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What do we know about the role of regulatory B cells (Breg) during the course 
of infection of two major parasitic diseases, malaria and leishmaniasis?
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ABSTRACT
Parasitic diseases, such as malaria and leishmaniasis, are relevant public health problems 
worldwide. For both diseases, the alarming number of clinical cases and deaths reported 
annually has justified the incentives directed to better understanding of host’s factors associated 
with susceptibility to infection or protection. In this context, over recent years, some studies 
have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells. 
Essentially important in the maintenance of immunological tolerance, especially in autoimmune 
disease models such as rheumatoid arthritis and experimentally induced autoimmune 
encephalomyelitis, the function of these lymphocytes has so far been poorly explored during 
the course of diseases caused by parasites. As the activation of Breg cells has been proposed 
as a possible therapeutic or vaccine strategy against several diseases, here we reviewed studies 
focused on understanding the relation of parasite and Breg cells in malaria and leishmaniasis, 
and the possible implications of these strategies in the course of both infections.

Introduction

B cells, phenotypically characterized by CD19 expression, 
are divided into B1 and B2. Subsequently, B1 cells are 
subdivided into B1a (expressing CD5 on surface) and B1b 
(not expressing CD5), and B2 cells are subdivided into 
immature transitional cells (T1, T2, and T3), follicular B 
cells (FO), and marginal zone (MZ) B cells. While B1 cells 
originate from fetal liver precursors and are enriched in 
mucosal tissues and pleural and peritoneal cavities, B2 
cells originate from bone marrow-derived precursors 
and are enriched in secondary lymphoid organs [1,2]. 
B1 and MZ B are considered important components 
of innate immunity because of their ability to respond 
rapidly to inflammatory and non-proteic antigenic stim-
ulus besides differentiating into short-lived extra folli-
cular plasma cells. FO B cells are a major component of 
adaptive immune response and exhibit the ability to 
differentiate into short-lived plasma cells or enter into 
the germinal center where it may undergo class switch 
and affinity maturation. FO B cells that exit the germinal 
center are named long-lived or memory B cells [1,3].

In addition to their function as antibody producing 
and antigen presenting cells [4−8], B cells have been 
described as being able to perform other immune 
functions such as modulation of cytokine production 
and maintenance of immunological tolerance [9,10]. 

Specifically, the maintenance of immunological toler-
ance has been attributed to a heterogeneous B cells 
subset termed regulatory B cells (Breg), which were orig-
inally characterized in autoimmunity and inflammation 
models [11−16]. Thus far, B cells subsets identified into 
the B1a (B10 cells-CD19+CD5+CD1dhi) [14,17,18], MZ 
(CD19+CD21hiCD23-CD24hiIgDloIgMhiCD1dhi) [19−21], 
and MZP B (T2-MZP-CD19+CD21hiCD23hiCD24hiIgDhiIgM
hiCD1dhi) [22−24] lineages have been described in mice 
as being able to exert regulator/suppressive functions. In 
humans, Breg cells have been characterized into mem-
ory B subsets that exhibit CD19+CD24hiCD27+ (B10 cells 
related) and CD19+IgM+CD27+ phenotypes [25,26] and 
into immature transitional B cells (CD19+CD24hiCD38hi) 
[27,28]. In addition, plasma cells (CD138+MHCIIloB220+) 
and Tim1+ B cells (Tim1+CD19+) isolated from mice and 
plasmablasts (CD138+CD44+ and CD19+CD24+CD27+) 
isolated from both mice and humans are still described 
as being able to exercise immunoregulatory functions 
[29−31]. Thus, it is probable that many B cell types can 
differentiate into a Breg cell through mechanisms such 
as inflammatory signals and receptor-antigen binding 
interaction [16]. Although Breg cells express several sur-
face markers, which can be commonly shared by distinct 
cell subpopulations during the course of various diseases 
(Figure 1), [6,21,22,25] a precise transcription factor able 
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TLR (Toll Like Receptors) activation besides interaction 
between others costimulatory molecules such as CD80/
CD86–CD152 [21,22,50]. In this context, the production 
of IL-10, reflecting the activation of human B10 cells, 
substantially increases following CD40–CD40L inter-
action and activation of TLR by microbial components 
[51], whereas the binding of antigens to BCR reduces 
the production of this cytokine [49]. In mice, the activa-
tion of TLR4 and TLR9 is described as an important event 
able to efficiently suppress the progression of diabetes, 
EAE (experimental autoimmune encephalomyelitis), and 
arthritis [22]. However, this effect appears to require still a 
coordinate interaction among others costimulatory mol-
ecules because B cells restrict CD40 deficiency are asso-
ciated with development of EAE [13,52]. Interestingly, 
in this same autoimmune disease model, the Breg cell 
activation still requires signalization through BCR since 
in the absence of CD19 (co-receptor that optimizes BCR 
signal) the animals develop severe clinical condition 
[17,53]. Since Breg cells are activated for distinct signals 
including TLR, it is important to consider that distinct 
compounds/products may trigger different B cell tar-
gets [54] and, thus, differently modulate their immune 
regulatory capacity; for example, while TLR4 (expressed 
on murine B1, MZ, and memory B cells but absent on 
majority of human B cells) is triggered by lipopolysac-
charides (LPS) [54, 55], TLR1/6, TLR2, TLR7, and TLR9, 
present in murine and humans B cells, are activated by 
bacterial lipopeptides, peptidoglycans, CpG DNA motifs, 
and single-stranded RNA, respectively [56]. Furthermore, 
is notable that sensitivity to TLR activation and expres-
sion levels of TLR 6, 7, and 9 is more elevated in memory 
B cells in comparison with circulating naïve B cells [55]. 
Since Breg cells have been associated with prevention 
or increased disposition to immune system-related 

to define this B cells subset remains unknown. Several 
studies conducted in mice and humans have, therefore, 
attributed their suppressive role to the capacity to pro-
duce IL-10 [6,22,32−36], but there is evidence that TGF-β 
and IL-35–producing murine B cells also exercise regula-
tory functions [6,31,37−40].

The factors/mediators driving the induction of Breg 
cells remain to be completely clarified. However, in 
murine model, B10 cells appear to be induced in vivo and 
in vitro by B cell-activating factor (BAFF), an important 
member of tumor necrosis factor (TNF) family cytokines 
and a regulator for B cell maturation and survival [41]. In 
fact, paradoxical effects have been attributed to BAFF 
on mouse B cells: expanding Breg but also sustaining 
the production of antibodies able to exercise pathogenic 
function. During multiple sclerosis (MS), BAFF expression 
is strongly upregulated in the brain where enrichment of 
B cells subsets and/or follicles have been noted [42,43], 
which possibly support the production of pathogenic 
antibodies [44]. However, clinical trials have shown that 
BAFF blocking worsens the disease prognosis possibly 
due to inhibition of Breg induction [45]. In a similar 
manner, during collagen-induced arthritis (CIA), BAFF–
induced Breg cells seem to be essential to avoid disease 
development and progression by IL-10 production [41]. 
On the other hand, the blocking of BAFF appeared to 
ameliorate disease symptoms in some cases of systemic 
lupus erythematosus (SLE) [46] and rheumatoid arthritis 
(RA) [47,48].

The mechanisms by which B cells are activated to 
exercise their regulatory effects may occur through dis-
tinct stimulus and mediators, some of them perhaps still 
unknown [49]. In mice and humans, the efficient func-
tion of Breg cells appears to be significantly influenced 
by B cell receptor (BCR), CD40–CD40L interaction, and 

Figure 1. Phenotypic profile of Breg cells described in autoimmune, viral/bacterial, parasitic diseases and cancer.
Note: Breg population described in: *humans; †experimental model; *†humans and experimental model.
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diseases, infectious and/or cancerous, they have become 
appealing targets for therapeutic intervention. Despite 
the fact that in recent years many compounds have 
been developed to target TLRs for either stimulating or 
antagonizing their activity [57], questions like the con-
sequences of induction of Breg cells by TLR agonists or 
antagonists in the host cells with respect to development 
of diseases like cancer and bacterial or viral infection first 
need to be addressed. Furthermore, it remains to be elu-
cidated whether blocking or activation of TLR as a ther-
apy negatively or positively affects essential functions 
performed by other cells amongst many other issues.

Insights about the role of Breg cells in the course of 
infectious and non-infectious diseases

Breg cells play a protective role in autoimmune settings 
such as allergy, RA, SLE, MS, and EAE, where the strong 
proinflammatory Th1 and/or Th17 profile displays seri-
ous deleterious effects in affected individuals [58,59]. 
However, therapeutic inhibition of Breg cells can have 
beneficial effects in the control of others diseases such 
as cancer and viral and bacterial infections. In breast, 
cervical, and ovarian human carcinoma, Breg cells, phe-
notypically described as CD19+CD38+CD1d+IgM+CD147+ 
(or GrB+ Bregs), have been observed within the tumor 
microenvironment possibly contributing to increase in 
relative tumor volume [60]. In human chronic lympho-
cytic leukemia (CLL) CD24hiCD27+ cells appear to contrib-
ute to general immune suppression of patients through 
IL-10 secretion and thereby toward disease progression 
[8,60−63].  Really, Inoue and collaborators (2006) showed 
that B–cell–deficient mice are able to control or eliminate 
the tumor growth through IFN-γ, whereas the cancer 
evolution may be observed in wild type animals [64].

Deleterious effects of Breg cells are also observed in 
patients infected with human immunodeficiency virus 
(HIV) and hepatitis B virus (HBV), where T cell responses 
are essential for antiviral defense [65−67]. Studies, con-
ducted in vitro and/or in vivo, have demonstrated that 
IL-10 produced by Breg cells act to promote dysfunc-
tion of disease-specific CD8+ T cells that favor a higher 
viral load [66, 67] and inflammation [65]. In fact, Breg 
cells depletion in vitro restores HBV–specific CD8 T cells 
responses, suggesting the important role of Bregs to the 
development of viral load during infections [65]. Relative 
to bacterial infections, B cells are activated to produce 
immunoregulatory cytokines following engagement of 
bacterial LPS with TLR (TLR2, 4, 5, 7/8, and 9) expressed 
on cellular surface [68]. In a salmonellosis murine model, 
deletion of the TLR adaptor molecule myeloid differen-
tiation primary response protein 88 (Myd88), or TLR2 
and TLR4 exclusively in B cells leads to decreased secre-
tion of IL-10 by B cells making the mice more resistant 
to Salmonella typhimurium infection [68,69]. In a similar 
fashion, reduction in the levels of IL-10 in B cell–deficient 

mice were associated to an efficient control of infection 
caused by Brucella abortus [70].

While studies investigating the relation among Breg 
cells and occurrence of autoimmune and viral diseases 
are in constant development, the phenotypic description 
and immunomodulatory/immunoregulatory function of 
these cells remains poorly investigated during parasitic 
infections [68]. In helminth infections, the role of Breg 
cells has been investigated particularly during shistoso-
miasis [71−76]. CD5+ B1 cells seem to be elevated in the 
peritoneal cavity during the first 5 weeks of experimental 
infection with Schistosoma mansoni and are associated 
with lacto-N-fucopentaose III, a component of shisto-
soma egg antigen [71, 77]. These cells appear to limit 
pathological infection as B1 cell-deficient animals clearly 
display a higher susceptibility to S. mansoni infection, 
as evidenced through increase in the tissue egg load, 
granuloma density, and elevated mortality [72]. The ele-
vation of CD24hiCD27+ and CD1dhiCD5+ Breg cells follow-
ing murine and human schistosomiasis have also been 
observed, but the consequences of this observation in 
terms of immunomodulation were measured particularly 
in allergic disorders. During S. mansoni infection, IL-10 
produced by B cells suppressed Th2–mediated severe 
allergic reactions, namely, anaphylaxis and allergic air-
way inflammation [73, 74, 76].

Relative to protozoan parasites, still are rare the stud-
ies that investigate the role of Breg during the course of 
infection, but there is evidences that this B cell subtype 
is critically important in immune homeostasis [78−84]. In 
this context, Jeong and collaborators demonstrated that 
IL-10–producing CD1dhiCD5+ Breg cells are induced by 
products that are secreted by fully replicated tachyzoites 
and are essential to the chronicity of infection in 
Toxoplasma gondii murine model [83]. Considering that 
malaria and leishmaniasis, secular diseases caused by 
protozoans, remain two important causes of morbidity 
and/or mortality worldwide, insights into the role of Breg 
cells could provide the development of new therapeutic 
and vaccine strategies. Therefore, we reviewed and inves-
tigated major advances relative to understanding the 
role of this subset of B cells in the regulation of immune 
responses and immunopathology during both malaria 
and leishmaniasis [85].

Occurrence of Breg cells during malaria

Malaria, a parasitic disease caused by protozoa of the 
Plasmodium genus, is a public health concern world-
wide. In the last year, around 214 million clinical cases 
and 438,000 deaths occurred in tropical and subtropical 
regions of the globe, with children under five years old 
and pregnant women being the main target of infec-
tion [86]. In general, deaths are primarily due to impor-
tant clinical syndromes, including neuronal disorders 
caused as a result of sequestration of infected red blood 
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cell subset being expressed on B1-like cells, immature B 
cells, transitional B cells, and pre–naive B cells [102−104]. 
Importantly, Breg cells have described within both B cell 
lineages, denoting the importance of CD5 as a possible 
‘indicator’ of regulatory activity. The role of CD5 as an 
immunoregulatory molecule appears to be mediated by 
its inhibiting capacity of both BCR and TCR activation 
after binding with these receptors. This bond increases 
the threshold required to activate a B cell or a T cell and 
renders it tolerant to its cognate antigens [105]. CD5 may 
also act by enhancing the production of IL-10 through 
stimulation of the cytokine gene promoter as demon-
strated by Gary-Gouy and colleagues [106]. In this study, 
the author demonstrated that CD5 transfection for Daudi 
B cells (CD5−) upregulated several genes, including those 
belonging to the IL-10 family. However, the ability to pro-
duce IL-10 and/or mediate immunoregulatory functions 
is not restricted to CD5+ cells as noted in previous studies 
[63, 107].

While the expansion/activation of Breg cells resulting 
in the production of higher IL-10 levels seems to be essen-
tial for preventing cerebral malaria in mice infected with 
PbA, in the murine infection caused by Babesia microti, a 
Plasmodium-related apicomplexan parasite, such factors 
appear to contribute toward enhanced growth and sur-
vival of the parasite [80, 81, 108]. In fact, the transfer of 
IL-10-producing CD1dhiCD5+ Breg cells isolated from B. 
microti-infected mice allowed the development of high 
levels of circulating parasitemia on infected recipient 
mice, whereas B cell–deficient mice were able to control 
the infection [108]. Thus, it is evident that immune fac-
tor–pathogen interactions observed between parasite 
and host are not easily extrapolated to related species.

Despite two studies highlighting the beneficial role of 
Breg cells during severe malaria through the inhibition of 
exacerbated inflammatory responses, it is important to 
investigate the occurrence and implications of Breg cells 
during uncomplicated and complicated human malaria 
and related diseases.

Breg cells and leishmaniasis infection

Human leishmaniasis, usually classified as cutaneous (CL), 
mucocutaneous (MCL), and visceral leishmaniasis (VL), is 
caused by over 20 species of the genus Leishmania [109]. 
Recent estimates indicate that around 14 million people 
are infected worldwide, with an annual incidence of 1.3 
million new cases and 20,000 deaths per year related to 
VL [110], a systemic disease characterized by parasitism 
of the spleen, liver, and bone marrow [111, 112]. CL is the 
most prevalent form, characterized by the development 
of an ulcerative self-healing skin lesion; MCL is a severe 
and chronic infection causing diffuse lesions that may 
even spread to mucosal tissues [113, 114]. These clini-
cal manifestations are, generally, not lethal but result in 
disfiguration and disability, resulting in societal stigma 

cells in brain microvessels induced by parasites [87,88]. 
However, proinflammatory cytokines and other medi-
ators produced during malaria seem to be critical in its 
pathology, activating and recruiting cytotoxic cells for 
the infection site [89, 90]. During these pathologic pro-
cesses, regulatory cells and antiinflammatory cytokines 
(such as IL-10) are suggested to be important for prevent-
ing clinical evolution of malarial neuropathology [80, 81].

Despite the absence of studies directly investigating 
the regulatory effects of B cells during human malaria, 
increased BAFF levels and an increase in circulating 
CD10+ B cells have been observed in subjects reporting 
uncomplicated malaria [91−93]. As CD10+ B cells may 
indirectly include BAFF–induced CD10+ Breg cells, it is 
possible to suggest that Breg cells may be responsible for 
establishment of parasite–host equilibrium [41, 94, 95].

Specifically, the relationship between IL-10–produc-
ing Breg cells and malarial infection has been investi-
gated only in the experimental model of cerebral malaria 
(ECM) caused by P. berghei ANKA (PbA) [80, 81]. ECM asso-
ciated with PbA infection involves similar mechanisms to 
those observed during human cerebral malaria, which 
is characterized by massive destruction of erythrocytes 
and release of proinflammatory cytokines and media-
tors such as TNF-α, lymphotoxin, IL-1, and IL-6, inducing 
activation and recruitment of natural killer cells (NK) and 
cytotoxic CD8+ cells in brain blood vessels and upregula-
tion of adhesion molecules in the vascular endothelium. 
Together, these factors determine leukocyte and infected 
red blood cell (pRBC) accumulation in microvessels of 
the brain and lungs, resulting in the death of mice [87, 
96−98]. Recently, Liu and colleagues [81] showed that 
the adoptive transfer of IL-10+ Breg cells, but not Treg 
cells (CD4+CD25+Foxp3+), to PbA–infected mice was 
associated with reduced accumulation of NK and CD8+ 
T cells and hemorrhage in brain tissue, improving the 
survival rate of the animal. However, parasitemia levels 
were not altered by the presence or absence of these 
cells. In addition, the study showed that treatment of 
Breg cell-recipient mice with anti–IL-10 monoclonal 
antibodies blocked the protective effect of Breg cells. 
In summary, Breg cells may selectively exert regulatory 
effects on the immunopathology of malaria by IL-10 pro-
duction but appear to have little impact against blood 
parasitemia development [81]. Using the same model 
of cerebral malaria, Bao and collaborators [80] showed 
that Breg cells, characterized by simultaneous expres-
sion of CD19+CD5−IL10+ markers, appear to be the main 
source of plasma IL-10 production and are able to pro-
tect the animals from mortality when they are adoptively 
transferred to naïve mice. Thereby, this study diverges 
of others, which appoint B1a cells as major sources of 
IL-10 [14, 15, 17, 18, 99, 100]. Of interest, CD5 is a pan 
T cell marker being few expressed on B cells. While in 
mice CD5 expression characterizes B1a lineage [101] into 
human B cells this marker does not define a specific B 
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and PDL1(programmed death–ligand 1/receptor) [84]. 
Similar data were obtained in a RA model where patho-
genic B cells were observed only when they expressed 
IgM together with IgD but not when IgM was expressed 
alone [128]. Since IgM+IgD+ and IgM only, together to 
the others distinctive marker, represent different sub-
sets (naïve vs. non-switch memory B-cells), they might 
produce different cytokines and exert distinct regula-
tory functions. Even expressed simultaneously, IgM and 
IgD are involved in different surface clusters and signal 
independently [129]. Of interest, during development in 
the bone marrow, mIg (membrane immunoglobulin) is 
restricted to the IgM isotype; however, as soon as the B 
cell exits the bone marrow to populate peripheral lym-
phoid organs, it starts to express surface IgD. This event 
can occur primarily by two distinct mechanisms, alterna-
tive splicing and CSR (class switch recombination), but 
intriguingly, BCR–dependent functions such as activa-
tion, receptor desensitization, apoptosis induction, and 
immunological tolerance are induced by either of the 
two isotypes or by both isotypes in combination what 
makes its function still more enigmatic (for more infor-
mation about B cell class switch we recommended the 
paper by Geisberger and colleagues) [130].

IL-10 can be produced by innate cells such as mac-
rophages, NK cells, dendritic cells (DCs), and multiple 
adaptive T and B cells [117, 120]. Importantly, the evi-
dence shown above suggests that this cytokine secreted 
by B cells, particularly by Breg cells, can play a decisive 
role in progressive decline of the immune system of 
human patients with VL and lead to a fatal outcome in 
untreated cases [82, 131, 132]. Accordingly, the inhibi-
tion or neutralization of IL-10 by blocking IL-10 receptor 
or using anti-IL-10 monoclonal antibodies that allow 
improved immune response and parasite killing both in 
mouse and human VL infections may be a good strategy 
to control infection [117, 133−136].

Since the effects of Breg cells have not been studied 
in the context of human infection, urgent studies are 
warranted to determine the clinical relevance of Breg 
induction by Leishmania parasites [82]. Understanding 
the role of Breg cells in leishmaniasis may contribute to 
development of future vaccines or immunotherapies, 
and new strategies should be developed to manipulate 
these cells to benefit the host [116, 131, 137].

Concluding remarks

Breg cell depletion therapy or the development of vac-
cines directed to their generation must be carefully 
evaluated. The expansion of these lymphocytes in the 
context of autoimmune and inflammatory diseases and 
ECM demonstrates a protective role, but in HIV, cancer 
and leishmaniasis the presence of these cells is associ-
ated with increased disease severity. As yet there are few 
studies focused on Breg cells, especially from human 

and marginalization, particularly for women. VL or kala-
azar is the most severe leishmaniasis form, characterized 
by systemic parasitism, and may be fatal if not treated 
[111, 112].

The contribution of B cells in human leishmaniasis 
pathogenesis is controversial [115, 116]. Various studies 
have demonstrated that B cells play a negative role in 
experimental models of leishmaniasis by contributing 
toward increased susceptibility of infection by produc-
ing polyclonal antibodies [117−120] and/or immunosup-
pressive cytokines such as IL-10 secreted by regulatory 
or non-regulatory B cells [78, 119−121]. In human infec-
tions, a high titer of Leishmania–specific antibodies are 
observed in patients with a more severe clinical form of 
the cutaneous disease, diffuse cutaneous leishmaniasis 
[122, 123], and in patients with VL [117, 124], whereas 
patients with self-healing localized cutaneous leishma-
niasis lack Leishmania-specific antibodies or elicit a very 
weak response [116]. On the other hand, B cells appear 
to play a protective role in disease pathogenesis, as 
observed in high prevalence of seropositive healthy 
individuals in areas endemic for VL [116, 125] and longer 
persistence of antibodies against Leishmania (≥15 years) 
after the infection has been cured [116, 126, 127].

The immunosuppressive role of B cells observed dur-
ing leishmaniasis appears to be conditioned, at least in 
part, to generation of Breg cells [78, 79, 82, 84]. In the 
context of CL, a single study using murine models has 
demonstrated that Breg cells are required for enhanced 
susceptibility to infection in several Leishmania species 
[78]. In a similar manner, Ronet and collaborators [78] 
reported that IL-10 secreted by CD1d+CD5+ Breg cells is 
associated with a more severe disease in L. major BALB/c 
mice as a result of an immune response polarized for Th2 
profile. Regarding VL, a recent in vitro study showed that 
human B cells exposed to L. infantum amastigotes exhib-
ited a regulator phenotype (CD19+CD24+CD27−) and 
higher capacity to produce IL-10. In addition, the acti-
vation, function, and proliferation of CD4+ T cells were 
inhibited after contact with conditioned media from B 
cells incubated with L. infantum amastigotes, suggesting 
regulatory activity of B cells mediated by IL-10 [82]. In 
mice, using a similar methodology, Bankoti and collab-
orators [79] identified CD19+CD21+CD5+CD1d+CD23hi B 
cells, a phenotype that has been associated with Breg 
cells in hypersensitivity models [17]. These cells were 
activated to produce high IL-10 levels after stimulation 
of B cells with L. donovani amastigotes and CpG in a 
MyD88–dependent manner. Another study conducted 
in canines infected with VL pointed, recently, to a new 
Breg cells subset with a regulatory function through IL-10 
production. This new Breg cells subset was phenotypi-
cally described as CD19+IgM−IgD+/hi or CD19+IgM+IgD+/hi, 
and levels of these Breg cells increased at least threefold 
during progressive VL and were critical for suppressing 
Th1 cell effector function through interaction of B cells 
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erythematosus patients. Immunity. 2010;32(1):129–140.
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samples; further studies are needed in order to elucidate 
their role, in the context of different parasitic diseases 
that can occur simultaneously in a specific area. Future 
research will help the development of new strategies to 
combat leishmaniasis and malaria characterized by high 
rates of morbidity and mortality worldwide.
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