells. In mammals, 

oxygen is extracted from the atmospheric air in the lungs, and carried by the bloodstream 

through the circulation to the tissue, where it is utilized mainly within the mitochondria. 

Behind this simple picture lie many questions concerning physical mechanisms of transport 

in different parts of the pathway. Is oxygen transported in blood mainly by pure convection, 

and what are the roles of diffusion and chemical kinetics? How important are the resistances 

to transport provided by various membranes (red blood cell, endothelial cell, parenchymal 

cell) along the pathway? Does oxygen cross these membranes by pure diffusion, or is the 

diffusion facilitated by a carrier? What are the mechanisms of transport inside the cells? 

Does active transport play any role in oxygen delivery? What is the main site of oxygen 

exchange between the blood and tissue: arterioles, capillaries, or venules? Are these sites 

different for different physiological conditions and for different tissues? Currently, we do not 

have definitive and complete answers to these important questions. A clear understanding of 

the physical mechanisms of oxygen transport throughout the pathway is a prerequisite to 

understanding the regulation of blood flow.

Krogh102 laid the foundation of the theory of oxygen transport to tissue. He proposed that 

oxygen is transported in the tissue by passive diffusion driven by gradients of oxygen 

tension (PO2). He then formulated a simple geometrical model of the elementary tissue unit 

supplied by a single capillary. This geometrical model is commonly referred to as the Krogh 

tissue cylinder or simply Krogh’s model. Together with his colleague, the mathematician 

Erlang, Krogh formulated a differential equation governing oxygen diffusion and uptake in 

the tissue cylinder. The solution to this equation expresses oxygen tension in the tissue as a 

function of spatial position within the tissue cylinder. This simple equation, known as the 

Krogh or Krogh-Erlang equation, has been the basis of most physiological estimates for the 

last 70 years.

The major subsequent advances in qualitative and quantitative understanding of oxygen 

transport to tissue have come from studies of hemoglobin-oxygen kinetics, the role of 

hemoglobin and myoglobin in facilitating oxygen diffusion, and the role of morphologic and 

hemodynamic heterogeneities.
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This review focuses on theories of oxygen transport to tissue. It is intended to be 

comprehensive in that it systematically covers the pathway of oxygen molecules to and from 

the red blood cell, through the plasma, endothelial cell, other elements of the vascular wall, 

and through the extra- and intracellular space to the mitochondria. Mitochondrial oxygen 

transport is not considered here since, as an important area of biochemistry (oxidative 

phosphorylation), it is described in numerous textbooks and surveys. Only a few references 

are made to experimental studies and to physiological aspects of oxygen transport. The 

reader is referred to a recent monograph by Weibel186 and to several surveys that discuss the 

role of oxygen in regulation of blood flow in skeletal muscle,29,50 heart muscle,36 and 

brain.178

The present review reports the state of the art in theoretical studies of oxygen transport in 

living tissues. Several earlier reviews have addressed different aspects of the problem and 

other relevant issues. These include general reviews on oxygen transport in living 

tissues,38,99,106,118,121,137 the role of oxygen transport facilitation by hemoglobin,98,100,101 

and myoglobin,85,101,194 blood oxygenation in extracorporeal devices,22,172 and transport in 

the corneal-contact lens systems.43 For completeness, this review discusses all important 

aspects of the theory of oxygen transport in living tissues; however, in the areas where other 

recent reviews are available (such as the facilitation of oxygen diffusion by hemoglobin and 

myoglobin), only a few major publications on the subject are referenced. The emphasis here 

is on the methodological issues of modeling, not on physiological conclusions drawn from 

application of the models to specific tissues. Such applications could be the subject of a 

separate review.

Whenever possible, standard notations are kept throughout the review. However, in some 

cases notations on the figures are different from the ones used in the text since it was not 

always practical to change the figures. In these cases, explanations of the nomenclature are 

given in the legends.

The review is divided into the following broad areas: oxygen transport in blood, oxygen 

transport in tissue, models of oxygen transport from blood vessels to tissue, oxygen transport 

in specific organs and tissues, and oxygen transport in disease. The goal is to provide the 

reader with information necessary to assess the role of oxygen transport models in 

physiological research.

II. REACTION-DIFFUSION PHENOMENA FOR OXYGEN, HEMOGLOBIN, AND 

MYOGLOBIN

A. OXYGEN-HEMOGLOBIN EQUILIBRIUM

Under normal conditions in human circulation, each milliliter of blood carries about 0.2 ml 

of oxygen. In arterial blood, about 98% of this oxygen is reversibly bound to a protein, 

hemoglobin, contained within the red blood cells, and the remaining oxygen is in a free 

form, dissolved in both blood plasma and in the hemoglobin solution inside the red blood 

cells. Therefore, it is very important to be able to calculate the amount of oxygen bound to 

hemoglobin accurately.
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The ability of a medium to dissolve free oxygen is characterized by the (Bunsen) solubility 

coefficient, α, according to Henry’s law:

(1)

where [O2] denotes the concentration of dissolved oxygen, and P denotes the partial pressure 

of oxygen (oxygen tension), PO2. It is common to measure oxygen concentrations in moles 

per milliliter or, under specified conditions of temperature, barometric pressure, and 

humidity of air, in milliliters per milliliter. One set of standard conditions describing air is 

STPD: standard temperature (0°), pressure (760 torr), dry (water pressure 0 torr). Another 

set of standard air conditions is BTPS: body temperature (37°C in man), ambient pressure, 

fully saturated with water vapor, which results in a vapor pressure of 47 torr at body 

temperature. It is very important to specify the conditions along with the values of physical 

parameters. In this review, STPD conditions are used; 1 mol O2 corresponds to 22,400 ml O2 

(STPD). The typical value for the solubility coefficient in plasma is α = 3·10−5 ml O2 

(STPD) per ml per torr. Thus, at an oxygen tension of P = 100 torr typical for the arterial 

blood, the concentration of oxygen in the blood would be 0.003 ml O2 per milliliter blood.

Hemoglobin molecules in almost all vertebrates are tetramers, consisting of four peptide 

chains, each with an incorporated heme group. The oxygenation of hemoglobin takes place 

through O2 binding to the Fe atom in each of the heme groups. Binding of an oxygen 

molecule triggers a conformational change of the hemoglobin molecule, which affects its 

ability to further bind oxygen or other molecules. The fraction of available oxygen-binding 

sites occupied by oxygen is called hemoglobin-oxygen saturation, S or SO2; it is expressed 

as either a fraction or a percent. This section considers the relationships between Hb-O2 

saturation and oxygen tension when the chemical reaction between oxygen and hemoglobin 

is in equilibrium. The next section deals with kinetic effects.

Now, the maximum amount of oxygen that can be carried by blood in the bound form can be 

estimated. In 1 ml of blood there is about 0.15 g of Hb4 whose molecular weight is 

approximately 65,000. Each mole of Hb4 can bind 4 mol of oxygen. The volume of oxygen 

bound to hemoglobin can be estimated: (22,400) (4) (0.15)/(65,000) = 0.201 ml O2 (STPD) 

per milliliter blood. Thus, combining this estimate with the above calculation for the amount 

of oxygen dissolved in plasma, we obtain the total amount of oxygen carried by blood as 

0.204 ml O2 per milliliter blood, i.e., only 1.5% of oxygen is in the dissolved form provided 

that hemoglobin is completely saturated.

The chemical reaction between oxygen and hemoglobin is affected by a number of factors: 

temperature, pH, partial pressure of carbon dioxide (PCO2), and concentration of 2,3-

diphosphoglycerate (DPG).2,118 Under standard conditions (T = 37°C, pHplasma = 7.4, PCO2 

= 40 torr, [DPG] = 5 mM) values of Hb-O2 saturation plotted vs. PO2 form a sigmoid curve, 

called the oxyhemoglobin dissociation curve (ODC) or oxygen-hemoglobin equilibrium 

curve (OHEC). Both the shape and position of the ODC are affected by the above 

variables.118 The PO2 at which hemoglobin is 50% saturated with oxygen is denoted P50; for 

human blood P50 is approximately 26 torr. This parameter characterizes Hb oxygen affinity: 
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the affinity is increased when P50 decreases and decreases when P50 increases. The 

dependence of the oxyhemoglobin dissociation curve on carbon dioxide concentration and 

pH is called the Bohr effect. In turn, oxygen binding to hemoglobin affects transport of other 

substances. Particularly, the dependence of CO2 transport on oxygen concentration is called 

the Haldane effect.

For mathematical modeling of oxygen transport, it is important to have accurate analytic 

expressions for SO2 as a function of PO2 and other parameters. The mathematical 

expressions for oxyhemoglobin dissociation curve fall into two categories: those derived 

from kinetic models of hemoglobin-oxygen reaction, and those constructed empirically 

without the help of a kinetic model. The first kinetic model was proposed by Hill63 before it 

was established that hemoglobin can bind four oxygen molecules:

(2)

where k′ and k are the association and dissociation rate coefficients, respectively. In 

equilibrium:

(3)

where K = k′/k is the equilibrium constant, and [O2] is the concentration of free oxygen in 

hemoglobin solution. Using Henry’s law (Equation 1), we can rewrite Equation 3 in the 

form:

(4)

where P50 = 1/(Knα) is the value of PO2 at which the hemoglobin is 50% saturated. 

Equation 4 is fairly accurate within the saturation range of 20 to 80% with n ≃ 2.7 for 

human blood (Figure 1). It is called the Hill equation, and n the Hill parameter; because of 

its simplicity, Equation 4 has been most commonly used in physiological and clinical 

applications. A convenient feature of Equation 4 is that it can be easily inverted:

(5)

An important parameter that appears in mathematical models is the slope of the 

oxyhemoglobin dissociation curve; for the Hill equation
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(6)

This function has a maximum at Pmax smaller than P50:

(7)

Adair1 recognized that each hemoglobin molecule contains four heme groups, and, 

therefore, intermediate compounds containing one, two, or three oxygen molecules could be 

formed (the intermediate compound hypothesis). He proposed a four-step chemical reaction:

(8)

In equilibrium, Equation 8 yields the Adair equation:

(9)

where S is expressed as the ratio of the number of oxygen molecules to the total number of 

heme groups:

(10)

Constants ai are called the Adair constants. They can be expressed in terms of the 

equilibrium constants Ki = ki′/ki,

(11)

The coefficients ai for human blood were tabulated by Winslow et al.193 for PO2 between 0 

and 150 torr, pHplasma between 7.2 and 7.8, PCO2 between 7 and 70 torr, and [DPG] 

between 1 and 14 mM. The effect of temperature variation was reported by Hlastala et al.68

Equation 9 accurately describes experimental data within a wide range of PO2; however, it 

has rarely been used in mathematical modeling of oxygen transport to tissue. One possible 

reason is that the equation cannot be inverted analytically to express P in terms of S.
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Both Hill’s and Adair’s equations are associated with kinetic models, Equations 2 and 8. 

Other, more complex kinetic theories of hemoglobin oxygenation have been proposed,30 but 

their discussion is outside the scope of this review.

A number of other descriptions of ODC were constructed empirically to fit experimental 

data and were not derived from kinetic models. The following expression for the oxygen 

dissociation curve:15,16

where

(12)

has been shown to be as accurate as the Adair equation in the saturation range between 0 and 

95%. Equation 12 is invertable with respect to P:

(13)

The parameters R and K have been expressed in terms of PCO2, pH, [DPG], and T for 

human blood.

Other mathematical algorithms have been proposed that are either modifications of the Adair 

equation,117 or are unrelated to it.88,161,170,173

B. OXYGEN-HEMOGLOBIN KINETICS

The details of the kinetics of oxygen-hemoglobin reaction are not known to the same extent 

as the equilibrium relationships discussed above. The contributing factors are that the 

characteristic reaction time is very short, a fraction of a second, and therefore the dynamic 

measurements are difficult, and also there are more kinetic coefficients than equilibrium 

coefficients.

The chemical reaction (Equation 2) proposed by Hill with noninteger n is clearly unrealistic, 

even though it yields a practical expression to the oxyhemoglobin dissociation curve. Thus, 

attempts have been made to formulate alternative simple kinetic relationships for the 

hemoglobin-oxygen reaction. In some cases, it is convenient to express kinetic relationships 

in terms of molecular segments that contain one heme group, i.e., one quarter of the 

hemoglobin molecule. The molar concentration of such a segment is denoted [Hb]. The 

simplest oxygen-heme group one-step chemical reaction
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(14)

with constant reaction rate coefficients k′ and k, corresponds to the rate of chemical reaction

(15)

and the following kinetic equations:

(16)

In equilibrium, the rate of chemical reaction equals zero, i.e., R = 0.

The coefficients k′ and k were experimentally estimated by Gibson et al.45 for human 

hemoglobin at 37°C and pH = 7.1 to be k′ = 3.5·106 M−1s−1, k = 44 s−1. These values 

correspond to half-time of oxygenation t1/2 = 5 to 10 ms. An alternative analysis of the data 

was presented by Middleman.121 However, the reaction rate (Equation 15) leads to a 

hyperbolic instead of a sigmoid equilibrium relationship (compare with Equation 3)

(17)

in disagreement with experimental data. Nevertheless, the kinetics (Equation 14) are useful 

in describing the system in the initial phase of the reaction. To overcome this deficiency, 

Moll123 proposed a variable rate coefficient model. In this model the dissociation rate 

coefficient, k, is constant, while the association rate coefficient, k′, is made a function of 

oxygen tension such that the relationship between S and P reduces to the chosen equilibrium 

relationship. For example, for the Hill Equation 4:

(18)

One-step kinetics (Equation 14) with variable association rate coefficient (Equation 18) have 

been used in several analyses of oxygen transport.8,19,35,169 Similarly, with an appropriate 

choice of k′ (P), the one-step kinetic equation can be made consistent with any functional 

form of oxygen dissociation curve, for example, with the Adair equation.195 Briefly, the 

following procedure can be used. The requirement that the equilibrium condition, R = 0, for 

Equation 15 be consistent with an arbitrary oxyhemoglobin dissociation curve S = F(P), 

yields:
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(19)

If k is assumed constant, then the substitution of S = F(P) into Equation 19 yields the 

association rate coefficient as a function of oxygen tension, k′(P), and the reaction rate can 

be expressed as

(20)

Gutierrez58 proposed a somewhat different kinetic scheme. He defined the Hill parameter, n, 

in the Hill Equation 3 as a function of saturation in order to fit the equilibrium human blood 

data of Severinghaus.161 The relationship between k and k′ is still described by Equation 

17, but the exponent n is a function of the saturation.

Chemical reactions (Equation 8) describing Adair’s intermediate compound hypothesis 

depend on eight rate constants (four for association and four for dissociation reactions, k′i 

and ki, respectively). The reaction rates

(21)

correspond to the kinetic equations:

(22)

In chemical equilibrium, R1 = R2 = R3 = R4 = 0.

The coefficients k′ and k were determined (Gibson46) for human hemoglobin at 21.5°C and 

pH = 7.0: k′1 = 17.7·104 M−1s−1; k1 = 1900 s−1; k′2 = 33.2·104 M−1s−1; k2 = 158 s−1; k′3 = 

4.89·104 M−1s−1; k3 = 539 s−1; k′4 = 33.0·104 M−1s−1; k4 = 50 s−1. The applications of the 

four-step kinetics in the analysis of intracapillary transport are discussed below.

As has already been mentioned, the binding of oxygen at one hemoglobin site is coupled 

with binding of other substances at other sites due to a conformational change of the 

hemoglobin molecule. This phenomenon is called allosterism. In particular, oxygen binding 

to hemoglobin is affected by PCO2, pH, [DPG], and other factors, and, in turn, oxygen 

binding affects transport of other substances, such as carbon dioxide and hydrogen ions. 

Thus, a more complete description of oxygen transport can be achieved by considering 

simultaneous chemical reactions between oxygen, hemoglobin, carbon monoxide, carbon 

dioxide, hydrogen ions, and intermediate compounds in the corresponding reactions. It 
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should be noted that among the substances on this list, only oxygen and carbon monoxide 

compete for the same binding sites in the heme groups, whereas other molecules and ions 

bind to other sites. Detailed mathematical analyses of the corresponding multisubstance 

transport equations are presented in a series of papers by Mochizuki and co-workers (see 

Mochizuki and Kagawa122, Ulanowicz and Frazier,179 Bidani and Flumerfelt,11 and Salathe 

et al.151). A detailed consideration of these processes is outside the scope of this review.

C. Oxygen-Myoglobin Kinetics

There are a variety of hemoglobin molecules with different physicochemical properties that 

occur in different species and tissues. The tissue hemoglobin found in vertebrate red skeletal 

muscles and hearts is called myoglobin (Mb). The myoglobin molecule is a monomer with a 

molecular weight of approximately 16,000 to 17,000. Concentrations of myoglobin vary 

significantly among different tissues, typically within the range 0 to 1 mM. As in the 

previous discussion of oxygen dissolved in the hemoglobin solution, we can compare the 

amounts of oxygen dissolved and bound in a unit volume of tissue. Assuming the tissue 

oxygen tension Pt = 20 torr, and oxygen solubility coefficient αt = 3·10−5 ml O2/ml/torr, we 

obtain [O2]free = αtPt = 6·10−4 ml O2/ml. If the concentration of myoglobin in the tissue is 

[MbT] = 0.5 mM, then the amount of oxygen bound to myoglobin at 100% saturation is 

[O2]bound = (0.5·10−6)(22.4·103) = 11.2·10−3 ml O2/ml, i.e., approximately 20 times larger 

then the concentration of free oxygen. If we assume an oxygen consumption rate for 

exercising muscle M = 1.3·10−3 ml O2/ml/s, then we can easily estimate the time that 

oxygen bound to myoglobin would last if oxygen delivery is interrupted, [O2]bound/M ≃ 8 s. 

For resting muscle, the oxygen consumption rate can be an order of magnitude lower, thus 

the myoglobin storage of oxygen would last for more than a minute. Therefore, myoglobin 

can play a significant role in O2 storage and can serve as a buffer during brief interruptions 

of blood flow.

Since myoglobin molecules are monomers and have only one binding site for oxygen, a one-

step chemical reaction

(23)

with constant association and dissociation rate coefficients k′ and k, corresponds to a 

hyperbolic equilibrium dissociation relationship:

(24)

Here K = k′/k is the equilibrium constant, and S is the saturation fraction of myoglobin with 

oxygen. Denoting K = (αtP50)−1, we see that Equation 24 is the Hill equation with n = 1. 

This property is a result of myoglobin noncooperativity, i.e., each site binds O2 

independently. This is unlike hemoglobin, which displays cooperativity, i.e., binding of O2 is 
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affected by the status of other binding sites. Typically, P50 for myoglobin is significantly 

lower, P50 ≃ 5 torr, than P50 for hemoglobin, P50 ≃ 26 torr. Thus, myoglobin remains fully 

saturated until the tissue PO2 falls below 10 torr. Figure 1 shows typical equilibrium 

dissociation curves for hemoglobin and myoglobin.

D. FACILITATION OF OXYGEN DIFFUSION BY HEMOGLOBIN AND MYOGLOBIN

Diffusion of a substance in free form is governed by Fick’s law, which states that the amount 

of a substance crossing a surface of unit area per unit time, called diffusive flux, is 

proportional to the concentration gradient in the direction perpendicular to the surface:

(25)

The coefficient of proportionality D is called the diffusion coefficient. If concentration, c, 

varies spatially in three dimensions, then Fick’s law should be expressed in vector form

(26)

The diffusion equation can be derived from mass balance within a volume, by stating that 

the temporal rate of change of the amount of substance within the volume is equal to the net 

diffusion flux through the boundaries plus the rate of chemical reaction within the volume

(27)

If the substance can react reversibly with another substance, a carrier, then molecular 

transport of the substance can be enhanced or facilitated by the carrier that can transport the 

substance in bound form. This form of transport is called carrier-mediated or carrier-
facilitated transport (Schultz et al.159). Hemoglobin and myoglobin can act as carriers of 

oxygen, hence hemoglobin- and myoglobin-facilitated diffusion. A large literature, including 

both experimental and theoretical studies, is devoted to the problem of oxygen transport 

facilitation by hemoglobin and myoglobin, and in-depth reviews are available on this 

subject.85,98,100,101,194

To illustrate the effect of hemoglobin-facilitated transport of oxygen, consider diffusion 

through a flat layer of hemoglobin solution bounded by two membranes permeable for 

oxygen but impermeable for hemoglobin. The diffusion coefficient for oxygen at a 

hemoglobin concentration typical for the interior of red blood cell is DO = 0.95·10−5 cm2/s, 

whereas for hemoglobin it is DHb = 1.44·10−7 cm2/s. (Because the diffusion coefficient is 

primarily determined by molecular weight, and the oxygen molecule is much smaller than 

hemoglobin, the diffusion coefficients for reduced and reacted hemoglobin can be accurately 

assumed to be the same.) Thus, hemoglobin molecules diffuse about 65 times slower than 
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free oxygen molecules. How, then, can hemoglobin appreciably affect the transport of 

oxygen when its diffusion is so slow? It can because the amount of oxygen that can be 

bound to hemoglobin is many times larger than the amount of free oxygen (about 70 times at 

P = 100 torr, according to the estimate above). Mathematically, we can express the total 

diffusion flux of oxygen as the sum of free and bound components:

(28)

If we assume that the total concentration of hemoglobin, [HbT] = [Hb] + [HbO2], in the 

solution is uniform, we can recast Equation 28 in the form:

(29)

Assuming that the chemical reaction between oxygen and hemoglobin is in equilibrium, and 

therefore the relationship between their concentrations is governed by the oxyhemoglobin 

dissociation curve, we obtain:

(30)

The expression in parenthesis can be considered an effective diffusion coefficient, Deff. 

Using Equation 1, we conclude that the diffusion of oxygen is enhanced by a factor

(31)

Assume that the total hemoglobin concentration is [HbT] = 20.3 mM = 2.03·10−5 mol (heme 

monomer)/ml (this corresponds to 34 g% hemoglobin solution) and the solubility coefficient 

for oxygen in the hemoglobin solution is α = 1.56·10−9 mol/ml/torr (since the concentration 

of hemoglobin is expressed in moles, we also express the solubility coefficient in 

corresponding units). Consider the parameters of the Hill equation to be P50 = 26 torr, n = 

2.7 and take the maximum slope of the oxyhemoglobin dissociation curve at P = 19.5 torr 

(Equations 6 and 7), then the maximum enhancement factor expressed by Equation 31 is 

Deff/DO = 6.9.

For myoglobin, the slope dS/dP is maximal at P = 0, as follows from Equation 6 for n = 1. 

Thus, the smaller the value of P, the larger the enhancement factor. For example, assuming 

for muscle tissue DMb = 1.5·10−6 cm2/s, DO = 2·10−5 cm2/s, α = 1.35·10−9 mol/ml/torr, 

[MbT] = 0.5 mM, and P50 = 5.3 torr, we obtain Deff/DO = 3.7 for P = 2 torr and Deff/DO = 

5.4 for 0.5 torr.
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The assumption of chemical equilibrium is not satisfied everywhere in the layer, however. If 

the reaction were in equilibrium, then the gradient of oxyhemoglobin concentration would 

be expressed in terms of the gradient of oxygen tension:

(32)

But the boundary is impermeable to hemoglobin molecules, hence ∂[HbO2]/∂n = 0 at the 

boundaries, whereas ∂P/∂n is proportional to the flux of oxygen through the layer and, 

therefore, is not equal to zero. This suggests that the assumption of equilibrium is not valid 

near the boundaries of the layer. These regions where chemical reaction is not in equilibrium 

are called boundary layers. The distribution of concentration then depends on the ratio of the 

characteristic thickness of the boundary layer and the thickness of the hemoglobin layer.

The concept of a boundary layer is common to analyses of many physical phenomena and is 

usually associated with a small dimensionless parameter (e.g., in fluid mechanics, the 

boundary layer is formed when the Reynolds number is large; therefore, its inverse is a small 

parameter). The characteristic length Lβ = (DOk′[HbT])1/2 is a measure of the thickness of 

the boundary layer where conditions are far from chemical equilibrium. The squared ratio of 

the characteristic geometrical dimension of the problem (thickness for a flat layer), L, to Lβ 
is called the Damköhler number:159

(33)

It can also be defined as the ratio of characteristic time of oxygen diffusion, τDO = L2/DO, to 

characteristic time of reaction, τKO = (k′[HbT])−1. When γ ≫ 1, the bulk of the solution is 

in equilibrium, and the nonequilibrium region is confined to thin layers adjacent to the 

boundaries. Conversely, when γ ≪ 1, the entire layer of hemoglobin solution is far from 

equilibrium. The problem of facilitated diffusion is discussed later in more detail in the 

context of oxygen unloading from red blood cells and diffusion in muscle fibers. Recent 

general mathematical treatment of the problem of carrier-facilitated transport can be found 

in Hoofd and Kreuzer,73 Kollka and Salathe,95 and Hoofd.75

III. MODELS OF OXYGEN TRANSPORT IN BLOOD

Oxygen transport in blood involves a number of phenomena, which are discussed in this 

section. Inside the red blood cell, oxygen reacts chemically with hemoglobin and is 

transported by both free and hemoglobin-facilitated diffusion. Oxygen diffuses through the 

cell membrane and is transported in blood plasma by free diffusion and by convection. Many 

issues considered in this section are briefly discussed in a recent review by Meldon.118
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A. KINETICS OF OXYGEN UPTAKE AND RELEASE BY RED BLOOD CELLS IN RAPID-
MIXING EXPERIMENTS

The uptake of oxygen by red blood cells has been studied experimentally and theoretically 

for more than 50 years (Hartridge and Roughton61), with one of the major objectives being 

to determine the resistance of the erythrocyte membrane to O2 diffusion. Rapid-mixing 

experiments in continuous or stopped-flow apparatus reveal that the rate of O2 uptake by red 

cells is about 40 times slower than by an equivalent solution of free hemoglobin (half-time 

of hemoglobin oxygenation in solution is t1/2 = 5 to 10 ms, whereas for whole blood t1/2 = 

50 to 100 ms; Gibson et al.45). In rapid-mixing experiments on uptake and release of oxygen 

by red cells, the cells are quickly injected into a chamber and mixed with the solution having 

a specified concentration of O2. Following the injection, the degree of hemoglobin saturation 

is monitored spectrophotometrically. Hartridge and Roughton61 put forward possible 

explanations of the observed phenomenon. They proposed that red cell cytoplasm and the 

cell membrane could present a large resistance to O2 diffusion. Alternatively, the main 

resistance to diffusion could be provided by incompletely stirred solvent layers adjacent to 

the cell surface. Until recently, there had been considerable controversy surrounding this 

question and a large number of rapid-mixing experiments and analyses have been performed 

by different investigators; we refer here to the most recent reports (Coin and Olson,21 

Huxley and Kutchai,79,80 Weingarden et al.,187,188 Kagawa and Mochizuki,86 Merchuk et 

al.,119 Vandergriff and Olson,180–182 Holland et al.,69 Hook et al.76) (see also review by 

Meldon118). In summary, it has been shown that oxygen transport through the red cell 

cytosol accounts for part of the difference and when this is taken into account the predicted 

half-time of uptake is about five times less than that observed experimentally. The red cell 

membrane resistance constitutes only a small fraction of the total resistance to oxygen 

transport, whereas the main portion of the remaining resistance is located within the 

incompletely stirred diffusion boundary layer immediately outside the erythrocyte surface. 

The most direct early experimental proof was given by Kreuzer and Yahr,97 who found that 

stagnant layers of packed red blood cells oxygenate as quickly as solutions of hemoglobin. 

Rapid-mixing experiments provided additional support of this result; however, their 

interpretation in most cases required sophisticated theoretical analyses.

Huxley and Kutchai79 expressed the total diffusion resistance outside the red cell cytosol as 

the sum of the membrane transport resistance and the diffusion boundary layer resistance. 

The best estimate from this study showed that only 5% of the total resistance could be 

attributed to the membrane. If it is assumed that all of the resistance is concentrated in the 

membrane, then the diffusion coefficient for oxygen in the membrane would have to be 

1.2·10−7cm2/s, i.e., about 100 times smaller than in water. This conclusion would be in 

disagreement with the value of D for the membrane measured by the fluorescence quenching 

of pyrene (Fishkoff and Vanderkooi37). This method predicted a much larger value D = 

0.7·10−5 cm2/s, i.e., approximately five times smaller than in water. These results suggest 

that the membrane poses a negligible resistance to oxygen transport.

In the above studies, the transport of oxygen inside the cell was not considered. In other 

studies the analysis of Roughton148 was extended to consider the processes within the 

hemoglobin inside the cell, in addition to processes outside the cell. Coin and Olson21 
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developed a one-dimensional mathematical model to take into account diffusion through an 

unstirred solvent outside the cell; the cell was represented as a plane layer of hemoglobin 

separated by a membrane from the surrounding solution. Linear kinetic equations (see 

Equation 15 above) were assumed for the hemoglobin-oxygen chemical reaction. The 

resulting system of equations was solved numerically. The best agreement with experimental 

data was obtained when the thickness of the unstirred layer was allowed to increase with 

time. Indeed, as oxygen is taken up by the cell from the solution, the oxygen molecules must 

diffuse over larger distances in the solution before they enter the cell. Vandergriff and 

Olson181 improved earlier analysis by using theoretical fluid-dynamical estimates for the 

thickness of unstirred layer. They assumed that red blood cells emerge from the mixing 

chamber with an unstirred layer of 1 μm and the thickness grows as the square root of time. 

The analysis was extended to cylindrical geometry of red blood cells (disks), which more 

realistically describes the shape of cells.

Thus, at present, there is a general agreement that an O2 diffusion boundary layer in plasma 

is responsible for a major part of the resistance to transport outside of the cell under special 

conditions of rapid-mixing experiments. The possible physiological significance of this 

resistance in vivo is discussed below.

B. OXYGEN TRANSPORT IN BLOOD CAPILLARIES

In the capillaries, oxygen is transported within red cells through the solution of hemoglobin, 

then through the cell membrane and the blood plasma. Since cells and plasma are in motion, 

both convection and diffusion (free and facilitated) may be important. It was recognized 

early that the red cell cytosol has a finite resistance to oxygen transport, which results in a 

gradient of oxygen tension between the interior of the cell and the plasma surrounding the 

cell (Hartridge and Roughton61). In fact, the rapid-mixing experiments and their analyses 

discussed above suggest that both the cell interior and the plasma surrounding the cell resist 

oxygen diffusion, and these same processes may be important in vivo. The arguments have 

been raised that this resistance may affect oxygen uptake in the lung (Roughton and 

Forster149). However, the notion that intracapillary resistance to transport may be a limiting 

factor in tissue oxygenation has arisen only recently.

Intracapillary resistance is determined by a number of factors. Hellums62 was the first to 

give a clear mathematical estimate of the effect of the particulate nature of blood on oxygen 

transport. He approximated erythrocytes by cylinders aligned along the capillary, and 

assumed that oxygen diffuses radially from the erythrocytes to the surrounding tissue, but 

not from the plasma gaps between the erythrocytes. Hence the term discrete cells model. In 

other words, the plasma gaps were assumed to have an infinite resistance to oxygen 

diffusion. Predictions of this model were compared to the continuum model in which the 

same amount of hemoglobin that is contained within the cells is distributed uniformly in the 

capillary. At a capillary hematocrit of 50%, only half the capillary area would be available 

for exchange in the discrete cells model. Thus, the discrete cells model would yield surface-

averaged oxygen flux that is equal to half of the flux predicted by the continuum model if all 

other factors were the same. However, the oxygen diffusion coefficient for hemoglobin 

solution decreases with hemoglobin concentration; thus, free oxygen diffusion inside the 
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cells would be slower than in the case of uniformly distributed hemoglobin. Using the Krogh 

cylinder model, Hellums estimated that the fraction of capillary resistance in the total (i.e., 

capillary plus tissue) resistance to oxygen diffusion was about 20% in the continuum model 

and 50% in the discrete model. This estimate could only serve as a first approximation 

because the model did not take into account oxygen transport in the plasma, oxygen 

diffusion facilitation by hemoglobin, or kinetic effects. All these factors have been 

subsequently incorporated into the theory by different investigators.

1. Transport in Plasma Gaps between Red Blood Cells—Oxygen in the plasma can 

be transported by both convection and diffusion. The first analysis of transport of a 

substance in the plasma gaps between red cells was presented by Aroesty and Gross.3 The 

geometry of the problem is depicted in Figure 2a. The authors considered two red cells 

separated by a distance 2 L moving with velocity U. All distances in the figure are made 

dimensionless by L. In particular, the dimensionless capillary radius is RL. In the frame of 

reference fixed in the cell, the motion of the capillary wall induces eddies in the plasma gap. 

Figure 2b shows these eddies in the upper part of the tube. This eddy motion could transport 

the substance convectively. In order to evaluate the effect of convection in the gap between 

two cells, the convective transport equation

(34)

was written in dimensionless form such that u and v are the plasma velocity components, c 

is the substance concentration, and Pe = UL/D is the Peclet number that characterizes the 

ratio of convective to diffusive transport. The concentration was specified at the capillary 

wall

and at the ends of the cylinders representing red cells

In this formulation the tissue was assumed to be the source of the substance and the red cells 

to be the sink; however, the results can be easily applied to oxygen if we adopt a new 

definition of concentration: c′ = 1 − c. Thus, in the following we interpret the results in 

terms of oxygen concentration c′. Figure 3 shows the ratio of local flux at the wall at a given 

Peclet number to that where the Peclet number is zero, i.e., when convection is neglected, m 

= (∂c/∂r)Pe/(∂c/∂r)Pe = 0. The effect of convection is very small at Pe = 1 (the ratio is close to 

1) and becomes significant at Pe = 10; however, even in the latter case, the total flux over the 

entire gap due to convection alone is small because the contributions at positive and negative 

values of x tend to cancel each other. To estimate the values of the Peclet number for 
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capillary flow, we assume U = 0.1 – 2 mm/s, L = 5 μm, and D = 3·10−5cm2/s; hence Pe = 0.2 

– 4. These are only typical values of Pe, clearly there could be situations where the values of 

Peclet number lie outside this range. The authors concluded that the effect of convection in 

most cases is negligible; however, convection may become important at higher Pe numbers.

The concentration profiles in the plasma gaps between red blood cells are shown in Figure 4 

for two values of dimensionless capillary radius RL. For the following discussion, it is more 

convenient to think of RL as the inverse red cell separation. Figure 4a shows that even when 

the cells are separated by a distance equal to the capillary diameter, RL = 1, the 

concentration at the center of the capillary is far from its value at the red cell surface. Thus, 

the gap is oxygen-depleted. However, there is still oxygen available to maintain positive flux 

at the capillary surface, even though the flux should decrease toward the midpoint between 

cells. The picture is different when the separation between red cells is equal to five capillary 

diameters, RL = 0.2 (Figure 4b). In this case, the concentration c′ differs from zero (c differs 

from unity) only in regions about 0.4 L in length (i.e., one capillary diameter) adjacent to the 

red cells. Thus, the oxygen flux from the plasma gap should be zero in the regions that are 

more than one capillary diameter away from the nearest red blood cell. Such regions exist if 

the separation between particles is larger than two capillary diameters. At any separation 

between cells, the mean concentration of oxygen in the plasma is smaller than the 

concentration at the cell surface, and the difference between the concentrations is a strong 

function of red cell separation.

Based on the results shown in Figure 4b, we can schematically plot local oxygen flux at the 

capillary wall, j, vs. position along the capillary at different separations between red cells 

(Figure 5). Indeed, when PO2 in the plasma decreases, the oxygen flux also decreases in 

accordance with PO2 gradient and drops to zero when the distance from the closest cell 

becomes larger than about one capillary diameter. Interestingly, the authors3 did not discuss 

the implications of their finding, and it was not until a decade later that the physiological 

importance of these results was properly appreciated. The plasma gap contributes to oxygen 

transport, but its capacity is limited. Aroesty and Gross’s results can be expressed in terms 

of a resistance of the plasma gap between red cells; this resistance was assumed infinite in 

the analysis of Hellums.62

The analysis discussed above3 assumed constant PO2 at the capillary wall. The problem can 

be posed differently, however. Instead of specifying PO2 at the capillary wall, one can 

specify oxygen flux, arguing that this quantity should be proportional to the tissue oxygen 

consumption. Clearly, in such formulation, a situation is possible where in order to maintain 

a given constant flux from the plasma gap, oxygen tension at the wall would have to drop to 

zero and even become negative. Since this is not physically possible, a range of parameters 

should be found for which a constant oxygen flux can be maintained. This approach was 

taken by Homer et al.70 and Federspiel and Sarelius.33 Based on the results of Aroesty and 

Gross,3 the convective transport was neglected, yielding the diffusion equation
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(35)

which was solved together with the boundary conditions

(36)

where j is the constant flux at the wall that is specified, and Pc is the oxygen tension at the 

red cell surface. First, the problem can be approached analytically by averaging Equation 35 

over capillary cross-section. The mean oxygen tension <P> satisfies the equation

(37)

Equation 37 can be solved with boundary conditions <P>(−L) = <P>(L) = Pc, and ∂P/∂x = 0 

at x = 0. The solution is

(38)

where F = jR/(DαPc) is a dimensionless parameter, commonly referred to as the Nusselt 

number. Because the oxygen tension <P> must be non-negative, Equation 38 yields a 

condition on the separation between red cells:

(39)

(Remember that L is one half of cell separation.) For larger red cell separations, , 

Equation 38 gives negative values of <P> in a region near the center of the gap, thus the 

constant flux at the wall cannot be maintained. The parameter F is estimated to vary between 

0.01 for resting muscle and 0.5 for contracting muscle.33 Assuming capillary diameter to be 

5 μm, we obtain from Equation 39 for the critical red cell separation 2 

for resting and 2 Lcr = 7 μm for contracting muscle.

It should be noted that Equation 38 is exact, not approximate. However, the actual bound for 

L can be somewhat stronger than Equation 39. Because there are not only axial, but also 

radial gradients of oxygen tension in the gap, PO2 at the wall can become negative, while the 
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mean PO2 remains positive. We can estimate the radial PO2 gradient from the first boundary 

condition in Equation 36:

(40)

Thus, F ≃(ΔP)radiaI/Pc. Since F can be of the order of unity, the PO2 difference in the radial 

direction can be comparable to Pc. Thus, condition (Equation 39) is an upper bound for 

critical separation. To determine the exact upper bound for L, Equation 35 has to be solved 

with the condition P ≥ 0. This problem has been treated numerically.33 The reported 

numerical results appear to be close to those given by relationship 39.

The papers just cited33,70 should be credited with explicitly addressing the role of red cell 

separation on oxygen transport, even though the conclusions could have been obtained from 

the earlier study.3 These studies pointed to a separate role that the red-blood-cell flux or 

frequency (number of cells passing per unit time through any capillary cross-section) and 

red-cell separation play in tissue oxygenation.

A realistic boundary condition at the capillary wall should result from simultaneous 

consideration of intracapillary and extracapillary transport. At any instant, both PO2 and 

oxygen flux should be continuous at the wall. Thus, if we solve Equation 35 for the plasma 

gap simultaneously with a tissue model, we would not need additional boundary conditions 

at the capillary wall. Note that the problem is time-dependent because of the presence of red 

blood cells. The solution to this problem would make it possible to investigate whether 

constant PO2 or constant oxygen flux boundary condition at capillary wall is more realistic.

Without doing the proposed calculations, we can estimate how far the disturbances due to 

the inhomogeneity of intracapillary distribution of oxygen penetrate into the tissue. The 

characteristic time of the disturbance equals the red cell separation divided by red cell 

velocity. If we choose a separation of 20 μm, and velocity of 200 μm/s corresponding to 

resting muscle, we obtain tch = 0.1 s; for contracting muscle, if we choose 6 μm and 600 

μm/s, the result is tch = 0.01 s. From the nonsteady diffusion equation we obtain the 

characteristic length of penetration of a disturbance into the tissue, Lch = (Dtch)1/2, which 

yields Lch = 12 and 3.8 μm, respectively. Thus, in both cases, PO2 in the tissue will respond 

transiently to the alternating cells and plasma gaps, and a combined consideration of intra- 

and extracapillary transport is required.

2. Transport within Red Blood Cells—The kinetic equations for Hb-O2 reaction and 

the transport in layers of hemoglobin have been discussed above. If convection inside the 

cells is negligible, the transport within red cells is described by the same equations as the 

transport in layers of hemoglobin, but the geometiy of the problem is different. We have 

already reviewed the modeling of oxygen transport inside red cells in application to rapid-

mixing experiments. Now, we will consider the analyses of oxygen unloading from red cells 

in vivo.
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Convective transport inside the red cell may result from experimentally observed tank-

treading motion of cells in capillaries, i.e., rotation of the cell membrane around its interior 

causing shear flow of the hemoglobin solution inside the cell. Only order-of-magnitude 

analysis of this phenomenon is available.17 It was found that for molecular oxygen, the 

effect of convection is negligible. For the oxyhemoglobin, the ratio of convective and 

diffusive terms is around 1, and thus convection may be as important as facilitated diffusion 

of oxygen. Therefore, the answer can only be given by solving the governing reaction-

diffusion differential equation. However, experimental data on red cell tank-treading in vivo 
are very limited, so the question remains open until more data are collected.

Ignoring convection, however, the problem of intracellular oxygen transport was treated by 

Sheth and Hellums169 for a plane layer geometry with constant flux boundary condition, by 

Baxley and Hellums8 for cylindrical geometry, and, finally, by Clark et al.,19 who developed 

the boundary layer analysis for a red blood cell of arbitrary shape. In all these studies, 

Moll’s variable rate coefficient model was used.123 The system of equations governing 

oxygen transport inside the cell is outlined below.

In the following, each hemoglobin molecule, Hb4, is replaced by four independent heme 

groups, 4Hb. The transport equations can be written in the form

(41)

(42)

(43)

where R is the net rate of chemical reaction, and the diffusivities DO, DHb, and DHbO are 

assumed constant. The variable rate coefficient model is used with the Hill equation for the 

oxyhemoglobin dissociation curve, hence the rate of chemical reaction equals:

(44)

(compare with Equation 20). Substituting Equation 44 into the transport Equations 41 to 43 

and taking into account that hemoglobin cannot pass through the membrane and therefore 

the total heme density, [HbT], is constant, we obtain a pair of nonlinear partial differential 

equations for S and dimensionless concentration c = [O2]/(αP50)
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(45)

(46)

Since S is proportional to the concentration of oxyhemoglobin that does not penetrate 

through the membrane, at the boundary n·∇S = 0, where n is the unit normal to a boundary. 

In addition, either O2 concentration or flux can be specified on the boundary.

Baxley and Hellums8 analyzed the problem of unsteady O2 diffusion from a cylindrical 

volume of hemoglobin with a constant flux boundary condition on its surface. The 

parameters were chosen to mimic deoxygenation of an erythrocyte traversing a capillary. 

Among several other factors, the authors studied the effect of the rate of chemical reaction. 

They found that the assumption of local chemical equilibrium is not accurate everywhere, 

and that the reaction kinetics should be taken into account. When the rate of chemical 

reaction is normal, the bulk of the cell is in chemical equilibrium and the deviations from 

equilibrium occur only near the cell membrane (Figure 6). The figure shows the profiles of 

percent deviation of O2 concentration from local chemical equilibrium along the capillary 

radius for a cylindrical capillary of 4 μm diameter at the entrance, middle, and end of the 

capillary.

Clark et al.19 approached the problem of oxygen unloading from red cells analytically. They 

derived a physical picture of oxygen distribution inside cells, similar to that shown in Figure 

6, by analyzing spatial and temporal scales in the problem. It was concluded that there 

should be a boundary layer near the cell membrane where deviations from chemical 

equilibrium occur; the bulk of the interior is in chemical equilibrium, i.e., the relationship 

between hemoglobin saturation and PO2 is given by the equilibrium oxyhemoglobin 

dissociation curve. The transport resistance of this boundary layer is a major part of the total 

resistance in the cell. Using the method of matched asymptotic expansions, the authors 

reduced the system of two partial differential equations, Equations 45 and 46 to a single 

ordinary differential equation for the mean saturation in the cell, hence a lumped-parameter 

description. The lower bound for oxygen unloading time can be calculated by assuming zero 

oxygen concentration on the cell boundary. In this case, the governing equation takes the 

form

(47)

where tU is the characteristic time of oxygen unloading,
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(48)

Here L is the ratio of the cell volume to surface area. Figure 7 shows the solution of 

Equation 47 for the volume-averaged oxygen saturation as a function of dimensional time 

for a red cell exposed to zero oxygen tension. Actual time of unloading in vivo would be 

longer since the red cell is exposed to PO2 values higher than zero and a complete solution 

of the geometrical problem is necessary to predict the unloading time. The lower bound is 

nevertheless a useful quantity since it permits one to estimate the residence or transit time of 

the cell in the capillary below which the unloading of oxygen from the cell would be limited 

by the intracellular resistance. For example, it follows from Figure 7 that ~0.04 s is required 

for the saturation to decrease from an initial 0.8 to 0.3 value. If the transit time of the cell in 

a capillary is smaller than this value, the final saturation may be larger than 0.3. Note that 

this and other numerical examples in this review are obtained for a certain set of parameter 

values and should not be considered universal results. The values of parameters may vary 

significantly for different species and conditions, thus caution should be exercised in 

generalizing the results obtained for a specific set of paremeters. Similar calculations were 

subsequently applied to the analysis of oxygen transport in working skeletal muscle.44

The studies discussed above8,19,169 used the Hill equation for the oxyhemoglobin 

dissociation curve, which is not accurate at saturations S <0.2 and S >0.8. In addition, as was 

noted before, the one-step kinetic model is only used for mathematical simplicity and does 

not reflect true kinetic reactions between hemoglobin and oxygen. Thus, recently the 

solution was extended by Yap and Hellums195 to Adair’s four-step chemical kinetics, 

Equation 21. It was compared with a variable rate coefficient model, Equation 20, which is 

consistent with the Adair oxyhemoglobin dissociation curve. A cylindrical geometry was 

considered as in an earlier study.8 It was shown that for parameters in physiological range 

the results practically coincide, thus justifying the use of the simpler variable rate coefficient 

model.

3. Capillary Transport—In the analyses considered above, oxygen transport in plasma 

gaps between red cells and the transport within red cells were treated independently by 

specifying certain artificial boundary conditions. In reality, the processes inside and outside 

the cells are coupled, so, ideally, they should be described by simultaneous equations for the 

two phases. Calculations simultaneously taking into account the particulate nature of blood, 

O2 diffusion in plasma gaps, O2 diffusion facilitation by hemoglobin, and Hb-O2 kinetics 

using a variable rate coefficient model were presented by Federspiel and Popel.35 The 

problem was either two-dimensional, with the capillary modeled as a plane layer and the red 

cells represented by eccentrically situated circles, or three-dimensional axisymmetric with 

capillaries modeled as a cylindrical tube and red cells as spheres. At the cell-plasma 

boundary, the corresponding values of PO2 and oxygen fluxes were matched; at the capillary 

wall, the PO2 was set at a constant value, Pw, thus uncoupling the problem from the solution 

of transport in the tissue. The results were presented in terms of a mass transfer coefficient, 

k, defined as
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(49)

where jm is the spatially averaged O2 flux at the wall, and Pc corresponds to the mean 

saturation of a particle through the Hill equation. In dimensionless form k* = kd/Dplα, 

where d is capillary diameter (or thickness of the plane capillary), and Dpl is the oxygen 

diffusion coefficient in plasma. Since the Hill equation was used, the analysis was restricted 

to the range of saturation S = 0.2 – 0.8. First, eccentricity was found to have little effect on 

the results.

As expected from earlier studies of oxygen transport in plasma gaps between cells,3,33,70 

spacing between cells has a major effect on the mass transfer coefficient (Figure 8). The 

ratio of capillary to particle diameter, λ, called particle clearance, also affects k, but to a 

smaller degree. A hyperbolic dependence of k* on 2 L for large separations can be derived 

from the notion that the O2 flux from each red blood cell reaches a maximum when the cells 

are far from each other and are separated by regions of zero flux. In this case the average 

flux, represented by k*, is obtained by dividing the maximum flux by the area of capillary 

surface per red cell, 2 π R (2L + 2Rc), where Rc is red cell radius. The calculated values of 

the mass transfer coefficient were used to estimate the ratio of the intracapillary to total 

(equals intracapillary plus tissue) resistance to oxygen transport. We can recall that 

Hellums62 estimated this quantity to be about 0.5 at a hematocrit of 50%. The results of 

more detailed theory35 are in qualitative agreement with those estimates. However, Hellums 

neglected the transport in the plasma gaps entirely, and did not take into account either 

facilitated diffusion or chemical kinetics. Why then are the results in agreement? It is 

because the resistances in the plasma gaps and in the cells, present in both models, are the 

primary components of the intracapillary resistance. Diffusion in the plasma gaps and 

facilitated diffusion within red cells both decrease the intracapillary resistance, whereas 

diffusion in the plasma layers between the cells and the capillary wall contribute to the total 

resistance. These factors act in opposite directions and tend to cancel each other.

These studies have reaffirmed the role of red cell spacing, but they have left the question 

open whether Hb-O2 kinetics play a significant role under any conditions. This question was 

addressed by Gutierrez.58 He represented the blood as a homogeneous mixture of plasma 

and red cells, but, instead of expressing the transport in the form of partial differential 

equations, he formulated, in essence, difference equations for “compartments” along the 

capillary. For each compartment, the O2 and HbO2 concentrations were governed by two 

coupled ordinary differential equations. As has already been mentioned above, the reaction 

rate coefficients were chosen as functions of saturation in order to fit experimental data on 

human blood. The only component of intracapillary resistance to oxygen transport in this 

model is the kinetics of the chemical reaction. If the reaction is instantaneous, then the 

equations are reduced to the equilibrium oxyhemoglobin dissociation curve. The equations 

were solved numerically for the conditions of normoxia, hypoxic hypoxia (or hypoxemia, 

i.e., reduced arterial PO2), and anemic hypoxia (reduced hematocrit). The results are shown 

in Figure 9a,b,c. While the theory predicts only a small kinetic effect in normoxia, there is a 

large effect in hypoxic and anemic hypoxia, when the capillary plasma PO2 is significantly 
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lower than the “equilibrium” PO2, corresponding to the hemoglobin saturation, and also 

lower than the venous PO2. The model predicts that, because the rate of the chemical 

reaction is finite, the oxygen is released from the plasma into the tissue, but the chemical 

reaction is limiting its replenishment from bound to free form; thus, the PO2 in the plasma 

lags behind the “equilibrium” PO2 by a considerable amount — as much as 10 torr at the 

venous end of the capillary. When the blood reaches the venous pool, it is re-equilibrated, 

which results in an increase of the PO2.

Kinetic effects were also considered by Artigue et al.5 and Niimi et al.127,128 These studies 

assumed a linear rate of chemical reaction, R = K(Pc – Ppl), and the coefficient K was 

specified. Groebe and Thews51 also considered kinetic effects using a chemical reaction rate 

described by Equation 15.

Although the described effects of intracapillary resistance to oxygen transport have not been 

directly validated experimentally (i.e., the gradients between the hemoglobin “equilibrium” 

PO2 corresponding to hemoglobin saturation and the plasma PO2 have not been measured), 

Honig et al.72 pointed to evidence for these gradients. The “dissociation” between plasma 

PO2 and venous PO2 would have important implications for interpretation of whole organ 

experiments in which the venous PO2 is regarded as an indicator of tissue PO2.

C. OXYGEN TRANSPORT IN RED BLOOD CELL SUSPENSIONS FLOWING IN VESSELS 
LARGER THAN CAPILLARIES

In capillaries, red cells are restricted to a single-file motion. In larger vessels, the walls do 

not impose such constraint on the cell motion, and when the blood is subjected to shear flow, 

its formed elements undergo random or pseudorandom motion, somewhat resembling the 

Brownian motion of molecules. These shear-induced particle migrations and the 

concomitant fluid motion can significantly augment transport of solutes, in particular of 

oxygen. The models of shear-induced augmentation of solute transport have recently been 

reviewed by Zydney and Colton.196

If red blood cell motion in sheared suspension is considered random, particle diffusion or 

dispersion coefficient can be introduced, analogous to the molecular diffusion coefficient

(50)

where  is the mean square displacement, and Δt is the time between observations. For 

deformable particles (drops and red blood cells) of characteristic radius a in a local shear 

rate γ, the numerous data on particle diffusion can be empirically fitted by a curve196

(51)

Popel Page 23

Crit Rev Biomed Eng. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ϕp is the particle volume fraction or hematocrit. The best fit values for parameters k 

and n are k = 0.15, n = 0.8. For particles of size a = 1.6 – 3.5 μm, Equation 51 gives Dp = (1 

– 5)10−9 γ cm2/s. Thus, Dp = 2·10−7–10−6 cm2/s for γ = 200 s−1, and Dp = 2·10−6–10−5 

cm2/s for γ = 2000 s−1. In the limit ϕp = 1 the effective diffusivity decreases to zero. This is 

supported by experimental observations that in packed ghost cell suspensions tracer red cells 

undergo no significant lateral migrations.

A theory of shear-induced augmentation of oxygen transport in blood was proposed by 

Diller and Mikic.27 They assumed that red cells make radial movements in steps of length, 

 and that they stay at the new position for a time, Δt/2. Since the cells have 

come to a new oxygen environment, reaction-diffusion processes occur during this time. In 

calculating the transport of oxygen inside the cell, the advancing front model was used. This 

model is based on an assumption that there is an advancing front of chemical reaction 

propagating into the cell. The reaction zone consists of a thin layer within which the reaction 

is not in equilibrium, followed by a layer where the reaction is in equilibrium, i.e., the 

relationship between oxygen and oxyhemoglobin concentrations is described by the 

equilibrium oxyhemoglobin dissociation curve. The red cells are assumed to be flat disks 

with their faces parallel to the wall; thus the oxygen transport calculations are done in one 

dimension for plane sheets of hemoglobin. In this problem, only the kinetics of the chemical 

reaction play a role; the diffusion facilitation by hemoglobin is not important. The 

calculations yield the following expression for the effective oxygen diffusion coefficient 

(Diller and Mikic,27 slightly corrected by Zydney and Colton196):

(52)

Here Do is the effective diffusion coefficient in the suspension under unsheared flow or no 

flow conditions, g is a measure of departure of the Hb-O2 reaction from equilibrium, 0 ≤ g ≤ 

1, (g = 1 when the reaction is in equilibrium), and m is proportional to the slope of the 

oxyhemoglobin dissociation curve, m = CHbα−1dS/dP, where CHb is the oxygen-binding 

capacity of the hemoglobin solution. Figure 10a and b shows the results of the calculations 

together with experimental data. As follows from Equation 52, the slope of the 

oxyhemoglobin dissociation curve plays an important role in the augmentation: for fully 

saturated blood m = 0 and the augmentation is small, whereas for unsaturated blood the 

effective diffusion coefficient can increase severalfold.

This model’s ability to predict augmentation was further confirmed in Diller et al.,28 where 

it was applied to flowing hemoglobin solution with hemolyzed cells added to the flow.

This model has been validated for tubes of large diameter, over 300 μm. However, the flow 

in smaller vessels (arterioles and venules) is characterized by a nonuniform hematocrit 

distribution, at least by a reduced cell concentration near the wall. Modeling intravascular 

oxygen transport in these small vessels has not been attempted.
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IV. MODELS OF OXYGEN TRANSPORT IN TISSUE

A. DIFFUSION IN HOMOGENEOUS TISSUE

Oxygen diffusion in homogeneous tissue is governed by the reaction-diffusion equation

(53)

where Pt is the tissue oxygen tension, Dt is the diffusion coefficient, αt is the solubility 

coefficient, and M is the rate of the irreversible chemical reaction in which oxygen is 

utilized. Note that this case is significantly different from the cases of reversible chemical 

reactions between oxygen and hemoglobin and myoglobin. The rate of chemical reaction 

can be a function of Pt. Commonly considered models of oxygen consumption are (a) Zero-

order kinetics:

(54)

(b) First-order kinetics:

(55)

(c) Mixed zero and first-order kinetics:

(56)

(d) Michaelis-Menten kinetics:

(57)

Here Pm is the value of PO2 at which the rate of reaction is half-maximal. When Pm→O, the 

Michaelis-Menten kinetics approach zero-order kinetics, M→M0. For small values of 

oxygen tension, Pt ≪ Pm, the Michaelis-Menten kinetics approach first-order kinetics. The 

mixed kinetics (c) can be regarded as a piecewise linear approximation to (d). A 

generalization of the Michaelis-Menten kinetics was proposed, based on the hypothesis of 

two-cytochrome model of O2 metabolism:125

(58)
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where 0 ≤ f ≤ 1, and Pm1 and Pm2 are constants.

A solution to Equation 53 can be easily obtained for steady state in the case of a semi-

infinite layer of tissue occupying a space x ≥ 0, with the oxygen tension specified at the 

boundary, Pt = P0 at x = 0. In the case of zero-order kinetics, the solution is

(59)

where Lp = (2DtαtP0/M0)1/2 is the penetration depth beyond which the oxygen tension 

equals zero. This, and a number of other solutions of the diffusion Equation 53 for plane and 

cylindrical geometry were presented by Hill.64

For first-order kinetics the solution is

(60)

Thus, unlike the case of zero-order kinetics, tissue PO2 is positive everywhere, i.e., the 

oxygen molecules can penetrate infinitely far from the boundary. We can expect similar 

behavior for both mixed and Michaelis-Menten kinetics because at small values of Pt, they 

behave like the first-order kinetics.

Generally, Equation 53 can be integreated once:

(61)

Integration of Equation 61 with boundary condition Pt(0) = P0 gives the solution of Equation 

53. An implicit solution of Equation 53 is

(62)

For certain functions M(P) the integrals in Equation 62 can be calculated analytically, e.g., 

for polynomial M(P), thus the solution can be expressed in closed form. For the Michaelis-

Menten kinetics the external integral in Equation 62 cannot be calculated analytically, thus, 

numerical integration is necessary.
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Hill64 considered simultaneous diffusion of oxygen and lactic acid for plane and cylindrical 

layers of tissue under steady and unsteady conditions. Solutions have been obtained for 

tissue diffusion in other geometries.40,108,110,115,124,136

Time-dependent solution of the problem with zero-order kinetics presents mathematical and 

computational difficulties because of the moving boundary separating regions of zero and 

non-zero PO2; finding the motion of the boundary is part of the solution.24,32,42 In the 

mathematical literature, such problems with moving boundaries are referred to as Stefan 

problems.

B. DIFFUSION IN HETEROGENEOUS TISSUE

The formulation discussed in the previous section assumed that tissue is spatially 

homogeneous. In reality, tissue consists of cells and extracellular spaces. Further, there are 

intracellular heterogeneities, for example, those caused by discrete oxygen consumption by 

mitochondria. These heterogeneities may affect the distribution of oxygen in the tissue.

First, we consider tissue heterogeneities at the cellular level due to differences in diffusion 

inside and outside the cells. Qualitatively, the problem was analyzed by Hill.64 A model of 

tissue composed of plane layers with different diffusion characteristics was proposed by Tai 

and Chang,176 Figure 11. The product of diffusion and solubility coefficients is commonly 

called permeability or the Krogh coefficient, K = Dα. It is assumed that cellular and 

extracellular media can be characterized by permeabilities Kc and Ke, respectively, and that 

the cells consume oxygen at a constant rate m (zero-order kinetics). If ϕe is the volume 

fraction of the extracellular material, then volume-averaged tissue oxygen consumption is M 

= (l − ϕe)m The effective permeability of a layer of heterogeneous medium is defined as the 

permeability of a homogeneous medium with a uniform consumption rate M such that, for a 

given PO2 difference at the boundaries, the oxygen fluxes at the corresponding boundaries 

are equal. For parallel and series arrangements of cellular and extracellular layers in the 

model, the effective permeabilities are, respectively,

(63)

(64)

Expressions 63 and 64 can be derived from equations presented in Tai and Chang.176 Note 

that Kp and Ks are independent of thickness of the tissue slice and depend only on 

permeabilities and on volume fraction of extracellular space. It can be shown by direct 

comparison that Kp ≥ Ks.

Tai and Chang176 also extended an earlier model67 to analyze a situation where, at a certain 

distance from the tissue boundary, the rate of cell respiration is submaximal. The rate is 
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determined from the solution of the problem of oxygen distribution in a spherical or 

spheroidal cell with zero-order kinetics when the central part of the cell is anoxic.

Stroeve174 went a step further by solving the diffusion equation analytically in and around 

spherical cells following zero- or first-order kinetics and then volume-averaging the results. 

His approach followed the Maxwell’s classical approach to deriving transport properties of a 

heterogeneous material. For zero-order kinetics he obtained

(65)

It can be shown that the permeabilities (Equations 63 and 64) for parallel and series 

arrangements are upper and lower bounds, respectively, for permeabilities of media with 

other geometries; in particular, Ks ≤ K0 ≤ Kp. Equations 63 to 65 can be used for estimating 

the cellular permeability Kc if the effective permeability is measured experimentally and if 

the permeability of the extracellular medium is known. Stroeve174 estimated the ratio Ke/Kc 

from the three models (Equations 63 to 65) using experimental data on the cat cerebral 

cortex. The predicted values of Kc were several times larger than Ke, suggesting that much 

of the resistance to oxygen diffusion is localized within the cells. Subsequently, similar 

expressions were obtained for first-order kinetics (Equation 55) and mixed kinetics 

(Equation 56).184

Inside the cell, oxygen is consumed almost exclusively within mitochondria. Thus, it is 

possible, in principle, that intracellular PO2 distribution is highly heterogeneous, with large 

perimitochondrial PO2 drops and flat PO2 distribution in the rest of the cytosol. However, 

Clark and Clark18 and Clark et al.20 presented convincing arguments to show that the 

perimitochondrial PO2 drop should not exceed a few hundredths of a torr. For a spherical 

mitochondrion of radius Rm, this estimate can be easily obtained by solving the diffusion 

equation for oxygen distribution around the mitochondrion in spherical coordinates

(66)

where P∞ is the PO2 in the cell far from the mitochondrial surface, and Pm is the PO2 at the 

mitochondrial surface. Oxygen flux at the surface then equals j = K(P∞ − Pm)/Rm, where K 

is the oxygen permeability of cytosol. On the other hand, in the steady state oxygen flux 

multiplied by surface area should be equal to the amount of oxygen consumed by the 

mitochondrion

(67)
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where  is the volume of the mitochondrion, and mm the rate of O2 

consumption per unit mitochondrial volume. From Equations 66 and 67 after simple 

algebraic calculations, we obtain:

(68)

Using values of parameters typical for skeletal muscle20 mm = 1.4·10−6 mol/ml/s, K = 

2.13·10−14 mol/cm/s/torr, and Vm = 0.38 μm3, we get ΔPm = 0.04 torr. For other shapes of 

the mitochondrion this estimate may change by a factor of the order of unity, but in all cases 

remains well below a torr.

Thus, the resistance to oxygen diffusion in the tissue is distributed within the cell and not 

concentrated in narrow layers surrounding individual mitochondria. In other words, the 

discrete nature of oxygen consumption does not affect the overall pattern of oxygen 

distribution, provided that mitochondria are uniformly distributed.

The distribution of oxygen in the cell could be altered, however, if there is significant 

clumping of mitochondria. There is experimental evidence of the mitochondrial clumping 

around capillaries and sarcolemma. Mainwood and Rakusan116 formulated a model of 

oxygen diffusion in the cell with simultaneous diffusion of ATP or creatine phosphate from 

mitochondria to the rest of the cell. An example of the predictions of the model in the 

extreme case where all the mitochondria are clustered within 3 μm of capillaries is shown in 

Figure 12. These calculations demonstrate a theoretical possibility that heterogeneity of the 

mitochondrial distribution may affect PO2 profile in the cell. However, a quantitative 

analysis of this effect based on systematically collected experimental data is not available at 

present.

Longmuir112 has drawn a radically different picture of intracellular oxygen transport. He has 

suggested that oxygen is transported from blood to mitochondria along channels of high 

solubility; the endoplasmic reticulum could serve to channel oxygen. The cytosol is largely 

free of oxygen because of its low solubility. However, theoretical and experimental 

validation of this hypothesis remains to be done.

V. MODELS OF OXYGEN TRANSPORT IN THE MICROCIRCULATION

This section reviews conceptual geometrical models of blood-tissue transport emphasizing 

the mathematical formulations and solutions. Applications of the models to specific tissues 

are discussed in Section VI.

A. CAPILLARY-TISSUE OXYGEN EXCHANGE

1. Krogh Tissue Cylinder Model of Capillary Transport—The Krogh tissue cylinder 

model of oxygen transport between blood capillaries and tissue102 has served as the 

foundation and starting point for many theoretical studies (see review by Kreuzer99). It has 

also been broadly used in physiological studies for estimating oxygen distribution in tissue. 

This section reviews the development of models based on the Krogh tissue cylinder 
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geometry; these models are commonly referred to as Krogh’s models even through the 

original model of Krogh was based on a number of simplifying assumptions that have been 

relaxed in subsequent applications.

The essence of Krogh’s models lies in the assumption that the tissue can be subdivided into 

circular cylindrical units each of which has a capillary oriented along the axis, and the units 

do not exchange oxygen with each other (Figure 13). In formulating this geometrical model, 

Krogh had in mind the capillary geometry in skeletal muscle where muscle fibers have a 

preferential direction and capillaries tend to be oriented along the fibers.

To formulate an equation governing tissue oxygen transport, the following assumptions were 

made:

1 PO2 distribution in the tissue cylinder is axisymmetric.

2 The permeability of tissue to oxygen, or the Krogh diffusion coefficient, K = 

Dtαt, is independent of spatial position.

3 Oxygen in the tissue is not bound to a carrier, e.g., to myoglobin in muscle.

Under these assumptions, the equation governing oxygen transport in the tissue can be 

written in the form

(69)

At the outer boundary of the tissue cylinder the flux of oxygen is zero in accordance with the 

assumption that adjacent units do not exchange oxygen:

(70)

Krogh made additional assumptions of:

4 A steady state (the term ∂Pt/∂t in Equation 69 is zero)

5 A constant oxygen consumption

6 Negligible axial diffusion (the term ∂2Pt/∂z2 is small)

He did not consider the transport of oxygen in the capillary; rather the PO2 at the capillary 

wall was specified:

(71)

The solution of Equation 69 with boundary conditions 70 to 71 is
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(72)

This solution was derived by a colleague of Krogh, the mathematician Erlang. Equation 72 

gives the radial distribution of tissue PO2 in terms of capillary and tissue cylinder radii and 

tissue permeability. In particular, it permits the calculation of the minimum tissue PO2, 

which occurs at the outer rim of the tissue cylinder, i.e., at r = R.

Oxygen transport in the capillary has already been discussed above. Because of the 

particulate nature of blood, we have two choices in the description of capillary transport: we 

can either treat it in a detailed fashion by explicitly considering red blood cells and 

plasma,3,19,35 or we can introduce variables averaged over a cross-section of the capillary 

and consider their variation along the capillary. The former approach, coupled with a model 

of transport in the tissue, would lead to a complicated unsteady problem that has not yet 

been explored. The latter approach can be outlined as follows. Under the assumption that the 

capillary is “well mixed” in the cross-section, we can express the volumetric flux of oxygen 

through any cross-section in the form:94

(73)

where Pb is the intracapillary oxygen tension, Qpl is the volumetric flow rate of plasma, Qc 

is the volumetric flow rate of red cells, αpl is the oxygen solubility coefficient in plasma, 

αHb is the oxygen solubility coefficient in the hemoglobin solution inside red cells, and CHb 

is the oxygen-binding capacity of the hemoglobin solution. The first term in Equation 73 

represents the convective flux of free oxygen in plasma, the second term represents the 

convective flux of free oxygen inside the cells, and the third term represents the flux of 

oxygen bound to hemoglobin. If we express the volumetric flow rates of red cells and 

plasma in the form, Qc = QHD, Qpl = Q(l − HD), where HD is the discharge capillary 

hematocrit and Q is the volumetric blood flow rate, then we can rewrite the oxygen flux 

through a capillary cross-section as the sum of fluxes of free and bound oxygen

(74)

where αb = (l − HD)αpl + HDαHb is the oxygen solubility coefficient in blood, and C = 

HDCHb is the oxygen-binding capacity of blood.

The mass balance of oxygen in the capillary can be expressed as

(75)
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where j is the flux of oxygen at the capillary-tissue interface. Implicit in the derivation of 

Equation 75 is the assumption:

7 Hb-O2 chemical reaction is instantaneous, i.e., the rate of the reaction is very 

fast compared with the processes taken into account in Equation 75.

At the capillary-tissue interface the flux of oxygen is continuous

(76)

and the relationship between intracapillary and tissue PO2 is given in terms of a mass 

transfer coefficient

(77)

In addition, the capillary PO2 is specified at the capillary inlet

(78)

The mass transfer coefficient was introduced by early researchers in the field,12,25 but was 

interpreted as the permeability of the capillary membrane. If k is infinite, there is no 

resistance to oxygen transport at the capillary level. At present, the finite value of k is 

attributed primarily to the resistance to oxygen transport inside red cells and in the 

plasma.35,62

A number of authors treated the problem differently, by postulating free diffusion in the 

capillary, and infinite mass transfer coefficient (e.g., Reneau et al.145,146). However, in view 

of more recent studies of intracapillary transport, the approach presented here is more 

consistent.

In a steady state in the absence of axial diffusion and at constant tissue oxygen consumption, 

the capillary-tissue oxygen flux is constant, j = π(R2 − Rc
2)M independent of z, i.e., the 

oxygen that diffuses from the capillary at a position z is consumed in the slice of tissue z = 

constant. Thus, Equation 75 can be integrated:

(79)

The subscript “a” refers to the values at the arteriolar end of the capillary. If we disregard the 

concentration of free oxygen in comparison with that bound to hemoglobin and adopt the 

Hill Equation 4 for the oxyhemoglobin dissociation curve, we can use Equation 79 to 

express PO2 distribution along the capillary
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(80)

where v = π(R2 − Rc
2)ML/CQ and z* = z/L. Oxygen tension in the tissue at the capillary-

blood interface can be found from Equation 77:

(81)

Relationships 72, 80, and 81 completely solve the problem under the simplifying 

assumptions (1 to 7).

A significant effort has been devoted over the years to assessing the validity of assumptions 

(1 to 7) under different physiologic conditions, to relaxing these assumptions, and to 

developing mathematical solutions, both numerical and analytical, to the complete problem 

of oxygen transport in Krogh’s geometry. Reneau and his colleagues (Reneau et al.,145,146 

Knisely et al.96) performed a systematic numerical study of the problem using finite 

difference methods. Axial diffusion in the tissue was considered. Zero-order chemical 

kinetics for oxygen consumption was assumed, and the development of anoxic regions was 

described by the solution; cases of unsteady diffusion were also analyzed. When axial 

diffusion in the tissue is considered, additional boundary conditions for the tissue PO2 at the 

planes z = 0 and z = L are required; commonly, no-flux boundary conditions are specified. 

The authors included not only radial, but also axial diffusion of oxygen in the capillary. 

However, the effect of the capillary axial diffusion was shown to be negligible, and that of 

radial diffusion small under most conditions. A sample of their calculations, presented in 

Figure 14, shows the development of anoxic regions in tissue when the oxygen-binding 

capacity, C (denoted N in the figure), is reduced. Note that these cases require solution of a 

nonlinear diffusion equation in the tissue and are not described by analytical solutions 72 

and 79. A characteristic feature of the Krogh tissue cylinder geometry is the “lethal corner”, 

the area of tissue at the outer rim of the cylinder in the plane of the venular end of the 

capillary. Tissue PO2 is least at the lethal corner; thus, when oxygen delivery is 

compromised, hypoxia and anoxia would begin in this region. As we shall see, other 

geometrical models of capillary-tissue transport do not lead to a “lethal corner” concept.

If the spatial coordinates in the differential Equation 69 are properly nondimensionalized, r* 

= r/R, z* = z/L, then the second derivative with respect to z* is multiplied by a parameter ε2 

= (R/L)2. In many important cases, in particular for skeletal muscle and myocardium, this 

parameter is small, and, as a result, a significant mathematical simplification of the problem 

is possible. Problems characterized by a small parameter at the derivative of highest order 

belong to a broad class of singular perturbation problems (for ε = 0 the order of equation 

changes, hence singularity). These problems can be treated by the method of matched 

asymptotic expansions.107 Salathe et al.150 used this method to obtain three terms in 

asymptotic expansions up to the order ε2 for the steady problem with constant oxygen 

consumption. Intracapillary resistance to oxygen transport was neglected. Analytical 
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estimates of the terms contributed by axial diffusion were obtained. The method of matched 

asymptotic expansions was also applied to the problem of the development of anoxia 

following occlusion (Salathe and Wang153).

A somewhat similar problem of periodic capillary occlusion was solved numerically by 

Hyman et al.81 However, an additional effect was included of oxygen utilization by oxidative 

removal of the lactic acid produced in the tissue during hypoxia (oxygen debt). The 

concentration of lactic acid was converted into the concentration of oxygen that would be 

required to remove the lactic acid. Figure 15 shows the computed values of PO2 in the lethal 

corner and of PO2 spatially averaged over the tissue cylinder during recovery from ischemia. 

A solution was also obtained for the case of reactive hyperemia (Hyman and Artigue82).

Fletcher38 formulated the problem in a general form, which included, in addition to the axial 

diffusion and finite resistance at the capillary wall, the kinetic effects of the Hb-O2 reaction. 

He considered two equations for the capillary region, one for the free oxygen and one for the 

bound oxygen. He then obtained numerical solution of the problem and analyzed sensitivity 

for most parameters. The results suggest only a small effect of nonequilibrium kinetics on 

oxygen distribution.

2. Models of Capillary Transport with Non-Kroghian Geometries—The Krogh 

tissue cylinder model is, in a certain sense, universal and has been applied to a multitude of 

tissues, but with different parameters, such as tissue cylinder radius, capillary radius, 

capillary blood flow, oxygen consumption, and tissue permeability to oxygen. On the other 

hand, most models with non-Kroghian geometry reflect the morphological structure of a 

specific tissue. Thus, it would be logical to discuss these particular models in Section VI, 

where theoretical results on transport in different tissues are reviewed. Here, general model 

developments and features that are relevant for most tissues are considered.

We can outline the formulation of the mathematical problem for an arbitrary capillary 

geometry by generalizing the formulation for Krogh’s models, expressed by Equations 69 

and 75. Consider an arbitrary capillary network surrounded by generally nonhomogeneous 

tissue. In the absence of an oxygen carrier in the tissue, the transport equation can be written 

in the form:

(82)

In general, diffusion of oxygen is three-dimensional, whereas in the Krogh model, Equation 

69, only radial and axial diffusion are considered because of the axial symmetry of the 

problem. Also, in Equation 82 we allow the diffusion and solubility coefficients, as well as 

the oxygen consumption rate, to be functions of spatial coordinates. Hence transport 

characteristics are nonuniform. Such nonuniformities may occur at the cellular level, for 

example, muscle fibers of different biochemical composition, glial and neuronal cells in the 

brain, or at a larger scale, e.g., tissue damaged by ischemia adjacent to normal tissue. In 
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anisotropic tissues (e.g., skeletal and heart muscles), the diffusion can also be anisotropic,71 

so that the diffusion coefficients in different directions form a tensor.

If a well-mixed cross-section of the capillary is assumed, then Equation 75 is applicable with 

the only difference being that z should be replaced by curvilinear coordinate along the 

capillary, say q:

(83)

where the integral in the right-hand side is taken over the curve Γ that is the intersection of 

the plane q = constant with the capillary surface.

At the capillary-tissue interface:

(84)

where ∂/∂n is the derivative outward normal to the capillary surface.

Additional boundary conditions are required at the boundaries of the tissue domain. These 

conditions depend on the assumptions regarding the relationship between the domain and the 

surrounding tissue. In most cases, the domain is regarded as microcirculatory unit, so that 

the bulk of the tissue can be subdivided into the units arranged in periodic or symmetric 

fashion. Such a geometric structure would imply periodic or no-flux boundary conditions at 

the boundary of the unit. If tissue has an external surface through which oxygen can be 

exchanged with the environment, then a different boundary condition should be posed on the 

surface, for example, either PO2 at the surface or a mass transfer coefficient should be 

specified.

Non-Kroghian geometrical tissue models presented in the literature are particular cases of 

the above formulation. Krogh tissue cylinder can be regarded as the simplest 

microcirculatory unit, even though circular cylinders are not space filling. Hexagonal space-

filling cylinders were considered by Thews177 and Hudson and Cater77 and square cylinders 

by Popel;134 the differences between these models and the Krogh model are only minor.

Grunewald and Sowa56 introduced microcirculatory units (MCU) supplied by four 

capillaries along which arteriolar inlets and venular outlets were placed (Figure 16). 

Different arrangements of these inlets and outlets result in different units, examples of which 

are shown in Figure 17. These different units can be obtained by systematic “helical” 

displacement of capillary ends. With this procedure, 256 microcirculatory units can be 

obtained, among which 21 are nonidentical. When all capillaries are concurrent 

(microcirculatory unit 1), the problem is essentially reduced to square Krogh tissue 

cylinders. In other cases, diffusional exchange (shunting) can occur between capillaries in 

the unit. No-flux boundary conditions were posed on the lateral surface of the unit and 
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periodic conditions on the upper and lower surfaces. Because the tissue domain is a 

parallelepiped (rectangular box), the problem lends itself to a numerical solution by finite 

difference methods. This model was applied to skeletal muscle,56 heart,57 and, in a modified 

form, to brain.93

Popel134,138,140 extended Krogh’s model by considering a parallelepiped of tissue 

penetrated by an arbitrary number of parallel capillaries, each of which can be assigned a 

different value of velocity, oxygen-binding capacity, and inlet PO2. The axial diffusion was 

neglected, and only the diffusion in planes perpendicular to the capillary axes was 

considered. Hence it was a quasi two-dimensional problem. In Reference 134, the 

distribution of oxygen tension in the tissue was expressed analytically, using essentially the 

Green function method. The problem was then reduced to solution of nonlinear ordinary 

differential equations describing PO2 variation along the capillaries. The solution was 

utilized in systematic studies of oxygen diffusive shunts between neighboring 

capillaries.138,140 A finite-difference numerical solution was obtained141 in a study of 

statistical properties of PO2 distribution when capillary characteristics (red-blood-cell flux, 

inlet PO2) were assigned randomly, according to certain probability distributions (Monte 

Carlo simulation). Thus, distributions were calculated for an ensemble of randomly selected 

microcirculatory units that were subsequently ensemble averaged. The model was applied to 

striated muscle by Ellsworth et al.31

The stochastic nature of capillary oxygen exchange was also expressed in Reference 168, 

where an attempt was made to derive analytical expressions for probability distribution of 

Hb-O2 saturation in a capillary network assuming a linear distribution of saturation along 

capillary segments.

The studies discussed above were limited to parallel capillary geometries. However, even in 

skeletal muscle and heart that serve as prototypes for these models, the geometrical 

arrangements can be significantly different, whereas in a tissue like brain, the capillaries 

form what appears to be a random geometrical pattern. Metzger120 proposed a lattice-type 

microcirculatory unit (Figure 18) in which capillaries form a cubic mesh with mixed 

concurrent and countercurrent flow; he also considered a two-dimensional lattice 

(rectangular grid of capillaries). The model was applied to oxygen transport in brain.

These models, even when formulated for a specific tissue, reflect the general architectural 

arrangement of capillary networks in different tissues. More specific geometrical models 

(e.g., brain, skin) are discussed in Section VI.

3. Continuum Description of Oxygen Transport—Heterogeneities in tissue transport 

occur at different spatial scales: (1) at the intracellular level; (2) at the cellular level, for 

example, adjacent cells with different oxygen consumption rates or a pair of countercurrent 

capillaries; (3) at the capillary network level, for example, adjacent capillary networks with 

high and low blood flow; (4) at the macroscopic organ level. Description of transport at 

these levels can be achieved by different mathematical approaches. Salathe152 stated that a 

description of the fine-scale intercapillary variation is not necessary for an understanding of 

the overall manner in which oxygen is supplied to a given organ. Thus, he addressed the 
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problem of large-scale transport of oxygen in the tissue by smoothing the fine-scale 

variations with a volume-averaging procedure. Locally, capillaries were assumed to be 

parallel, although their direction could change from location to location. Also, fine-scale 

gradients were assumed to be small compared with large-scale gradients. A single oxygen 

concentration, c, was introduced that characterized both tissue and capillaries. The 

derivation resulted in a single partial differential equation for the concentration c:

(85)

where ψ is the fractional volume occupied by the capillaries, vc is the capillary blood 

velocity, and q is a coordinate along the capillaries. Equation 85 enables one to solve 

problems of diffusional interaction between tissue regions without having to calculate the 

distribution around individual capillaries. Figure 19 illustrates the interaction between two 

adjacent regions of tissue perfused by capillaries with different inlet blood concentrations.

One of the limitations of this model is the minimum scale at which the variations of oxygen 

concentration could be predicted. In the derivation, the volume over which the concentration 

is averaged is not strictly specified; however, it is clear that this volume should be at least the 

size of the characteristic distance between capillaries. Thus, the model’s predictions of 

variations at a scale smaller than intercapillary distance would be unreliable.

B. MODELS OF PRE- AND POSTCAPILLARY TRANSPORT

The development of mathematical models of oxygen transport from arterioles to tissue and 

from tissue to venules was instigated by experimental findings in the last 2 decades that 

indicated that significant amounts of oxygen exchanged between arterioles and the 

surrounding tissue.133 There has also been intensive discussion of the possibility of 

countercurrent exchange of oxygen between paired arterioles and venules (Harris60). Such 

an anatomical arrangement is very common (Wiedeman189).

The first model of arteriolar-tissue transport was formulated by Popel and Gross.135 In this, 

as well as other models formulated thus far, the arteriolar cross-section is assumed to be well 

mixed and no intra-arteriolar resistance to oxygen transport is considered; hence the 

governing equation for the arteriolar lumen is the same as for the capillary, namely, Equation 

83. Transport in the arteriolar wall is governed by a diffusion equation similar to Equation 

82, since the arteriolar wall does not have a separate supply of oxygen and receives oxygen 

by diffusion from the lumen. The extravascular region, which contains parenchymal cells 

and blood capillaries, was modeled phenomenologically, i.e., without considering any details 

of the tissue structure. The transport in steady state was described by a linear equation

(86)
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where P∞ is the background PO2 far from the arteriole, and ℓt is a phenomenological 

parameter called penetration depth; it characterizes the distance through which a disturbance 

from an oxygen source or sink can penetrate.

The equation was applied to the problem of arteriolar-tissue exchange (Popel and Gross,135 

Pittman,133 Kuo and Pittman104) and to countercurrent exchange between paired arteriole 

and venule (Sharan and Popel166). In the latter case, Equation 86 was solved numerically 

and the problem then reduced to solution of a system of two coupled nonlinear ordinary 

differential equations for PO2 distribution along the two vessels. Comparison with 

experimental data showed that the theory significantly underestimated the flux of oxygen 

from arterioles.104

To overcome uncertainties of the phenomenological model, a new model was formulated 

that used explicit information on capillary network geometry and hemodynamics 

(Weerappuli and Popel185). The description of extra-arteriolar transport was based on 

Equation 85. The numerical solution of the problem predicts a significant diffusive 

interaction between an arteriole and the capillaries and tissue that surround it. Figure 20 

shows the contours of PO2 around the arteriole (capillary flow is from left to right). As a 

result of the diffusive interaction, a long “wake” of elevated PO2 is formed downstream from 

the arteriole. Popel et al.142 applied the model to the analysis of recently obtained 

experimental data.104 The results are qualitatively consistent with the analysis done with the 

previous model;135 the model predicts an order of magnitude higher permeability of tissue to 

oxygen, K = Dtαt, than is currently accepted. Full implications of this prediction on other 

aspects of oxygen transport have not yet been explored.

Calculations of oxygen distribution for a small network consisting of an arteriolar segment 

and several discrete capillaries were presented by Secomb and Hsu.160 The Green’s function 

method was used that reduced the problem to the solution of an integro-differential equation. 

This method, however, is restricted to constant consumption in the tissue, and it is not 

applicable to cases where hypoxic regions are formed.

C. COMPARTMENTAL MODELS OF OXYGEN TRANSPORT

All the models discussed to this point were concerned with spatial variation of oxygen 

concentration, be it in plasma gaps between red cells in the capillary or in the tissue around 

arteriolar vessels. Consequently, such models are often referred to as distributed. On the 

other hand, a class of models that ignore spatial variation are referred to as compartmental 
models; they are dealing with exchange between domains, called compartments, with a 

single value of concentration assigned to each compartment. This division has no relevance 

to the size of the system: compartments can be intracellular, or they can represent entire 

organs. Mathematically, distributed models are described by differential equations 

containing derivatives with respect to coordinates and time (for unsteady problems), whereas 

compartmental models may only contain time derivatives. Therefore, compartmental models 

are described by either ordinary differential equations or by algebraic equations.

Detailed compartmental models that consider chemical interactions of oxygen with other 

substances in the erythrocyte, plasma, interstitial fluid, and intracellular fluid compartments 
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are presented by Bidani and Flumerfelt,11 Hill et al.,65 and Salathe et al.151 On a larger 

scale, there are models dealing with arteriovenous diffusive shunt (Piiper et al.131).

Next, there are comparmental models of an organ circulation treating groups of “series” 

vessels as compartments in addition to one or more tissue compartments (Roth and 

Wade147). Figure 21 shows the scheme of the corresponding vascular and tissue 

arrangement. Larger arterioles and venules exchange oxygen through the connective tissue 

compartment. All other vessels exchange oxygen with the tissue compartment. Mass balance 

equations are formulated for oxygen in each compartment (vascular and tissue). For a steady 

problem, the procedure results in a system of nonlinear algebraic equations with respect to 

average PO2 in each compartment. Predictions of this model are discussed below in the 

context of skeletal muscle. An extended compartmental model was applied to the analysis of 

oxygen transport in the brain (Sharan et al.167).

Models that considered oxygen exchange only in the capillary compartment have been 

incorporated into a larger model that included hemodynamics and regulation (Granger and 

Shepherd,48 Granger and Granger49).

D. OPTIMALITY OF OXYGEN TRANSPORT

It is appropriate to mention here attempts to rationalize the structure of the capillary-tissue 

system from the standpoint of optimization of oxygen transport. Wilson192 formulated a 

model similar to Krogh’s with the difference that the total, not the local, flux at the outer 

surface of the tissue cylinder was required to be zero, and, in addition, the oxygen 

concentration was required to be constant at the surface. He then determined capillary 

density from the condition of the minimum of the volume-averaged entropy production; the 

local entropy production due to oxygen diffusion in the tissue is proportional to the square of 

the oxygen concentration gradient. Kamiya et al.87 formulated a model of tissue with 

spherical rather than cylindrical tissue elements and determined the number of capillaries in 

the entire body from the condition of minimum of a cost function. In both studies, the 

calculated capillary density was in a reasonable agreement with experimental values. Khanin 

and Bukharov89,90 analyzed a whole-body oxygen balance based on the principle of 

minimum power.

VI. MODELS OF OXYGEN TRANSPORT IN SPECIFIC TISSUES AND 

ORGANS

A. SKELETAL MUSCLE

A characteristic feature of skeletal, or, more generally, striated muscle, is that its capillary 

bed has an apparently more regular structure than that of most other tissues. Muscle fibers 

have a preferential direction along which muscle can contract, and blood capillaries tend to 

be oriented along the fibers (Wiedeman189). This anatomical structure lends itself to the 

simple geometrical model proposed by Krogh,102 Figure 13. Skeletal muscle can operate in 

a continuum of physiological states between rest and maximum work. Both blood flow and 

oxygen consumption can increase by an order of magnitude in exercise, accompanied by 

changes in the number of functioning capillaries.50 Krogh’s model has been used 
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extensively over the past 70 years in quantitative predictions of oxygen distribution in 

muscle under different physiological conditions.59 However, over the years, a number of 

factors have been identified that call for reassessment of the model, most important of which 

are transport heterogeneity, intracapillary resistance to oxygen transport, and facilitation of 

oxygen transport by myoglobin (Honig et al.72).

Krogh was well aware of anatomical irregularities in the capillary bed — in particular the 

presence of capillary anastomoses not aligned with muscle fibers and the heterogeneity of 

capillary hemodynamics.103 However, theoretical foundations for studying the heterogeneity 

of oxygen transport have been developed only in the last decade. Grunewald and Sowa56 

investigated oxygen distribution in microcirculatory units supplied by four capillaries 

(Figure 16). PO2 histograms for different microcirculatory units were generated and 

compared with experimental PO2 histograms obtained with tissue electrodes in human 

resting muscle. The best agreement with the data was obtained when PO2 histograms 

corresponding to different microcirculatory units were weight-averaged in certain 

proportions. However, representing the tissue as a conglomerate of different 

microcirculatory units is inconsistent with no-flux boundary conditions that were imposed 

on the lateral boundaries of the units. In fact, it was shown that different microcirculatory 

units placed next to each other may exchange substantial amounts of oxygen. 140 The model 

was utilized in other studies of oxygen exchange in skeletal muscle.113,114

Klitzman et al.94 analyzed the data obtained with an oxygen microelectrode in superfused 

resting and contracting hamster cremaster muscle. When PO2 measurements are combined 

with intravital microscopy for identification of the position of the microelectrode with 

respect to the capillaries, the measurements are limited to depths of several muscle fibers 

from the surface of the tissue. The distribution of oxygen near the tissue surface could be 

affected by the solution superfusing the surface. The model utilized in the analysis took into 

account oxygen exchange at the surface (Popel139), Figure 22. Capillaries were concurrent 

and arranged in square arrays. The experimental data consisted of measurements of PO2 in 

the tissue near the venous end of the capillaries. The data were used to estimate the oxygen 

consumption rate and inlet capillary PO2, neither parameter had been measured in the 

experiments. Interestingly, the predicted inlet capillary PO2 in resting muscle was around 30 

torr, consistent with other experimental and theoretical reports of large precapillary loss of 

oxygen. Calculated capillary PO2 distributions are shown in Figure 23a for three different 

values of oxygen tension at the tissue surface, Ps. Also shown are the predictions of the 

Krogh model with the same parameters except that the surface of the muscle was made 

impermeable to oxygen. Figure 23b shows the PO2 isobars in the plane through the venous 

ends of capillaries in resting and contracting muscle. Clearly, the superfusing solution has an 

important effect on oxygen distribution in the surface layers of tissue, especially at high 

values of Ps, and should be taken into account in data analysis.

Ellsworth et al.31 used microspectrophotometry to make in vivo measurements of oxygen 

saturation in individual capillaries of the hamster cheek-pouch retractor muscle and analyzed 

the data with the help of a mathematical model. The model considers a block of tissue 

penetrated by parallel concurrent capillaries, Figure 24, with either uniform or nonuniform 

length distribution. The model’s formulation follows Equations 82 to 84, except that the 
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axial diffusion is neglected. The measurements of hemoglobin saturation, SO2, at the arterial 

end are used as boundary conditions, and the predicted values of SO2 at the venous end are 

compared with the experimental data. It is shown that under resting conditions, diffusive 

shunting is so prominent that the effect of heterogeneities at the arterial end almost 

disappears toward the venous end in the model with uniform capillary length, Figure 25a. 

This is contrary to the experimental findings that show an increased heterogeneity of SO2 

toward the venous end. However, nonuniformity of capillary pathlength was found to be an 

important factor, and taking it into account led to at least a qualitative agreement with 

experimental data. For quantitative comparisons, a network model reflecting a more realistic 

pathlength distribution is necessary. Simulations of oxygen transport in contracting muscle 

lead to entirely different predictions of the effect of heterogeneities. While most differences 

between capillaries are erased in resting muscle due to diffusive shunts, the differences are 

amplified in contracting muscle, leading to a large dispersion of SO2 at the venous end, even 

when capillary pathlength is uniform (Figure 25b). These predictions have yet to be tested 

experimentally.

The role of myoglobin in storing oxygen in skeletal muscle and releasing it when the supply 

is interrupted has long been appreciated and understood. The myoglobin was taken into 

account in a Krogh cylinder model that was solved numerically for the circumstance of 

occlusion (stopped blood flow).4,82 However, it is the role of myoglobin in facilitating the 

diffusion of oxygen that has been elucidated in recent years by mathematical 

models.23,34,39,129,154,175 See also reviews.85,100,101 Since myoglobin molecules are 

restricted to muscle fiber and cannot penetrate through the plasma membrane, it was 

suggested85 that a muscle fiber surrounded by blood capillaries would be a more appropriate 

model of an elementary microcirculatory unit than the Krogh tissue cylinder model (Figure 

26a). Federspiel34 solved the problem numerically using the values of parameters for the 

maximally respiring dog gracilis muscle. The effect of capillaries was simulated by 

specifying PO2 on the fiber surface as a periodic function of the angular coordinate. The 

effect of myoglobin facilitation is shown in Figure 26b for different total myoglobin 

concentrations. It was shown that myoglobin-rich muscle fibers can sustain high oxygen 

consumption with a low PO2 at the sarcolemma (a few torr) due to the large facilitation of 

oxygen diffusion by myoglobin.

In skeletal muscle, mitochondria are not distributed uniformly in the fiber, but are 

concentrated in bands at uniform intervals throughout the tissue. Covell and Jacquez23 

simulated mitochondrial distribution in a muscle fiber by considering periodic oxygen 

consumption in a slab of tissue. They also reached a conclusion that, for red skeletal muscle 

at maximum respiration at PO2 values below 10 torr, myoglobin provides a significant 

increase of oxygen delivery to mitochondria.

The mechanisms of intracapillary resistance to oxygen have been discussed in Section II. 

Groebe and Thews51 made an attempt to incorporate this resistance into a model of a muscle 

fiber (Figure 27a), along with myoglobin-facilitated diffusion. An example of computations 

for a fiber surrounded by four capillaries is shown in Figure 27b; the steepest PO2 gradient is 

predicted inside and in the immediate vicinity of the capillaries, with a shallow profile in the 

bulk of the fiber. These predictions are in qualitative agreement with microspectro-
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photometric measurements of myoglobin saturation in frozen sections of dog gracilis 

muscle. Thus, the intracapillary resistance and myoglobin-facilitated diffusion were 

identified as major factors in oxygen exchange in skeletal muscle, with nonequilibrium Hb-

O2 chemical reaction possibly playing only a minor role.

Groom et al.52 studied the angioarchitecture of the capillary bed in strongly contracted 

muscle. They found that capillaries were folded and formed a dense mesh around each fiber. 

Based on this picture, they suggested that a uniform PO2 at the sarcolemma might be an 

appropriate boundary condition for a contracted fiber (solid cylinder model). The predictions 

of the solid cylinder model and the Krogh cylinder model were compared by Piiper and 

Scheid.132

Finally, Roth and Wade147 used a compartmental model, discussed above (Figure 21), to 

predict oxygen distribution throughout the entire skeletal muscle microcirculation in rest and 

exercise. Parameters for the calculations were compiled from different sources, not all of 

them from a muscle tissue. The distributions are shown in Figure 28 for several levels of 

arterial PO2. These calculations suggest that at an elevated level of oxygen consumption 

capillaries become almost the exclusive source of oxygen to the tissue, with only small 

amounts contributed by arterioles and venules. In contrast, in low-consumption states, a 

substantial fraction of oxygen is exchanged through arteriolar walls.

B. MYOCARDIUM

The models described above for skeletal muscle are generally applicable to capillary-tissue 

transport in the heart muscle, since capillary-tissue geometries are similar. However, despite 

the known importance of oxygen for the heart,36 only a few theoretical studies have been 

devoted to this organ.

Rakusan143 evaluated oxygen distribution under various physiologic conditions using the 

Krogh model. He and his co-workers formulated models of a capillary surrounded by a 

noncircular tissue cylinder (an extension of Krogh’s model) and of a fiber surrounded by 

capillaries (Rakusan et al.,144 Hoofd et al.74). The model described above,56 Figure 16, was 

also applied to the myocardium (Grunewald and Sowa57). Napper and Schubert126 utilized 

the Krogh cylinder geometry in an attempt to interpret experimental PO2 distributions 

obtained with an oxygen microelectrode in the heart perfused by an oxygenated solution. 

Because of the small intercapillary distances in the heart, tissue PO2 was assumed uniform 

in the tissue cylinder cross-section, but the axial diffusion was taken into account. However, 

in order to obtain an agreement between theoretical and experimental PO2 histograms, a 

diffusion coefficient ten times larger than accepted values had to be assumed.

Wieringa190 considered a large network of parallel capillaries, cross-connected by 

anastomoses. Arteriolar inputs and venular outputs were placed randomly. The simulated 

flow in the capillary network showed qualitative similarity with experimental flow 

distribution in the coronary microcirculation. In particular it exhibited a pattern of 

countercurrent flow. For oxygen diffusion calculations, the axial diffusion was neglected and 

the contribution of anastomoses, other than their effect on flow distribution, was not 
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considered. Neither myoglobin facilitation nor intracapillary resistance were taken into 

account. The solution was obtained numerically by the finite element method.

C. BRAIN

The brain is an organ whose normal function depends critically on an uninterrupted delivery 

of oxygen. Unlike skeletal muscle that can survive for hours without oxygen, brain cells 

show irreversible damage within minutes from the onset of oxygen deficiency. Thus, 

theoretical studies have special importance for understanding how oxygen is distributed in 

different structures of the brain under normal and hypoxic conditions.

Theoretical work on oxygen transport in the brain began with applications of the Krogh 

equation (Opitz and Schneider130) and extension of the Krogh model to hexagonal space-

filling tissue cylinders (Thews177). A systematic analysis of oxygen transport in the brain 

with the Krogh model was performed by Reneau and his co-workers.96,145,146 They used the 

numerical finite-difference method to obtain solutions of steady and unsteady problems of 

physiological importance. Examples of these calculations are shown in Figure 14.

However, the architecture of the capillary network in the brain does not provide support for 

the Krogh model. Other models have been formulated that reflect the heterogeneity of 

capillary architecture and hemodynamics. Metzger120 proposed a cubic-lattice model for a 

brain microcirculatory unit (Figure 18). Flow in the capillaries was calculated by applying 

Kirchhoff’s laws; thus, flow heterogeneity was simulated, although in an idealized way. 

Kislyakov and Ivanov93 adapted the four-capillary microcirculatory unit proposed earlier by 

Grunewald and Sowa56 to represent a spherical neuron surrounded by a mass of glial cells 

(Figure 29) (see also Kislyakov,91 Ivanov and Kislyakov83). The oxygen consumption rate 

within the neuron is about ten times higher than in the glial cells, and that has a significant 

effect on oxygen distribution. A more realistic geometry of capillary-cell structure was 

incorporated in a model by Ivanov et al.;84 an example of this geometry with two capillaries 

around a spindle-shaped neuron is shown in Figure 30. The geometry of neurons and 

capillaries in their model can be taken directly from three-dimensional anatomical 

reconstruction studies. The model was also used to study the dynamics of oxygen transport 

during alteration of blood flow and respiratory activity of the neurons.92 In these and other 

studies from this group of investigators, the treatment of capillary transport was different 

from the description given by Equations 83 and 84. Their formulation was not derived from 

rigorous mass-balance formulations. Thus, even though the geometry of the models84,93 is a 

significant step from the Krogh model, the results may be dependent, in an unknown way, on 

the ad hoc treatment of the capillary transport.

In most studies of oxygen transport, the governing differential equations are solved 

numerically by a discretization method, either finite difference or finite element. A 

probabilistic scheme, commonly known as Monte Carlo simulation, has been developed by 

Bruley and his associates.13,191 The authors suggest that the Monte Carlo method has 

advantages compared with discretization methods, especially for problems with complex 

geometry, but so far it has only been applied to simplified geometries and its utility for more 

realistic problems has yet to be demonstrated.
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There is experimental evidence that significant precapillary loss of oxygen occurs in the 

cerebral circulation. In order to include transport in the pre- and postcapillary 

microcirculation, Sharan et al.167 modified the compartmental model of Roth and Wade147 

and applied it to oxygen transport in the brain. The model considered 11 vascular 

compartments and a tissue compartment. The transport coefficients for arterioles and 

venules were calculated from the model of Popel and Gross.135 Countercurrent diffusive 

shunting between large arterioles and venules was included in the model, but the results 

indicated that the shunt is not important. The calculations were done for different types of 

hypoxia (hypoxic hypoxia, carbon monoxide hypoxia, and anemic hypoxia) using 

characteristics of sheep and lamb brains.

D. LUNGS

The problem of oxygen loading in the blood capillaries of the lung is, in a sense, inverse to 

the problem of oxygen unloading in other tissues. Thus, the equations describing capillary 

transport in the lung are similar to those formulated above for other tissues. There are certain 

important differences, however. First, a capillary in the lung can be more accurately 

described as a slit rather than a circular tube. Second, the blood in the capillaries is separated 

from the air in the alveoli by a membrane whose resistance to oxygen transport has to be 

taken into account. Third, changes in the concentration of carbon dioxide along the capillary 

are interdependent with the transport of oxygen through the Bohr and Haldane effects. Thus, 

for a better understanding of oxygen transport, simultaneous analysis of oxygen and carbon 

dioxide transport is necessary. A summary of the mechanisms involved in oxygen exchange 

in the lung was presented by Weibel.186 An analysis of transport in the lung capillaries was 

put forward in a classic work by Roughton and Forster.149 Ulanowicz and Frazier179 

considered five major reactions involving oxygen and carbon dioxide in hemoglobin 

solution, and investigated one-dimensional diffusion through a quiescent plane layer of 

hemoglobin. Hill et al.65 used a similar approach in a compartmental model of pulmonary 

exchange.

Singh et al.171 considered a model of a capillary slit exchanging O2 and CO2 through the 

plane walls. They formulated five balance equations for O2, CO2, Hb, HbO2, and HbCO2, 

and presented an order-of-magnitude analysis of the problem. The equations describe 

convection of substances along the capillary, chemical reactions between the substances, and 

diffusion of all substances across the capillary. Thus, facilitated transport of oxygen and 

carbon dioxide were included in the model. These researchers used the governing equations 

subsequently in a series of publications that presented numerical solution to the problem,162 

took into account axial diffusion in the capillary163 and pulmonary membrane resistance,165 

and considered unsteady processes.164 However, the equations governing O2-CO2-Hb 

reactions171 appear to be based on the assumption that oxygen and carbon dioxide compete 

for the same sites on the hemoglobin molecules; therefore, these equations differ 

significantly from descriptions used by other researchers of pulmonary exchange.65,148,179 

This difference has not been critically discussed in the literature, and it is not clear how the 

results in References 162–165, 171 are affected by the assumptions made in the formulation.
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E. ARTERIAL WALL

The wall of large arteries is supplied with oxygen from two sources: from the lumen and 

from a special circulation, vasa vasorum, located in the adventitia and the outer part of the 

media. The inner part of the wall (the intima and much, if not all of the media) is avascular. 

In small arteries, the entire wall is avascular. Oxygen deficiency in the arterial wall has been 

linked to atherosclerosis, which has stimulated investigations of oxygen transport. 

Theoretical studies of oxygen transport in the wall were aimed at a better understanding of 

the complex relationships between blood flow pattern in the lumen and oxygen distribution 

in the wall. A recent review of the arterial wall oxygen transport was published by Goldstick 

and Dobrin.47

Back6 presented analytical estimates of transport in the vessel lumen and in the avascular 

wall for steady and pulsatile flow. Standard transport equations were written for the blood 

region, and the avascular wall, with the matching conditions of continuity of oxygen flux 

and oxygen tension. PO2 in the bloodstream far from the wall and at the outer boundary of 

the avascular region was specified. Using the data for rabbit abdominal aorta, he concluded 

that resistance to transport in blood was about twice that of the wall. Pulsatile flow effects 

were found to influence the oxygen concentration only in a narrow region in the vicinity of 

the lumen. It is well known that in the bloodstream a cell-free or cell-depleted layer, several 

microns thick, is formed adjacent to the wall. Schneiderman and Goldstick156 obtained a 

numerical solution of the problem, taking into account the cell-free layer and concluded that 

oxygen gradients in the blood phase extend significantly beyond the layer; thus a major 

transport resistance lies in the flowing blood. A more general solution was presented by 

Schneiderman et al.,158 where the pulsatility of blood flow was accounted for. The 

distribution of oxygen in the human thoracic aorta is illustrated in Figure 31. Significant PO2 

gradients in the blood are predicted as far as 100 μm from the wall. Pulsatility has practically 

no effect on the exchange. A similar model was applied to the analysis of in vivo and in vitro 
experimental data on PO2 distributions obtained with oxygen microelectrode (Buerk and 

Goldstick14). Extensions of the model address the problem of oxygen transport in diseased 

vessels (Back et al.7, Schneiderman et al.157) and the effect of carbon monoxide hypoxia 

(Schneiderman and Goldstick155).

F. SKIN

Microcirculation in the skin has a very specific organization. Capillaries form loops that 

extend toward the surface of the skin. The transport of heat, in addition to oxygen, is an 

important function of the skin microcirculation. A model of the skin microcirculatory unit 

was formulated by Grossmann,54 Figure 32a. Diffusion in the capillary was considered. The 

model also included equations of heat transfer. The mass and heat transport equations were 

coupled through the temperature dependence of the oxyhemoglobin dissociation curve. An 

example of PO2 distribution in a cross-section drawn through the capillary loop is shown in 

Figure 32b. Heating and cooling the skin surface as well as different types of oxygen 

environment were considered. The model was also used to investigate time-dependent 

regimes (Grossmann and Winkler55).
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G. OTHER ORGANS

Oxygen transport has been studied theoretically in several other tissues and organs. The 

calculations of PO2 distribution were done for the carotid body (Grossmann et al.,53 Degner 

and Acker26), retina (Friedland41) and cornea of the eye (Lin109), and nerve (Lagerlund and 

Low105). Also, compartmental models were applied to the analysis of oxygen transport to 

the intestine (Granger and Shepherd,48 Granger and Granger49), fetal circulation 

(Huikeshoven et al.78), and placental circulation (Hill et al.66).

VII. MODELS OF OXYGEN TRANSPORT IN DISEASE: SICKLE CELL 

ANEMIA

Oxygen is involved in a crucial way in sickle cell anemia through a chain of hemor-

heological and transport processes. When oxygen is unloaded in the capillaries, red blood 

cells get stiffer, which leads to an increase in viscosity of blood and, consequently, to a 

decrease in blood flow. This, in turn, limits oxygen delivery and leads to a further decrease 

of flow, until the circulation is blocked. Thus, in a theoretical model it is necessary to 

combine the oxygen transport problem with the mechanical problem of red blood cell 

motion in the capillary, making the mechanics dependent on the level of oxygen. Lomen and 

Gross111 and Berger and King9,10 investigated this problem in detail, by combining the 

Krogh model with Lighthill and Fitz-Gerald’s model of capillary flow. Recently, the 

compartmental model of Granger and Shepherd48 was extended to describe microcirculatory 

oxygen delivery in sickle cell disease (Vayo et al.183).

VIII. CONCLUDING REMARKS

Mathematical models have been formulated that take into account important features of 

oxygen transport: anatomically realistic geometry of capillary network, intracapillary 

resistance to transport, myoglobin facilitation of oxygen diffusion, and intracellular 

heterogeneities due to nonuniform distribution of mitochondria. However, no model for any 

tissue has included all the features deemed important for the tissue, although steps in this 

direction are being made. Methodological studies aimed at the development of new models 

or formulating mathematical solutions of existing models constitute the main body of 

theoretical work on oxygen transport, whereas applications to specific tissues, especially 

other than skeletal muscle and brain, are relatively scarce and rarely definitive. At present 

none of the models of oxygen transport (including Krogh’s model) has been carefully tested 

against experimental data. The main reason appears to be the lack of accurate measurements 

of oxygen tension and hemoglobin saturation in vivo with the spatial resolution necessary 

for validation of distributed transport models. However, with the advent of new 

microcirculatory technologies, such data have begun to emerge. Thus, for the first time it 

should become possible to validate mathematical models by direct experiments.

Only a decade ago, the picture of oxygen delivery from cells to the sites of oxygen 

consumption had not differed qualitatively from that described by Krogh. In the past 10 

years, Krogh’s concept of radial PO2 gradients in the tissue from the capillary has undergone 

drastic changes and has all but reversed. Indeed, it is now proposed that the dominant PO2 
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gradients on the pathway from hemoglobin to mitochondria occur not in the tissue but inside 

the vessels. These new concepts require further experimental validation and new theoretical 

developments. However, if they are valid, then much of our understanding of oxygen 

transport to tissue will have to be reassessed.
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FIGURE 1. 
Oxygen dissociation curves for hemoglobin, Equation 4 (P50 = 26 torr, n = 2.7), and 

myoglobin, Equation 24, (P50 = 5.3 torr).
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FIGURE 2. 
(a) Coordinate system for plasma gap between two red cells; all distances are 

nondimensionalized by L, the half distance between two cells; (b) Streamlines for eddy 

motion in the upper part of the gap in the coordinate system fixed on red cell. (From 

Aroesty, J. and Gross, J. F., Microvasc. Res., 2, 247, 1970. With permission.)
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FIGURE 3. 
Effect of convection on local mass transfer rate at the capillary wall. Separation between 

cells equals one capillary diameter, 

(From Aroesty, J. and Gross, J. F., Microvasc. Res., 2, 247, 1970. With permission.)
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FIGURE 4. 
Concentration profiles c in plasma gap between red cells for Pe = 0, 1, and 10. Capillary axis 

is at r = 0, capillary wall at r = 1. (a) Separation equals one capillary diameter, RL = 1.0; (b) 

Separation equals five times capillary diameter, RL = 0.2. Profiles are shown for r = 0; 

profiles for r = 0.5 and 0.9 are similar. (From Aroesty, J. and Gross, J. F., Microvasc. Res., 2, 

247, 1970. With permission.)
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FIGURE 5. 
Schematic distribution of O2 flux from capillary into the tissue for different red cell 

separations.
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FIGURE 6. 
Percent deviation in oxygen concentration from local chemical equilibrium across a 4 μm 

capillary for different rates of Hb-O2 chemical reaction. (From Baxley, P. T. and Hellums, J. 

D., Ann. Biomed. Eng., 11, 401, 1983. With permission.)
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FIGURE 7. 
Mean red-cell hemoglobin saturation fraction as a function of dimensional time, according 

to Equation 47, for a red cell exposed to a zero oxygen tension at the cell boundary. The time 

required to go from an initial saturation SA to a saturation of SB is tB – tA, where tA and tB 

are the time coordinates corresponding to SA and SB on the graph. The slope of the curve 

decreases, hence unloading a given amount of O2 takes longer at lower saturation. (From 

Clark, A., Jr., Federspiel, W. J., Clark, P. A. A., and Cokelet, G. R., Biophys. J., 47, 171, 

1985. With permission.)
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FIGURE 8. 
Effect of red cell spacing, 2 L, normalized by red cell diameter and clearance, λ (the ratio of 

capillary to red cell diameter) on the capillary mass transfer coefficient for the case of 

spherical red cells in a cylindrical capillary. The mass transfer coefficient is averaged for 

saturations in the range S = 0.2 to 0.8. (Modified from Federspiel, W. J. and Popel, A. S., 

Microvasc. Res., 32, 164, 1986. With permission.)
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FIGURE 9. 
Capillary PO2 profiles for different conditions of O2 supply computed assuming infinite rate 

of chemical reaction (dashed line) and finite rate (solid line). (a) Normal conditions; (b) 

hypoxic hypoxia (the arterial PO2 is 25 torr); (c) anemic hypoxia (the hemoglobin 

concentration is one third normal, equal to 5 g/100 ml). (From Gutierrez, G., Respir. 
Physiol., 63, 79, 1986. With permission.)
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FIGURE 10. 
Comparison of predictions, Equation 52, for the effective oxygen diffusion coefficient with 

experimental data in tubes with diameter larger than 300 μm. γ is the shear rate, m is 

proportional to the slope of the oxyhemoglobin dissociation curve, and L is the assumed 

radial step in red cell movement. (a) Unsaturated blood; (b) saturated blood. (Modified from 

Diller, T. E. and Mikic, B. B., J. Biomech. Eng., 105, 346, 1986. With permission.)

Popel Page 65

Crit Rev Biomed Eng. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 11. 
Definition sketch of the heterogeneous tissue models: (a) Series model; (b) parallel model. 

(From Tai, R. C. and Chang, H. -K., J. Theor. Biol., 43, 265, 1974. With permission.)
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FIGURE 12. 
Distribution of PO2 in cylindrical cells with 1:1 cell-to-capillary ratio (a) Homogeneous 

mitochondrial distribution; (b) mitochondria are clustered within 3 μm of capillaries. (From 

Mainwood, G. W. and Rakusan, K., Can. J. Physiol. Pharmacol., 60, 98, 1982. With 

permission.)
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FIGURE 13. 
Geometry of the Krogh tissue cylinder model.
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FIGURE 14. 
(a) PO2 profiles in the capillary, according to Krogh’s model showing the effect of reduced 

hematocrit (oxygen binding capacity). Numbers along the abscissa are fractions of the total 

capillary length. Red blood cells are shown for illustration only, the blood was treated as a 

homogeneous hemoglobin solution: (b) Anoxic areas of tissue between parallel concurrent 

capillaries resulting from the reduced hematocrit. (From Knisely, M. H., Reneau, D. D., Jr., 

and Bruley, D. F., Angiology, 29, S1, 1969. With permission.)
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FIGURE 15. 
Krogh’s model used in calculations of recovery from occlusion. (a) Without oxygen debt; 

(b) following 2 min of occlusion with oxygen debt. (From Hyman, W. A., Grounds, D. J., 

and Newell, P. H., Jr., Microvasc. Res., 9, 49, 1975. With permission.)
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FIGURE 16. 
A microcirculatory unit (MCU) consists of tissue fragment of length 2 L and of 4 parallel-

running capillaries, where L is identical to the capillary length, i.e., the distance between 

arterial inflow a and venous outflow v. The shortest distance between two capillaries is d; rc 

is the capillary radius. Short arrows denote direction of blood flow in capillaries. Upper and 

lower surface areas of the tissue fragment are hatched. (From Grunewald, W. A. and Sowa, 

W., Rev. Physiol. Biochem. Pharmacol., 77, 149, 1977. With permission.)
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FIGURE 17. 
Six microcirculatory units: MCU 1 with concurrent capillary blood flow (Krogh capillary 

structure); MCU 7 with partial concurrent and countercurrent capillary blood flow; MCU 19 

with total countercurrent capillary blood flow; MCU 16 with spirally arranged arterial 

inflows (and venous outflows) shifted against one another by L/2 (helical structure); MCU 3 

and 8 without specific geometry in arrangement of capillary ends (asymmetric capillary 

structure), a = arterial inflow, v = venous outflow. (From Grunewald, W. A. and Sowa, W., 

Rev. Physiol. Biochem. Pharmacol, 77, 149, 1977. With permission).
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FIGURE 18. 
Three-dimensional cubic capillary mesh model. It consists of a tissue cube with 3×3×3 

capillaries. Input and output points are located at opposite corners of the cube. By symmetry, 

only the tetrahedron shown has to be used for numerical simulation. (From Metzger, H., 

Math. Biosci., 30, 31, 1976. With permission.)
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FIGURE 19. 
Capillary-tissue oxygen concentration distribution resulting from two adjacent groups of 

capillaries perfused with different initial concentrations. The x axis is along the capillaries; 

distances are in microns. (From Salathe, E. P., Math. Biosci., 58, 171, 1982. With 

permission.)
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FIGURE 20. 
Contour plot showing variation of PO2 around an arteriole. On the blood-wall interface P = 

PIumen = 31.6 torr. The arteriolar lumen is shown in black. The avascular wall is not shown 

for the sake of clarity. Capillary flow is from left to right. A “wake” of elevated PO2 is 

formed behind the arteriole as a result of diffusive exchange between arteriole and the 

surrounding tissue. (From Weerappuli, D. P.V. and Popel, A. S., J. Biomech. Eng., 111, 24, 

1989. With permission.)
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FIGURE 21. 
Compartmental model of muscle with diffusive gas exchange between tissue and all the 

vascular elements and with convective gas transport along the circulation. The arterioles (a0, 

a1, a2) and venules (v0, v1, v2) are separated into three compartments on the basis of vessel 

diameter; Q is the flow through the vascular compartments including the capillary 

compartment (C). There are two tissue compartments, one representing connective tissue 

(CT) between parallel segments of the larger arterioles and venules, and the other 

representing muscle tissue (T) with M equal to the metabolic rate. The Js represent the flux 

across compartmental boundaries with flux magnitudes governed by the spatially averaged 

partial pressures (P) and the diffusive conductances (E). (From Roth, A. C. and Wade, K., 

Microvasc. Res., 32, 64, 1986. With permission.)
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FIGURE 22. 
Geometrical model of the hamster cremaster muscle covered by an oxygenated solution. 

There are n capillary layers. Capillaries are assumed parallel to each other and concurrent. 

PO2 is specified at the muscle surface. (From Klitzman, B., Popel, A. S., and Duling, B. R., 

Microvas. Res., 25, 108, 1983. With permission.)
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FIGURE 23. 
(a) Predicted intracapillary PO2 for each capillary layer, Pci, as a function of position along 

the capillary, z*, at three values of muscle surface oxygen tension, Ps, for the geometry 

shown in Figure 22. Also shown are intracapillary PO2 values predicted by the Krogh 

cylinder model (PK) which assumes no O2 supply from the surface, (b) Distribution of tissue 

PO2 in the plane z* = 1.0 at the venous end of capillaries for different values of surface 

oxygen tension, Ps. Panels A to C are for resting muscle and panel D is for a muscle 

contracting at 1 Hz. Lines are PO2 isobars. Solid circles represent perfused capillaries. 

(From Klitzman, B., Popel, A. S., and Duling, B. R., Microvasc. Res.. 25, 108, 1983. With 

permission.)
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FIGURE 24. 
Geometry of the mathematical models, (a) Uniform capillary flow path length; (b) 

nonuniform capillary flow path length. Capillaries are assigned experimental values of red 

blood cell flux and inlet hemoglobin saturation. (From Ellsworth, M. L., Popel, A. S., and 

Pittman, R. N., Mi-crovasc. Res., 35, 341, 1988. With permission.)

Popel Page 80

Crit Rev Biomed Eng. Author manuscript; available in PMC 2017 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 25. 
Predictions of the distribution of hemoglobin saturation (SO2) in 6 of the 16 parallel 

capillaries with uniform flow pathlength (labeled 1 to 6 in Figure 24). (a) Resting muscle; 

(b) contracting muscle. (From Ellsworth,-M. L., Popel, A. S., and Pittman, R. N., Microvasc. 
Res., 35, 341, 1988. With permission.)
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FIGURE 26. 
(a) Two-dimensional (r, θ) model of oxygen diffusion into a myoglobin-containing skeletal 

muscle fiber. The evenly spaced capillaries are located at the θi angular positions and the 

midcapillary angular positions are the θi
m. The oxygen tension at the sacrolemma, PS(θ), 

varies along the sacrolemma to model the discrete capillary oxygen supply, (b) Maximal 

radial gradients of oxygen tension are studied by considering radial profiles of P(r, θ = θ1) 

normalized by P50. The effect of myoglobin concentration is presented. Parameters 

correspond to the dog gracilis contracting muscle. (From Federspiel, W. J., Biophys. J., 49, 

857, 1986. With permission.)
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FIGURE 27. 
(a) Geometry of a fiber surrounded by blood capillaries; (b) PO2 distribution in a cross-

section of muscle fiber surrounded by four capillaries. The fiber is surrounded by a thin 

concentric layer of extracellular fluid. (From Groebe, K. and Thews, G., Adv. Exp. Med. 
Biol., 200, 495, 1986. With permission.)
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FIGURE 28. 
The longitudinal distribution of compartment PO2s at various input (ENTR.) PO2 at rest (—) 

and during moderate exercise (---). CT denotes connective tissue compartment. (From Roth, 

A.C. and Wade, K., Microvasc. Res., 32, 64, 1986. With permission.)
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FIGURE 29. 
(a) Schematic representation of a microcirculatory unit with the spherical neuron at the 

center; (b) PO2 distribution in cross-sections of the unit. (From Kislyakov, Y. Y. and Ivanov, 

K. P., J. Biomech. Eng., 108, 28, 1986. With permission.)
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FIGURE 30. 
(a) A neuron surrounded by two capillaries (K1 and K2); (b) PO2 distribution in cross-

sections (cell and capillaries are indicated by hatching and dashed lines, respectively). Lines 

in section are isobars, with values indicating PO2 levels (torr). (From Ivanov, K. P., 

Kislyakov, Y. Y. and Samoilov, M. O., Microvasc. Res., 18, 434, 1979. With permission.)
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FIGURE 31. 
PO2 profile in human thoracic aorta for steady flow. The time-averaged profile with pulsatile 

flow would be imperceptibly different. A large resistance to oxygen transport is located in 

the flowing blood. (From Schneiderman, G., Mockros, L. F., and Goldstick, T. K., J. 
Biomech., 15, 849, 1982. With permission.)
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FIGURE 32. 
(a) Microcirculatory unit of the skin (ed, dead epidermis; ev, viable epidermis; sp, stratum 

papillare; a, arterial inflow; v, venous outflow); (b) PO2 distribution over a cross-section of 

the microcirculatory unit through the capillary loop. Resting blood flow, skin surface in 

contact with oxygen-free medium, homogeneous temperature of 37°C. (From Grossmann, 

U., Math. Biosci., 61, 205, 1982. With permission.)
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