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ABSTRACT
This contribution in the “Best (but Oft-Forgotten) Practices” series
considers mediation analysis. A mediator (sometimes referred to as
an intermediate variable, surrogate endpoint, or intermediate end-
point) is a third variable that explains how or why $2 other vari-
ables relate in a putative causal pathway. The current article
discusses mediation analysis with the ultimate intention of helping
nutrition researchers to clarify the rationale for examining media-
tion, avoid common pitfalls when using the model, and conduct
well-informed analyses that can contribute to improving causal in-
ference in evaluations of underlying mechanisms of effects on
nutrition-related behavioral and health outcomes. We give specific
attention to underevaluated limitations inherent in common ap-
proaches to mediation. In addition, we discuss how to conduct a
power analysis for mediation models and offer an applied example
to demonstrate mediation analysis. Finally, we provide an example
write-up of mediation analysis results as a model for applied re-
searchers. Am J Clin Nutr 2017;105:1259–71.

Keywords: mediation, indirect effect, mediator, intermediate
endpoint, surrogate endpoint, intervention, power analysis

INTRODUCTION

Mediation is a third-variable effect that explains how or why 2
variables relate. By construction, mediation analysis implies a
causal process that connects $2 variables. The mediation model
considers the impact of an intervening variable (i.e., a mediator),
M, which is posited to transmit the influence of an independent
variable, X, onto an outcome, Y. Other terms used to describe
mediator variables include intermediate variable and surrogate
endpoint. One estimates parameters of interest in the statistical
model within a theoretically defined, causal chain of variables.
Investigators may conduct a mediation analysis to examine why
an observed relation between variables exists or to help un-
derstand outcomes associated with prevention or intervention
programs. In both scenarios, the impetus behind analyzing me-
diation effects is to illuminate the mechanism (or mechanisms)
through which variables relate.

Mediation analysis has been used to examine relations
among a wide range of predictor and outcome variables in nu-
trition research. Within the American Journal of Clinical Nu-

trition (the Journal), genomic, proteomic, and metabolomic
variables (e.g., serum lipid concentrations, specific genetic
polymorphisms or biomarkers, and BMI) have been tested as
putative mediators underlying the impact of behavioral pre-
dictors (e.g., caloric intake, red meat consumption, regional diet,
and coffee consumption) on a range of health outcomes: carotid
atherosclerosis, diabetes risk, liver cancer risk, and pregnancy
complications, respectively (1–4). Other research has considered
how variables such as adiposity or previous falls may act as
potential mediators of the impact of birth weight and diet on
sedentary behavior and fracture risk, respectively (5, 6). Fewer
studies have capitalized on the use of mediation analysis to
evaluate intervention programs targeting health promotion and
dietary outcomes (7, 8). Lockwood et al. (9) noted this latter
point as well in an earlier review of the literature appearing in
the Journal of the American Dietetic Association between Jan-
uary 2006 and May 2008. Only 11 of the 40 mediation studies
Lockwood et al. identified came from randomized intervention
trials, indicating that the lion’s share of randomized controlled
trials in the nutrition area generally do not include mediation
analysis as part of their evaluation plan.

The wide-ranging mediation research conducted in the nu-
trition literature mirrors the pervasive use of the technique in
contemporary research more broadly. Baron and Kenny’s (10)
seminal article on mediation and moderation effects has often
been attributed to this focus on investigating mediation, because
there was a rapid increase in the presence of mediation analyses
across disciplines after the article’s publication. Although Baron
and Kenny’s may be the most widely cited mediation publica-
tion, other essential references arguably provide more infor-
mation on the basic tenets, rationale, and underlying foundations
of mediation analysis (11–16). Judd and Kenny (11) describe
mediation as a process analysis and emphasize the utility of
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examining mediation effects in intervention studies. Alwin and
Hauser (12) and Wright (13) critically contributed to under-
standing how the estimation of mediation effects has roots in
path analysis, which is a special case of structural equation
modeling (SEM)3 that extends regression analysis and provides
a framework for evaluating whether a set of data fits a causal
model of interest.

An influx of additional methodological research on mediation
analysis since the historical references cited above has further
driven the accessibility of the method to substantive researchers
(17–22). The utility of this access is useful, however, only if it is
considered in tandem with critical theoretical considerations and
assumptions underlying the statistical mediation model. This
contribution in the “Best (but Oft-Forgotten) Practices” series
thus focuses on discussing mediation analysis with the ultimate
intention of helping nutrition researchers do the following: 1)
clarify the rationale for examining mediation, 2) avoid common
pitfalls when using the model, and 3) conduct well-informed
analyses that can contribute to improving causal inference in
evaluations of underlying mechanisms of effects on nutrition-
related behavioral and health outcomes. We concentrate our
attention on the single mediator model, to enhance focus on
foundational concepts and theoretical matters. The topics dis-
cussed here extrapolate to more complex mediation models.

A BRIEF HISTORY OF MEDIATION

Revisiting the historical foundations of statistical mediation
analysis affords an opportunity to understand the rationale for its
intended use (12, 16, 23). Early references to mediation defined
mediators as intervening variables that elaborated cause and
effect between $2 other variables (14). Researchers often dis-
cussed mediation within the context of prevention and in-
tervention studies, where they suggested that treatment effects
could be further examined by conducting a “process analysis” of
the data to probe how or why an effect occurred (11). In their
narrative, Judd and Kenny (11) specified several requisite con-
ditions to support evidence for mediation: 1) the independent
variable must affect the outcome, 2) the independent variable
must affect the mediating variable, 3) the mediating variable
must affect the outcome, and 4) the independent variable must
not affect the outcome when the mediating variable is con-
trolled. Baron and Kenny (10) later recapitulated these condi-
tions and went further to emphasize the distinction between
mediation and moderation effects, as well as discussed exam-
ining the effects together. They additionally proposed that suf-
ficient evidence for mediation could be shown if the relation
between the independent variable and the outcome was simply
reduced in magnitude once the mediator was controlled for,
rather than requiring it to be zero as originally suggested by
Judd and Kenny.

Kenny and colleagues’ (10, 11) conditions for mediation have
been widely referred to as “causal steps” in the research liter-
ature. Although Judd and Kenny’s criteria specified that the

independent variable should ideally cause the outcome variable,
the authors acknowledged that an independent variable may not
strongly relate to distal outcomes. This assertion laid the foun-
dation for an argument presented later in the literature recom-
mending that the requirement of a significant effect of the
independent variable on an outcome for mediation should be
relaxed (24). Indeed, diminished power to detect distal effects is
not the only reason to consider relaxing this requirement; sta-
tistical suppression, competing mediators (in multiple mediator
models), or unmodeled interactions may also compromise an
examination of the effect. Perhaps more importantly, requiring a
significant effect of the independent variable on a dependent
variable in this context erroneously treats the relation as a
population-level entity, rather than a statistical test that is subject
to type 1 and type 2 error (21). Although the effect of an in-
dependent variable on an outcome is no doubt a key relation to
test in a research study, it need not preclude the evaluation of
mediation. Regardless of whether there is a significant effect of
the independent variable on an outcome, conducting a mediation
analysis can offer inherent value to a research study, particularly
in prevention and intervention work (see section entitled “Me-
diation by design compared with mediation for explanation”
below). Before delving further into details on mediation analy-
sis, we first differentiate the effect from other third-variable
models.

DIFFERENTIATING CONFOUNDER AND
MEDIATION MODELS

Understanding the difference between confounder and me-
diator variables has often been a source of confusion for applied
researchers. Certain approaches available to test statistical me-
diation propagate this misunderstanding by not emphasizing
directionality of relations between variables in the mediation
model. An inherent challenge in differentiating confounding and
mediation effects is that the underlying statistical models are
equivalent from a purely mathematical perspective (25, 26). It is
helpful to consider the models within a path analysis context (12,
13, 27) to understand differences between them more clearly. For
those unfamiliar with path analysis, one can view the framework
as a multivariate extension of the general regression model for
purposes of this discussion. In contrast to regression analysis,
path analysis derives parameter estimates by maximizing how
well a model reproduces the observed covariance structure of a
set of data, rather than by minimizing the sum of the squared
residuals as in ordinary least-squares regression (12). The utility
of path analysis within the context of differentiating confounder
and mediator models lies in the basic premise of the method—
namely, that “Any correlation between variables in a network of
sequential relations can be analyzed into contributions from all
of the paths (direct or through common factors) by which the 2
variables are connected” (27).

For any path analysis, a corresponding path diagram illustrates
hypothesized relations among variables in the model by denoting
directionality with single-headed arrows connecting putative
predictors with $1 outcomes. Every path diagram has a corre-
sponding system of equations that delineates the statistical
model underlying the diagram (13). Readers interested in
learning more about the implementation of path analysis in
nutrition research may benefit from reviewing Kirkegaard et al.

3 Abbreviations used: FIML, full information maximum likelihood;

MCAR, missing completely at random; MI, multiple imputation; PHLAME,

Promoting Healthy Lifestyles: Alternative Models’ Effects; PM, proportion

mediated; SEM, structural equation modeling.
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(28), who applied path analysis in an article appearing in the
Journal to investigate factors involved in the association be-
tween breastfeeding duration and BMI-adjusted waist circum-
ference 7 y postpartum.

Figure 1 shows the path diagrams associated with the sim-
plest mediation and confounding models, respectively. In these
diagrams, boxes represent the variables in each model. Figure
1A shows a single mediator model, where the independent
variable X is hypothesized to affect a third variable, M (i.e., the
mediator), which in turn, is hypothesized to affect the ultimate
outcome, Y. In contrast, Figure 1B shows a basic confounder
model. This panel indicates that a third variable, C (i.e., the
confounder), is hypothesized to simultaneously predict X and Y,
artificially enhancing or suppressing their relation. Conceptu-
ally, the mediation model posits that a series of variables relates
via a causal chain of effect, such that each variable in the model
affects subsequent variables occurring later in the chain. No
such causal chain of effect among the variables is posited in a
confounding model; that is, C does not intercede in a causal
chain between X and Y. Rather, the confounding model theorizes
that X and Y relate given that they both have an underlying
common cause, C; C causes X and C causes Y. This common
cause (i.e., the confounder) introduces bias in estimating the
causal effect of X on Y (29). We direct readers interested in
learning more about confounding models in the context of
causal effect estimation to Greenland et al. (29) and Vander-
Weele and Shpitser (30).

A classic confounding example is the relation between visual
acuity and gray hair. If examined in isolation, there is often a
bivariate relation observed between these 2 variables. However,
once age (i.e., the confounding variable in this scenario) is
controlled for, the relation between visual acuity and gray hair
attenuates. This example is not demonstrative of mediation,
because age is not theorized to be intermediate in a causal se-
quence between visual acuity and gray hair. Consider a second
confounding example from the nutrition literature. Kris-Etherton
et al. (31) reported that, although the Seven Countries Study (32)
found a significant negative relation between fish consumption
and 25-y mortality rates, the association was no longer significant
when researchers controlled for smoking behavior (one of several
referenced confounding variables). This example is not media-
tion, because smoking is not theorized to intervene in a causal
sequence between fish consumption and mortality. The point
shown in both examples can be clarified by the path diagrams in
Figure 1, which shows that the third variable in a confounding
model (i.e., the confounder) acts exclusively as an exogenous
variable that is not predicted by other variables. In contrast, the
third variable in a mediation model (i.e., the mediator) plays a
dual role: it not only acts as predictor hypothesized to affect the
ultimate outcome but also operates as an outcome, hypothesized
to be affected by the independent variable.

Although conceptual distinctions among mediator and con-
founder variables can be shown with extreme substantive ex-
amples, the functions that variables play in real data are often less
clear. Moreover, identifying the role of a variable as a confounder
or as a mediator cannot be inferred by statistics alone. The lit-
erature on equivalency of path models helps elucidate this issue
(33–36). Specifically, the posited causal structure between var-
iables in a path analysis is not directly explained or verified by
model estimation; different models may reproduce the observed
covariance structure of data equally well with completely re-
cursive path models, where the flow of causal relations in the
model is one-way rather than bidirectional (35). In this case,
although models may correspond to different causal structures
and distinct substantive interpretations (such as the confounder
and mediator models), they can be viewed equivalently from a
statistical perspective (33, 34). This latter point stresses the
importance of having a compelling theoretical rationale for
examining mediation. Strong measurement and design features
are also critical to strengthen support for hypothesized ordering
of the variables.

MEDIATION BY DESIGN VERSUS MEDIATION FOR
EXPLANATION

The notion that mediation effects may exist in the absence of a
significant effect of the independent variable on an outcome may
seem to belie the very foundation of the model. Yet, examining
mediation in the presence of a nonsignificant overall effect of the
independent variable on an outcome can shed light on key issues
that illustrate utility of the analysis. The use of mediation by
design as a tool in intervention studies may be the best exemplar
to demonstrate this point.

Mediation analyses can be framed as mediation by design or
mediation for explanation. In mediation for explanation studies,
mediation analysis is conducted to probe underlying mechanisms
for why a relation exists between a predictor and an outcome (18).

FIGURE 1 A conceptual diagram differentiating mediation (A) and
confounding (B) effects. Panels A and B are distinguished by a directional
reversal of the arrow defining the relation between the independent variable
and the “third” variable.
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Such analyses can lend insight into the etiology of different health
and behavioral outcomes and help generate ideas for future
mediation by design studies. Numerous mediation for explana-
tion studies have been published in the Journal (1, 2, 5, 37–42).

In mediation by design studies, researchers identify mediator
variables a priori and design an intervention to manipulate those
variables with the ultimate intention of affecting an outcome (17,
43). If the mediator relates to the outcome as hypothesized,
successful manipulation of that variable should yield change in
the target behavior. Consider an intervention targeted to help
individuals lose weight. One activity in such a program may be
keeping a food journal, because research has shown that self-
monitoring can result in positive behavioral change (44). The
decision to target self-monitoring of dietary intake as part of the
intervention is based on the concept that self-monitoring will
affect weight loss by reducing individuals’ caloric intake. Me-
diation by design dually examines whether an intervention
changed the targeted mechanism of action (i.e., the mediator)
and whether changes in the mediator were associated with
changes in the targeted outcome (20, 43). These entities are
referred to as “action theory” and “conceptual theory,” re-
spectively (45). The action theory of a model outlines program
curriculum components related to a hypothesized mediator or
mediators. The conceptual theory of a model defines how an
intervening variable or variables relate to outcomes; relations
examined in this part of the model are driven by theory or
previous research.

Mediation by design analyses help interventionists understand
how to proceed in the face of nonsignificant overall program
effects, by identifying intervention aspects that contributed to
success or failure (19, 43). If a mediation by design analysis
indicates failure in the action theory of a program, stakeholders
should focus efforts on identifying issues that may compromise
effective program implementation and/or delivery. If the analysis
indicates a breakdown in the conceptual theory of a program,
practitioners should refine or reconsider the theory proposed to
underlie the relation between the mediator and outcome. When
both action and conceptual theories fail, practitioners may need to
consider whether the program is worthwhile to pursue (45).
Lockwood et al. (9) provide a useful table for nutrition re-
searchers to reflect on different program effect possibilities
through an action and conceptual theory lens, which may lend
insight into interpretation of results and choices for future action,
given particular scenarios.

Despite the valuable information that mediation by design
studies provide, these types of analyses do not appear routinely in
clinical nutrition research and represent a missed opportunity.
Indeed, the impetus behind mediation by design analyses aligns
well with the defined scope of this Journal that seeks, in part, to
“describe scientific mechanisms [emphasis added] . of dietary
interventions in the context of disease prevention.” A range of
nutrition-based interventions lend themselves well to such
analysis, and researchers would benefit from conducting medi-
ation by design studies.

ESTIMATING MEDIATION EFFECTS

This article discusses statistical methods for testing mediation
effects, in contrast to design approaches for testing mediation.
We direct readers who are interested in learning more about

experimental design approaches for examining mediation hy-
potheses to Pirlott and MacKinnon (46). With respect to statis-
tical mediation analysis, MacKinnon and Dwyer (19) provided
regression equations for the mediation model that remain in
common use today:

Y ¼ i1 þ cX þ e1 ð1Þ

Y ¼ i2 þ c#X þ bM þ e2 ð2Þ

M ¼ i3 þ aX þ e3 ð3Þ

In the above equations, Y represents the outcome variable in an
analysis, X represents the independent variable, and M represents
the mediating variable. The c coefficient in Equation 1 defines the
overall effect of the independent variable on the outcome and is
called the total effect. The c# coefficient in Equation 2 defines the
effect of the independent variable on the outcome controlling for
the mediating variable and represents the direct effect in a medi-
ation analysis. The b coefficient in Equation 2 defines the effect of
the mediating variable on the outcome controlling for the inde-
pendent variable, and the a coefficient in Equation 3 defines the
effect of the independent variable on the mediating variable. The
intercepts for each equation are defined by i1, i2, and i3, respec-
tively, and e1, e2, and e3 represent the corresponding residuals.
Figure 2 provides an illustration of these regression equations
in a path diagram, where the product of the a and b coefficients
defines the indirect effect of X on Y throughM given conventional
path-tracing rules (12). Different approaches to testing statistical
mediation make use of $2 of the equations above.

Covariates can be incorporated into the equations as needed,
and the model can be extended in a straightforward manner to
incorporate additional X, M, or Y variables (18). Introducing .1
X, M, or Y variable in the equations yields a multiple mediator
model, where .1 mediation effect is estimated. If multiple Y
variables are considered, multivariate methods should be used.
Software packages with SEM utilities can simultaneously esti-
mate Equations 1, 2, and 3 (rather than having to estimate in-
dividual regression models) and can handle multivariate mediation

FIGURE 2 Path diagram of a single mediator model, where the product
of the a and b coefficients defines the indirect effect of X on Y through M.
The c# coefficient denotes the direct effect of X on Y, controlling for M. In
linear models with continuous outcomes, an estimate of the total effect of X
on Y is parameterized as follows: c = ab + c#.
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models adeptly. To get a better understanding of how SEM may be
of utility in nutrition research, we direct readers to Konttinen et al.
(37), who, in the Journal, provide an applied example of SEM with
latent variables to examine mediation effects.

Assumptions and causal inference

Assumptions underlying the statistical mediation model in-
clude those associated with regression analysis such as no
omitted variables, no measurement error, and no correlated errors
(47); correct causal ordering of the variables; no reverse causality
effects; and no interaction between the predictor and mediator
variables (18). The last assumption may be addressed by in-
corporating an interaction term between X and M in Equation 2,
and by estimating separate mediation effects for each level of
X. Including covariates in a mediation model, especially propensity
scores, can help toward satisfying the no-omitted-variables
assumption (48). One should avoid the use of posttreatment
variables as covariates to minimize confounding (49).

The issue of causal inference in mediation has been extensively
studied. Nonrandomized studies make interpretation of causal
relations in the mediation model tentative without additional de-
sign considerations. Although the mediation model implies a
causal structure among variables, causal effect estimation is not
often possible if the sample is not also randomly assigned to levels
of the mediating variable (50, 51). Randomizing X strengthens the
assumption that the independent variable will not correlate with
residual variance in M or Y. If M is not randomly assigned, it has
the potential to be confounded with the assignment mechanism of
X and may not be statistically independent from the outcome
variable. Statistical solutions to causal inference problems in the
mediation model have been proposed (52–55), and causality
remains a large area of methodological study in mediation anal-
ysis today (56). Instrumental variable methods (57) and principal
stratification from both frequentist and Bayesian perspectives (52,
58) provide frameworks to address causal inference in the me-
diation model. Methods for conducting sensitivity analyses via
marginal structural models are also available to assess the ro-
bustness of mediated effects to omitted variables (59). Such
analyses can also elucidate why a mediation relation may no
longer hold after modeling applicable confounder variables. Fi-
nally, incorporating design features into a mediation analysis
(e.g., matching) may be able to reduce alternative explanations of
effects by promoting unit heterogeneity so that subjects are pre-
sumed to be equal on non–treatment-related aspects (60).

Approaches to testing mediation

Causal steps

Sample estimates of ĉ, b̂, and â must be significant to support
evidence for mediation with the causal steps approach. In addi-
tion, ĉ# must be reduced in magnitude relative to ĉ. If ĉ# is not
significant, the effect is said to be completely mediated, such that
the effect of X on Y is conveyed entirely through the modeled
mediator. If ĉ# remains significant, the effect is said to be partially
mediated. Although the causal steps procedure provides an ele-
gant framework for conceptualizing mediation, there are critical
limitations of the method when applied to real data analysis.

The first limitation is the conclusion that there needs to be a
significant relation between the predictor and the outcome for

mediation to occur. As described earlier, although this requirement
may appear intuitive, the logic is fallible given the nature of null
hypothesis significance testing and other statistical considerations.
There can be instances in which X does not significantly predict
Y but X significantly relates to M, and M significantly relates to
Y (providing evidence for a causal chain). Such a possibility is
likely to occur in inconsistent mediation models in which the
direct effect and indirect effect are opposite in sign, potentially
nullifying the overall effect (20, 21, 26). This may likewise occur
in multiple mediator models, if different mediation effects vary in
sign. The first limitation of the causal steps method heavily
drives the second limitation; it is underpowered relative to
other approaches for testing mediation (61, 62). Fritz and
MacKinnon (61) indicate that if the direct effect is equal to
zero, the causal steps approach requires 20,886 participants to
detect mediation with 80% power when effect sizes of con-
stituent paths are small (i.e., b = 0.14) in magnitude (63). Fi-
nally, although the method outlined by Kenny and colleagues
(10, 11) delineates a series of logical steps that insinuate a
mediational chain, the approach lacks a formal significance test
of mediation. It yields neither a point estimate nor a SE of the
mediated effect, precluding construction of CIs.

Joint significance

A related approach to the causal steps is the test of joint sig-
nificance for mediation. In this method, one evaluates the statistical
significance of the b̂ coefficient from Equation 2, and the â co-
efficient from Equation 3. If both coefficients are significant, there
is evidence for mediation. Simulation studies have shown that the
joint significance approach has reasonable power to detect effects
when compared with other methods (61, 62), but the test does not
provide a point or SE estimate for the mediated effect.

Difference in coefficients

The difference in coefficients approach compares the relation
between the independent variable and the dependent variable
before and after controlling for the mediator. The logic behind the
estimator is to ascertain whether there is a significant reduction in
the effect of the independent variable on the outcome once ac-
counting for the mediator. Conceptualizing mediation in this way
does not promote intentionally considering the implied causal
direction of variables in the model and may facilitate conflation
of mediation effects and confounding effects. This test of me-
diation has historically been applied in epidemiology and the
medical sciences (19) and is commonly used to test mediation
hypotheses in clinical nutrition research today (1, 2, 64, 65).

Mediation is quantified as the difference between the total
effect of the independent variable on the outcome (i.e., c in
Equation 1) and the direct effect of the independent variable on
the outcome accounting for the mediator (i.e., c# in Equation 2)
by using this method. Statistical significance testing of the pa-
rameter estimate is conducted by dividing the ĉ – ĉ# difference
by its corresponding normal theory SE:

s
ĉ2ĉ9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
ĉ
þ r2

ĉ
2 2r

ĉ ĉ9

q
ð4Þ

Although the difference in coefficients approach provides a point
and SE estimate for the mediated effect, the method does not
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easily extend to more complex models involving multiple medi-
ators or models that include both mediation and moderation.

For example, only one mediated effect is calculated by using
the difference in coefficients method in multiple mediator
models. The parameter estimate obtained is a composite estimate
that quantifies the reduction in the effect of X on Y, once all
examined mediators are accounted for as a set. As such, the
approach does not allow for examining individual mediated
effects. This precludes investigating whether mechanisms of
change show differential efficacy or significantly differ from
one another. Moreover, the difference in coefficients approach
has been shown to yield biased estimates of mediation when
used with binary outcomes (66). Although implementing avail-
able scaling corrections can mitigate this bias, MacKinnon et al.
(66) do not recommend using the difference in coefficients
method to examine mediation in this context.

Product of coefficients

The product of coefficients approach for testing mediation
derives from path analysis (12, 13, 27) and appears frequently in
mediation analyses conducted in the social science literature. The
method parameterizes mediation by using path-tracing rules to
define the indirect effect of X on Y through the mediating var-
iable, by multiplying the a coefficient from Equation 3 and the
b coefficient from Equation 2 to yield ab (see Figure 2). By
doing so, the impact of the independent variable on the medi-
ator, as well as the subsequent influence of the mediator variable
on the outcome (controlling for the independent variable), are
both accounted for. The product of coefficients approach easily
extends to complex models involving multiple mediators and/or
outcomes, categorical outcomes, multilevel data, and condi-
tional process models (67–71). Although the phrases “indirect
effect” and “mediated effect” often have been used inter-
changeably, it may be useful to distinguish the terms as a means
to differentiate cases of mediation in which there is no signifi-
cant overall effect of X on Y compared with those in which there
is a significant overall effect of X on Y, respectively.

Historically, statistical significance testing of the âb̂ estimate
has been obtained by dividing the estimate by the square root
of a normal-theory, asymptotic variance approximation for the
product of 2 random variables:

sâb̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2âb̂

2 þ r2
b̂
â2

q
ð5Þ

The ratio presented in Equation 5 is often called the “Sobel test”
for mediation, as the equation was derived by Sobel (72) with
the use of the multivariate delta method. Alternative formulas
for estimators of the exact (73) and unbiased (74) variance of 2
random variables are available and can also be used for hypoth-
esis testing. Results that use these formulas tend to be trivially
different from the Sobel approximation, however, and are thus
less often used in applied work. Simulation studies have shown
that statistical tests for mediation based on normal-theory vari-
ance estimators are unbiased and show tolerable type 1 error
rates (62). The tests are often underpowered when used in small
samples, however, because the variance estimators (inaccu-
rately) assume normality of the ab sampling distribution (61,
75). This problem can be mitigated to some extent with a larger
sample size, because the estimators are asymptotically efficient.

For example, simulation work has shown that the Sobel test had
sufficient (i.e., 0.80) power with n = 667, when there was a
small-to-medium–sized direct effect (i.e., b = 0.14–0.39) in
the model, and effect sizes of the a and b regression parameters
were both small (61). It is difficult to advocate the use of these
methods, however, given the wide availability of more modern
procedures that do not impose distributional assumptions and
that allow for the formation of asymmetric CIs to test signifi-
cance of the mediated effect.

Asymmetric CIs

The sampling distribution of the product of 2 random normal
variables, such as a and b, is nonnormal (76). When using a
normal distribution for statistical inference, incorrect critical
values will be referenced to ascertain P values of the mediated
effect. This issue yields reduced power to detect mediation ef-
fects. Accounting for nonnormality of the ab sampling distribu-
tion in significance testing, by computing asymmetric confidence
limits for the âb̂ estimate, references the correct critical value
associated with a given a level set for a study and affords a more
accurate and powerful approach to testing mediation, as com-
pared with asymptotically efficient estimators (77).

A variety of methods exist to compute asymmetric CIs, in-
cluding an approach based on the theoretical distribution of the
product of 2 random, normal variables (76–78), resampling
methods such as bootstrapping (79–81), and Markov chain
Monte Carlo procedures (82). These methods are available
across a range of software packages (e.g., SAS, STATA, SPSS,
Mplus, R); researchers are encouraged to use existing code and
packages to compute the CIs.

Effect sizes for mediation

Effect size estimates for mediation complement statistical
significance testing by providing information on the magnitude of
an effect. Characterizing the size of an effect can help researchers
understand its practical, or clinical, significance. Most of the
work that has been conducted on investigating effect size for the
mediation model has focused on single mediator models, al-
though it may be possible to extrapolate the methods to examine
individual mediated effects in multiple mediator models. Several
different effect size measures have been described: R2

mediated, the
proportion mediated (PM), and k2 (83–85). None of the mea-
sures are without limitations.

MacKinnon (18) and Fairchild et al. (83) provided several r2

effect size measures for individual paths in the mediation model
based on squared and squared partial correlations. These mea-
sures quantify the amount of variance explained in the mediation
model that is uniquely attributable to a single coefficient in the
design and promote understanding of the relative contribution of
different pieces in the model. They additionally described and
evaluated an R2

mediated effect size measure for mediation that
quantifies the proportion of variance in Y that is common to both
X and M but is not attributable to either predictor alone:

R2
mediated ¼ r2MY 2 ðR2

Y ;MX 2 r2XY Þ ð6Þ

The R2
mediated measure has been shown to be unbiased and can

be used in sample sizes as small as n = 100, but it is possible that
estimates from the measure can be negative in circumstances in

1264 FAIRCHILD AND McDANIEL



which the direct effect is much larger in magnitude than the in-
direct effect due to a mathematical artifact of the equation (86).

The proportion mediated effect size is an intuitive measure that
quantifies the proportion of a total effect that is mediated (84, 87),
making a ratio of the mediated effect to the total effect:

PM ¼ âb̂

ðâb̂Þ þ ĉ9
ð7Þ

Results yielded from the effect size are reported as a percentage.
Statistical simulation work has shown that the proportion medi-
ated should be used only with n $ 500, however, because of the
instability of the estimate in smaller sample sizes (88).

Finally, Preacher and Kelley (85) presented k2 as an alternative
to the R2

mediated and proportion mediated measures. The effect
size characterizes the magnitude of a mediated effect as a pro-
portion of its “maximum possible value.” Not only is interpreta-
tion of the measure difficult to understand (e.g., the maximum
possible value varies as a function of the scale of the variables)
but subsequent research has shown that the measure does not
monotonically relate to the mediation parameter estimate with
which it is associated (89). That is, k2 can decrease with in-
creasing values of the mediated effect parameter estimate.

COMMON MISTAKES AND SUGGESTIONS FOR
IMPROVED PRACTICE

Having covered foundational properties and theoretical aspects
of the mediation model, we turn now to reflect on common
mistakes made by applied researchers when conducting mediation
analyses. These mistakes include the following: 1) examining
mediation in cross-sectional data without sufficient rationale for
the posited mediation process, 2) incomplete reporting of results,
3) inadequately handling missing data, and 4) failing to conduct
power analyses. We consider each of these areas in the sections
below and offer suggestions to improve practice.

Cross-sectional data

Various researchers conducting mediation analyses evaluate
mediation effects in cross-sectional data; several examples of this
practice have appeared in this Journal (3, 5, 38, 40, 42, 65).
Although it may be possible that these instances are not all in-
appropriate, examining mediation in cross-sectional data that are
observational (i.e., not experimental) is generally ill advised. A
myriad of methodological work (90–94) cautions against this
practice and emphasizes that examining mediation in cross-
sectional data implicitly undermines an assumption of the sta-
tistical mediation model: the presumption that temporal ordering
of variables in the causal chain of mediation is correct. Cross-
sectional data preempt the evaluation of alternative temporal
ordering of the variables to test the correct causal ordering as-
sumption, and the nature of cross-sectional data lies in contra-
diction to examining a process that unfolds over time. To be
clear, standardized coefficients from a mediation model con-
ducted on observational, cross-sectional data reflect a series
of correlation coefficients: 1 bivariate correlation coefficient
(i.e., a) and 2 partial correlation coefficients (i.e., b and c#). Any
estimations of a mediation effect in such data are thus correla-
tional in nature. The notion that correlation coefficients do not

infer causation, and cannot offer insight into directionality of a
relation between variables, is a lesson taught early and often in
statistics classrooms.

Methodologists have discussed inherent problems with cross-
sectional data in mediation analyses, as well as have quantified
the statistical bias observed when estimating longitudinal me-
diation effects in data of this type (90–92). Studies show not only
that the sign and magnitude of bias observed in cross-sectional
mediation models varies widely, making it unpredictable in
practice, but also that cross-sectional sample data can indicate
support for mediation effects when there is no true mediation
process in the population (92). These findings are not to say that
it is impossible to examine mediation hypotheses with data that
are collected at one point in time; however, there is an onus on
the researcher to provide a compelling rationale that temporal
ordering of the examined variables is correct (93, 94). Indeed,
Kenny and colleagues (10, 11) emphasized in early work that
mediation analysis should not be conducted unless the temporal
ordering of the variables is clear. Examining mediation hy-
potheses with cross-sectional data may be reasonable, for ex-
ample, if measured variables can reflect nearly instantaneous
processes, such as may be the case with some pharmacokinetics
work, or imply timing by nature of their construction (18, 93).
Consider a research scenario in which the mediating role of
parental food monitoring during an individual’s adolescence (M)
is posited to explain the impact of parental childhood obesity (X)
on subjects’ current obesity status (Y). Although one may garner
this information from participants at a single measurement oc-
casion, it may be sensible to argue temporal precedence of the
variables in a causal chain given the chronological nature of the
constructs. Researchers should be mindful of potential retro-
spective reporting bias in these cases, however.

Reporting results

Failing to report sufficient information associated with an
analysis propagates confusion for readers and precludes future
researchers from using the results in a meaningful way (e.g., to
conduct meta-analyses). Moreover, the practice undermines the
replication of results. This latter point is especially pertinent
considering the nationally recognized reproducibility crisis oc-
curring in science (95). Indeed, the NIH and other federal
agencies are amending research policies to support enhanced
reproducibility of scientific findings, placing methodological
rigor and transparent reporting at center stage.

At a minimum, mediation researchers should report the fol-
lowing: 1) the sample size associated with analysis; 2) the
software, including version number, and statistical estimator
used to conduct the analysis, unstandardized parameter esti-
mates of individual coefficients, and mediated effects (alongside
their associated SEs and/or CIs); 3) the effect size of model
parameter estimates; and 4) how missing observations were
handled in analysis. It is also useful to provide a path diagram of
the model for readers to provide an illustration of the relations
examined in analysis. This clarifies what roles each variable
plays and provides a streamlined avenue for reporting parameter
estimates in the model. With respect to estimating mediated
effects, we further recommend that researchers use either the
product of coefficients approach with asymmetric confidence
limits (constructed via bootstrapping or another method), or one
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of the newer causal inference methods for testing mediation.
When examining .1 mediator in a study, we encourage re-
searchers to use multiple mediator models rather than examining
several single mediator models individually; this approach is more
parsimonious and facilitates the comparison of different mediated
effects in the model. Note that if a researcher chooses to examine
several single mediator models, it is necessary to invoke a cor-
rection for conducting multiple null hypothesis significance tests
to control for type 1 error inflation (96). Below, we provide an
abbreviated example of a multiple mediator model analysis (with a
dichotomous predictor, 2 continuous mediators, and a continuous
outcome variable) to serve as a template for applied researchers.

Abbreviated example write-up of mediation analysis results

We conducted a multiple mediator analysis on a longitudinal
data set (n = 599) to enhance our understanding of the effects
of a health-promotion program conducted in firefighters. The
data come from a mediation by design study: Promoting Healthy
Lifestyles: Alternative Models’ Effects (PHLAME) (7). Details
on the trial are available elsewhere (7, 97, 98). Note that we
provide this example as a means to show appropriate steps to
conduct and report the results of a mediation analyses rather
than to inform the literature in a substantive way.

We examined how the PHLAME team program affected fruit
consumption via 2 hypothesized mediators: knowledge of fruit
and vegetable benefits and dietary support (see Figure 3). Pre-
vious research has suggested that knowledge and social support
predict fruit and vegetable intake in adults (99). Different pro-
gram modules targeted the respective mediators, supporting
action theory for the intervention. The conceptual theory for the
intervention was informed by social-cognitive theory (100) and
the health belief model (101).

Data were collected at baseline and then after implementation
of the 1-y intervention. The mediator and outcome variables were
assessed via self-report surveys. Baseline measures of the me-
diator and outcome variables were incorporated as covariates in
the design, and all continuous variables were mean-centered. The
predictor, PHLAME team intervention assignment, was di-
chotomous with a value of 1, indicating that the participant was
assigned to the intervention.We analyzedmediation within a path
analysis framework by using an SEM software package, Mplus
version 7 (102). We estimated mediation effects by using the
product of coefficients approach and used a maximum likelihood
estimator with SEs robust to violations of normality (in a path
analysis framework, robust SE estimates can be used to determine
significance of indirect, or mediated, effects). We used full-
information maximum likelihood (FIML) to handle missing
observations (103) and controlled for clustering to account for the
multilevel nature of the data, because 599 firefighters were nested
within 48 fire stations (104). The chi-square test of exact model fit
suggested that the model-implied covariance matrix adequately
reproduced the observed data: chi-square = 11.421, P = 0.326.
Additional recommended fit indexes, such as the Root Mean
Square Error of Approximation (RMSEA), the Standardized
Root Mean Square Residual (SRMR), and the Comparative Fit
Index (CFI), also met the criteria for close model fit (105):
RMSEA = 0.015, SRMR = 0.022, CFI = 0.996.

Unstandardized parameter estimates for the model are shown
in Figure 3, with all associated SE estimates following in

parentheses. Regressing knowledge of fruit and vegetable ben-
efits at time 2 on treatment assignment (controlling for knowl-
edge at time 1) showed that the team intervention significantly
increased knowledge of fruit and vegetable benefits [a1 = 0.290
(0.070); P , 0.001; 95% CI: 0.154, 0.426]. Regressing dietary
support at time 2 on treatment assignment (controlling for di-
etary support at time 1) showed that the team intervention also
significantly increased dietary support [a2 = 0.176 (0.067);
P = 0.008; 95% CI: 0.046, 0.307]. Finally, regressing fruit
consumption at time 2 on knowledge of fruit and vegetable
benefits, dietary support, and treatment assignment (controlling
for fruit consumption at time 1) showed that both mediators
significantly increased the outcome, and that a significant direct
effect of the program on fruit consumption remained after the
mediators were modeled [b1 = 0.143 (0.033); P , 0.001; 95%
CI: 0.077, 0.208; b2 = 0.123 (0.036); P = 0.001; 95% CI: 0.051,
0.194; c# = 0.134 (0.046); P = 0.004; 95% CI: 0.044, 0.225].

Mediation analysis showed that both knowledge and dietary
support significantly mediated the effects of the program on fruit
consumption (see Figure 3) [a1b1 = 0.041 (0.015); P = 0.006;
95% CI: 0.012, 0.071; a2b2 = 0.022 (0.010); P = 0.036; 95% CI:
0.001, 0.042]. Overall, R2 = 36.80% of the variance in fruit
consumption at time 2 was explained by variables in the model.
Proportion-mediated effect size estimates for the individual
mediation pathways indicated that knowledge of fruit and veg-
etable benefits (PM = 21.09%) conveyed a larger portion of the
program impact on fruit consumption, compared with dietary
support (PM = 10.94%). Given the significant direct effect of the
team program on fruit consumption, as well as the magnitude of
the observed variance explained by the model, it is likely that
there are additional mediators that could contribute to un-
derstanding the effect of the team program on fruit consumption.

Missing data

Despite the availability of modern methods to handle missing
data observations, many researchers continue to use outdated

FIGURE 3 An example path diagram presenting the results of a multiple
mediator model. *P , 0.05, **P , 0.01. PHLAME, Promoting Healthy
Lifestyles: Alternative Models’ Effects.

1266 FAIRCHILD AND McDANIEL



methods, such as listwise deletion. This problem is not limited to
the mediation area and is worth mentioning because it is manifest
in several investigations of mediation published in the Journal (2,
4, 6, 38–40, 64, 65). Listwise deletion assumes data are missing
completely at random (MCAR) and will provide unbiased esti-
mates when the assumption is satisfied (106). Methodological
research has quantified critical bias in sample estimates, how-
ever, when using listwise deletion with data that are not MCAR
(103). Applied researchers should empirically test (and report)
the tenability of the MCAR assumption to ensure unbiased es-
timates if seeking to listwise delete data (107).

Modern methods for handling missing observations do not
require MCAR data. Rather, assumptions are relaxed to allow for
data to be missing at random, such that the likelihood of miss-
ingness on a given variable is permitted to be conditional on $1
other observed variables (103). Multiple imputation (MI) and
FIML procedures (108) afford greater flexibility in analyzing
data with missing observations, and we advise researchers to
adopt these methods. Note that there are different methods
available to conduct MI, including, but not limited to, para-
metric methods such as MI by chained equations (109) and
machine learning methods such as random forests (110). A va-
riety of statistical software packages allow for the estimation of
the techniques. Some examples of software that facilitate the use
of FIML to handle missing data in mediation models are the
“lavaan” R package (use the missing = “ML” argument), STATA
[use the “sem” command with the “method(mlmv)” option],
Mplus (FIML is the default estimation option), and SAS (use the
method = fiml option in PROC CALIS). Finally, some examples
of software that enable the use of MI to handle missing data in
mediation models are the “mice” R package, STATA (use the
“mi” suite of commands), SAS (use the PROC MI statement),
and SPSS (available in the SPSS Missing Values add-on mod-
ule). Although Mplus can conduct MI, the technique is more
onerous (requiring Bayesian model estimation before imputation
can be conducted), and users may encounter convergence
problems. Readers should take note that estimating a mediation
model in SAS or SPSS with the use of a variety of available
macros (17, 70, 111) will not handle missing data in your data;
they tacitly implement listwise deletion of missing observations.
This includes the widely popular PROCESS utility in SPSS (17).

Power analyses

Many studies perform statistical mediation analysis without a
sufficient sample size. Previous methodological work has in-
dicated lower bounds to detect mediation effects with 80% power.
If effect sizes of the a and b parameters in the mediation model
are small (i.e., b = 0.14), nearly 500 subjects (i.e., n = 462) are
required to detect mediation even when using the best of
methods such as the bias-corrected bootstrap (58). Not all re-
search studies may involve small effect sizes. If effect sizes of
the a and b parameters in the mediation model are both medium
or large (i.e., a and b are either both b = 0.39 or b = 0.59, re-
spectively), and the bias-corrected bootstrap is used to test
mediation, the required sample size to detect the mediated effect
will be n = 71 and n = 34, respectively. Studies that include $1
path of the mediated effect that is small in magnitude, however,
require a minimum of n = 377 participants for adequate power,
even when using the powerful methods (61). This latter case

likely represents the most common research scenario observed
in practice and should be considered a conservative lower bound
for testing mediation effects.

This recommendation is prudent for $2 reasons. First, applied
researchers often may not know what effect sizes to expect due to
the novel nature of their work or conflicting results in the litera-
ture. Second, although meta-analyses can help inform what effect
sizes to expect, these studies regularly indicate that estimates vary
widely depending on what variables are being examined. Consider
some meta-analyses from the nutrition literature as an example.
In a meta-analysis of 88 studies investigating the relation between
soft drink intake and nutritional health outcomes, Vartanian et al.
(112) found that the average effect size estimate across studies was
r = 0.16. In contrast, Robinson et al. (113) reported that average
effect size estimates across 24 studies examining the influence of
attentive eating on energy intake ranged from d = 0.39 to d = 0.76.
The divergent results of these studies should emphasize how
critical it is to contemplate power to detect mediation effects in
clinical nutrition studies. Our research indicates that this practice
is scarce, however, identifying only one article published in the
Journal that conducted a power analysis (albeit post hoc) on their
mediation results (38). Depending on the specific content area,
conducting a mediation analysis may, or may not, be viable. We
recommend conducting a priori power analyses that consider a
range of effect sizes (63) to provide upper and lower bound esti-
mates for power to detect mediation effects in a study.

Conducting power analyses for advanced methods such as
mediation can be challenging, but there are resources available to
aid in the endeavor. Two approaches can be implemented: using
information from tables in the literature or conducting a Monte
Carlo study specific to the model under consideration. For some
mediation models, researchers may be able to reference findings
from existing studies that directly align with the model they
intend to use. In other situations, it may be necessary to conduct a
Monte Carlo study to garner appropriate power estimates. We
consider each of these possibilities below.

Several methodological studies exist that provide tables of
required sample size and/or empirical power estimates for dif-
ferent mediation models. The most comprehensively studied
mediation model is the single mediator model with continuous
predictor, mediator, and outcome variables. Fritz andMacKinnon
(61) conducted a Monte Carlo simulation study to determine the
sample size needed to detect mediation effects of varying sizes
with 80% power in this model. They compared various ap-
proaches to test the significance of the indirect effect, including
the causal steps, the test of joint significance, the Sobel method,
the distribution of the product, the percentile bootstrap, and the
bias-corrected bootstrap. Researchers can reference Fritz and
MacKinnon’s tables of required sample size to ascertain how
many participants would be required to detect mediation effects
with adequate power in their proposed research.

Taylor et al. (71) conducted a Monte Carlo simulation study to
provide power estimates to detect mediation effects in serial
mediation models, in which 2 mediators act in a sequence to
mediate the effect of X on Y (called a “3-path mediated effect”).
The authors provide a table with power estimates at different
mediated effect sizes, sample sizes, and continuous or dichotomous
levels of X. Readers are encouraged to reference the Taylor et al.
(71) tables for ascertaining power if they are examining a com-
parable model.
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Ma and Zeng (114) conducted a Monte Carlo simulation study
to examine power in multiple mediator models with 1 binary
independent variable, 3 mediator variables, and 1 continuous
dependent variable. They provide empirical power estimates for
each individual mediated effect, as well as the overall mediation
effect across a range of sample sizes and effect sizes of a and b. In
addition, they report the required sample size needed to achieve
adequate power for each combination of effect sizes. This is a
helpful reference for researchers who seek to examine a multiple
mediator model such as the one examined.

Finally, Pituch et al. (69, 115) evaluated power for single me-
diator models in multilevel mediation models. Pituch et al. (115)
examined lower-level mediation models, in which all variables of
interest were at the individual level and all parameter estimates
were specified as fixed effects. Sample sizes at level 1 and level 2
were systematically varied, as were residual intraclass correlations
and methods to test the indirect effect. Tables of empirical power
estimates are provided across these conditions. In general, Pituch
et al. (115) found that power increased with increasing sample sizes
at level 1 and level 2 and with increasing effect sizes.

Pituch et al. (69) conducted a Monte Carlo study of mediation
in cluster randomized trials across a range of sample and effect
sizes. Two cluster randomized situations were explored. In both
permutations, treatment assignment occurred at level 2 (i.e., the
cluster level) and the outcome was measured at level 1 (i.e., the
individual level). However, in 1 variation, the mediator was
assessed at the cluster level, and in the other it was assessed at the
individual level. Effects of X and M were fixed, and the size of
the residual intraclass correlations and c# were held constant.
Results indicated that power estimates varied more in designs in
which the mediator and outcome were measured at the in-
dividual level. Results for this design are provided by the au-
thors in table form and may be used by researchers to inform
power estimates for cluster randomized designs.

Although the above studies are helpful references if they
closely align with the model a researcher intends to use, often
there are no existing studies available to guide power estimates
for mediation in more complex analyses. In these cases, it may be
necessary for the researcher to conduct his or her own power
analysis. Thoemmes et al. (116) discussed methods by which a
researcher can conduct a Monte Carlo study to determine power
for complex mediation models. In Monte Carlo studies, the re-
searcher creates (i.e., simulates) population data by fixing pa-
rameters in the desired model to values supported by the extant
literature. Effect size, sample size, and a level must be defined to
estimate power (117). Alternatively, a researcher can fix effect
size, power, and a-level values if they seek to identify the re-
quired sample size to detect the mediation effect for a given
power level. Exogenous variables in the data are generated by a
pseudo-random number generator from the appropriate distri-
bution (e.g., a binomial distribution for dichotomous variables,
or a Gaussian distribution for continuous variables), and en-
dogenous variables are generated by estimating the specified
population-level model. Subsequently, many random samples
of a chosen size are drawn (with replacement) from the population
data; the population model is then fitted to the resulting sample
data sets. Parameter estimates in each sample will vary around the
researcher-specified population values, due to naturally occurring
sampling variation. Power estimates from these studies are gar-
nered by calculating the proportion of times that the parameter

estimate is statistically significant across the sample data sets (as-
suming nonzero parameter combinations). For 80% power, a pa-
rameter estimate must be significant in 80% of the sample draws.

This method of power analysis is very flexible and applies well
to complex models. Thoemmes et al. (116) present a detailed
discussion and syntax for running a Monte Carlo study in Mplus
to determine the necessary sample size needed to achieve ade-
quate power in a variety of mediation models. They cover a
multiple mediator model with 2 mediators, a serial mediation
model, a model that includes both mediation and moderation
effects, and mediation in a latent growth curve modeling
framework. Zhang (118) expanded the work of Thoemmes et al.
(116) by using bootstrap methods to test for mediation in
conducting a power analysis (rather than normal-theory variance
estimators), as well as by presenting detailed descriptions and
code for conducting power analyses in R. The freely available,
open-source “bmem” R package works in conjunction with the
“lavaan” R package to conduct power analyses with normal,
robust, or bootstrapped CIs to test the significance of mediation
effects. The authors describe how this program can be used to
conduct power analyses for advanced mediation models, in-
cluding conditional process models and mediation analysis with
latent variables. See Table 1 for a summary of the power re-
sources discussed for mediation models in this section.

CLOSING THOUGHTS

We focused on describing only the simplest mediation model
in this narrative, to promote foundational learning and to em-
phasize crucial issues to consider when conducting a mediation
analysis. The topics considered here extrapolate to more so-
phisticated mediation models, with a variety of different data
types (e.g., count data, survival data) and model structures
(e.g., hierarchical models). The use of SEMs that incorporate
latent variables to estimate mediation effects may be of special
interest, because measurement error can be modeled in analysis
and myriad longitudinal designs can be considered that allow
for the evaluation of latent heterogeneous populations within a
single sample. Although other procedures may suffice in limited

TABLE 1

Summary of resources available for assessing power in mediation models

Study Application

Fritz and MacKinnon (61) Power tables provided for the single mediator

model

Ma and Zeng (114) Power tables provided for select multiple

mediator models

Pituch et al. (115) Power tables provided for lower-level

mediation models in select multisite

designs

Pituch et al. (69) Power tables provided for mediation models

in select cluster-randomized designs

Taylor et al. (71) Power tables provided for serial mediation

models with a 3-path mediated effect

Thoemmes et al. (116) Tutorial on running Monte Carlo studies in

Mplus to assess power in complex

mediation models

Zhang (118) Tutorial on running Monte Carlo studies in R

to assess power in complex mediation

models
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situations, we recommend that applied researchers use the
product of coefficients to test mediation with the bias-corrected
bootstrap or Monte Carlo CIs if not applying one of the newer
causal inference methods. Although navigating the newer
causal inference methods may appear daunting, the increasing
generalizability and power of the procedures relative to other
approaches may make the trip worthwhile.
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40. Köbe T, Witte AV, Schnelle A, Grittner U, Tesky VA, Pantel J,
Schuchardt JP, Hahn A, Bohlken J, Rujescu D, et al. Vitamin B-12
concentration, memory performance, and hippocampal structure in
patients with mild cognitive impairment. Am J Clin Nutr 2016;103:
1045–54.

MEDIATION ANALYSIS 1269



41. Thomas CE, Guillet R, Queenan RA, Cooper EM, Kent TR,
Pressman EK, Vermeylen FM, Roberson MS, O’Briend KO. Vitamin
D status is inversely associated with anemia and serum erythropoietin
during pregnancy. Am J Clin Nutr 2015;102:1088–95.

42. Schoenaker DA, Soedamah-Muthu SS, Mishra GD. Quantifying the
mediating effect of body mass index on the relation between a
Mediterranean diet and development of maternal pregnancy compli-
cations: the Australian Longitudinal Study on Women’s Health. Am J
Clin Nutr 2016;104:638–45.

43. Fairchild AJ, MacKinnon DP. Using mediation and moderation
analyses to enhance prevention research. In: Sloboda Z, Petras H,
editors. Advances in prevention science. Vol. 1. Defining prevention
science. New York: Springer; 2014. p. 537–55.

44. Burke LE, Wang J, Sevick MA. Self-monitoring in weight loss: a sys-
tematic review of the literature. J Am Diet Assoc 2011;111:92–102.

45. Chen H. Practical program evaluation: assessing and improving
planning, implementation, and effectiveness. Thousand Oaks (CA):
Sage Publications; 2005.

46. Pirlott AG, MacKinnon DP. Design approaches to experimental me-
diation. J Exp Soc Psychol 2016;66:29–38.

47. Cohen J, Cohen P, West SG, Aiken LS. Applied multiple correlation/
regression analysis for the behavioral sciences. 3rd edition. Mahwah
(NJ): Erlbaum; 2003.

48. Stuart EA, Perry DF, Le HN, Ialongo NS. Estimating intervention
effects of prevention programs: accounting for noncompliance. Prev
Sci 2008;9:288–98.

49. Pearl J. Causality: models, reasoning, and inference. Cambridge
(United Kingdom): Cambridge University Press; 2009.

50. Imai K, Keele L, Tingley DA. General approach to causal mediation
analysis. Psychol Methods 2010;15:309–34.

51. Imai K, Keele L, Yamamoto T. Identification, inference and sensi-
tivity analysis for causal mediation effects. Stat Sci 2010;25:51–71.

52. Frangakis CE, Rubin DB. Principal stratification in causal inference.
Biometrics 2002;58:21–9.

53. Pearl J. The mediation formula: a guide to the assessment of causal
pathways in non-linear models. Los Angeles (CA): University of
California; 2010.

54. Robins JM, Greenland S. Identifiability and exchangeability for direct
and indirect effects. Epidemiology 1992;3:143–55.

55. Rubin DB. Direct and indirect causal effects via potential outcomes.
Scand J Stat 2004;31:161–70.

56. VanderWeele TJ. Explanation in causal inference: methods for me-
diation and interaction. Oxford (United Kingdom): Oxford University
Press; 2015.

57. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects
using instrumental variables (with discussion). J Am Stat Assoc 1996;
91:444–72.

58. Elliott MR, Raghunathan TE, Li Y. Bayesian inference for causal
mediation effects using principal stratification with dichotomous
mediators and outcomes. Biostatistics 2010;11:353–72.

59. VanderWeele TJ. Bias formulas for sensitivity analysis for direct and
indirect effects. Epidemiology 2010;21:540–51.

60. West SG, Biesanz JC, Pitts SC. Causal inference and generalization in
field settings: experimental and quasi-experimental designs. In: Reis
H, Judd C, editors. Handbook of research methods in social and
personality psychology. New York: Cambridge University Press;
2000. p. 40–84.

61. Fritz MS, MacKinnon DP. Required sample size to detect the medi-
ated effect. Psychol Sci 2007;18:233–9.

62. MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V.
Comparison of methods to test mediation and other intervening var-
iable effects. Psychol Methods 2002;7:83–104.

63. Cohen J. Statistical power analysis for the behavioral sciences. 2nd
ed. Hillsdale (NJ): Lawrence Earlbaum Associates; 1988.

64. Albert BB, Derraik JG, Brennan CM, Biggs JB, Garg ML, Cameron-
Smith D, Hofman PL, Cutfield WS. Supplementation with a blend of
krill and salmon oil is associated with increased metabolic risk in
overweight men. Am J Clin Nutr 2015;102:49–57.

65. Ma Y, Follis JL, Smith CE, Tanaka T, Manichaikul AW, Chu AY,
Samieri C, Zhou X, Guan W, Wang L, et al. Interaction of
methylation-related genetic variants with circulating fatty acids on
plasma lipids: a meta-analysis of 7 studies and methylation analysis of
3 studies in the cohorts for Heart and Aging Research in Genomic
Epidemiology Consortium. Am J Clin Nutr 2016;103:567–78.

66. MacKinnon DP, Lockwood CM, Brown CH, Wang W, Hoffman JM.
The intermediate endpoint effect in logistic and probit regression.
Clin Trials 2007;5:499–513.

67. Fairchild AJ, MacKinnon DP. A general model for testing mediation
and moderation effects. Prev Sci 2009;10:87–99.

68. Krull JL, MacKinnon DP. Multilevel modeling of individual and group
level mediated effects. Multivariate Behav Res 2001;36:249–77.

69. Pituch KA, Stapleton LM, Kang JY. A comparison of single sample
and bootstrap methods to assess mediation in cluster randomized
trials. Multivariate Behav Res 2006;41:367–400.

70. Preacher KJ, Rucker DD, Hayes AF. Addressing moderated mediation
hypotheses: theory methods, and prescriptions. Multivariate Behav
Res 2007;42:185–227.

71. Taylor AB, MacKinnon D, Tein JY. Test of the three-path mediated
effect. Organ Res Methods 2008;11:241–69.

72. Sobel ME. Asymptotic confidence intervals for indirect effects in
structural equation models. Sociol Methodol 1982;13:290–312.

73. Aroian LA. Some methods for the evaluation of a sum. J Am Stat
Assoc 1944;39:511–5.

74. Goodman LA. On the exact variance of products. J Am Stat Assoc
1960;55:708–13.

75. Bollen KA, Stine R. Direct and indirect effects: classical and boot-
strap estimates of variability. Sociol Methodol 1990;20:115–40.

76. Meeker WQ, Cornwell LW, Aroian LA. The product of two normally
distributed random variables. In: Kennedy WJ, Odeh RE, editors.
Selected tables in mathematical statistics. Vol. 7. Providence (RI):
American Mathematical Society; 1981.

77. MacKinnon DP, Fritz MS, Williams J, Lockwood CM. Distribution of
the product confidence limits for the indirect effect: program
PRODCLIN. Behav Res Methods 2007;39:384–9.

78. Tofighi D, MacKinnon DP. RMediation: an R package for mediation
analysis confidence intervals. Behav Res Methods 2011;43:692–700.

79. Efron B, Tibshirani RJ. An introduction to the bootstrap. Volume 57
of monographs on statistics and applied probability. London:
Chapman & Hall; 1993.

80. Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating
indirect effects in simple mediation models. Behav Res Methods
Instrum Comput 2004;36:717–31.

81. Williams J, MacKinnon DP. Resampling and distribution of the
product methods for testing indirect effects in complex models. Struct
Equ Modeling 2008;15:23–51.

82. Preacher KJ, Selig JP. Advantages of Monte Carlo confidence in-
tervals for indirect effects. Commun Methods Meas 2012;6:77–98.

83. Fairchild AJ, MacKinnon DP, Taborga M, Taylor ABR. Effect-size
measures for mediation analysis. Behav Res Methods 2009;41:486–98.

84. Freedman LS. Confidence intervals and statistical power of the ‘val-
idation’ ratio for surrogate or intermediate endpoints. J Stat Plan In-
ference 2001;96:143–53.

85. Preacher KJ, Kelley K. Effect size measures for mediation models:
quantitative strategies for communicating indirect effects. Psychol
Methods 2011;16:93–115.

86. de Heus P. R squared effect-size measures and overlap between direct
and indirect effect in mediation analysis. Behav Res Methods 2012;
44:213–21.

87. Ditlevsen S, Christensen U, Lynch J, Damsgaard MT, Keiding N. The
mediation proportion: a structural equation approach or estimating the
proportion of exposure effect on outcome explained by an in-
termediate variable. Epidemiology 2005;16:114–20.

88. MacKinnon DP, Warsi G, Dwyer JH. A simulation study of mediated
effect measures. Multivariate Behav Res 1995;30:41–62.

89. Wen Z, Fan X. Monotonicity of effect sizes: questioning kappa-squared
as mediation effect size measure. Psychol Methods 2015;20:193–203.

90. Cole DA, Maxwell SE. Testing mediational models with longitudinal
data: questions and tips in the use of structural equation modeling.
J Abnorm Psychol 2003;112:558–77.

91. Maxwell SE, Cole DA. Bias in cross-sectional analyses of longitu-
dinal mediation. Psychol Methods 2007;12:23–44.

92. Maxwell SE, Cole DA, Mitchell MA. Bias in cross-sectional analyses
of longitudinal mediation: partial and complete mediation under an
autoregressive model. Multivariate Behav Res 2011;46:816–41.

93. Shrout PE. Integrating causal analysis into psychopathology research.
In: Shrout PE, Rosenberg M, editors. Causality and psychopathology:
finding the determinants of disorders and their cures. New York:
Oxford University Press; 2011. p. 3–24.

1270 FAIRCHILD AND McDANIEL



94. Shrout PE. Commentary: mediation analysis, causal process, and
cross-sectional data. Multivariate Behav Res 2011;46:852–60.

95. Begley CG, Ioannidis JPA. Reproducibility in science: improving
the standard for basic and preclinical research. Circ Res 2015;116:
116–26.

96. George BJ, Beasley TM, Brown AW, Dawson J, Dimova R, Divers J,
Goldsby TU, Heo M, Kaiser KA, Keith SW, et al. Common scientific
and statistical errors in obesity research. Obesity (Silver Spring) 2016;
24:781–90.

97. MacKinnon DP, Elliot MD, Thoemmes F, Kuehl KS, Moe EL,
Goldberg L, Lockhart Burrell G, Ranby KW. Long-term effects of a
worksite health promotion program for firefighters. Am J Health
Behav 2010;34:695–706.

98. Ranby KW, MacKinnon DP, Fairchild AJ, Elliot DL, Kuehl KS,
Goldberg L. The PHLAME (Promoting Healthy Lifestyles: Alterna-
tive Models’ Effects) firefighter study: testing mediating mechanisms.
J Occup Health Psychol 2011;16:501–13.

99. Shaikh AR, Yaroch AL, Nebeling L, Yeh MC, Resnicow K. Psy-
chosocial predictors of fruit and vegetable consumption in adults:
a review of the literature. Am J Prev Med 2008;34:535–43.

100. Bandura A. Social foundations of thought and action: a social cog-
nitive theory. Englewood Cliffs (NJ): Prentice-Hall; 1986.

101. Rosenstock IM. The health belief model and preventive health be-
havior. Health Educ Behav 1974;2:354–86.

102. Muthén LK, Muthén BO. Mplus: statistical analysis with latent var-
iables: user’s guide. Los Angeles (CA): Muthén & Muthén; 2016.

103. Enders CK, Bandalos DL. The relative performance of full in-
formation maximum likelihood estimation for missing data in struc-
tural equation models. Struct Equ Modeling 2001;8:430–57.

104. Raudenbush SW, Bryk AS. Hierarchical linear models: applications
and data analysis methods. Thousand Oaks (CA): Sage Publications;
2002.

105. Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance
structure analysis: conventional criteria versus new alternatives. Struct
Equ Modeling 1999;6:1–55.

106. Arbuckle JL. Full information estimation in the presence of in-
complete data. In: Marcoulides GA, Schumaker RE, editors. Ad-
vanced structural equation modeling: issues and techniques. Mahwah
(NJ): Lawrence Erlbaum Associates; 1996. p. 243–77.

107. Little RJA. A test of missing completely at random for multivariate
data with missing values. J Am Stat Assoc 1988;83:1198–202.

108. Little RJA, Rubin DB. Statistical analysis with missing data. New
York: Wiley; 1987.

109. White IR, Royston P, Wood AM. Multiple imputation using chained
equations: issues and guidance for practice. Stat Med 2011;30:377–99.

110. Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H.
Comparison of random forest and parametric imputation models for
imputing missing data using MICE: a CALIBER study. Am J Epi-
demiol 2014;179:764–74.

111. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for
assessing and comparing indirect effects in multiple mediator models.
Behav Res Methods 2008;40:879–91.

112. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink
consumption on nutrition and health: a systematic review and meta-
analysis. Am J Public Health 2007;97:667–75.

113. Robinson E, Aveyard P, Daley A, Jolly K, Lewis A, Lycett D,
Higgs S. Eating attentively: a systematic review and meta-analysis of
the effect of food intake memory and awareness on eating. Am J Clin
Nutr 2013;97:728–42.

114. Ma Z, Zeng W. A multiple mediator model: power analysis based on
Monte Carlo simulation. AJAP 2014;3:72–9.

115. Pituch KA, Whittaker TA, Stapleton LM. A comparison of methods to
test for mediation in multisite experiments. Multivariate Behav Res
2005;40:1–23.

116. Thoemmes F, MacKinnon DP, Reiser MR. Power analysis for com-
plex mediational designs using Monte Carlo methods. Struct Equ
Modeling 2010;17:510–34.

117. Cohen J. A power primer. Psychol Bull 1992;112:155–9.
118. Zhang Z. Monte Carlo based statistical power analysis for mediation

models: methods and software. Behav Res Methods 2014;46:1184–98.

MEDIATION ANALYSIS 1271


