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Introduction

Brown rot (BR) is the general term given to the symptoms 
of infection and sporulation on stone fruit, primarily by 
Monilinia fructicola (G.Winter) Honey, and to a lesser ex-
tent by Monilinia laxa (Aderh. & Ruhland) and Monilinia 
fructigena Honey. BR is the most important disease of 
peach worldwide (Gradziel 2003, Ogawa and English 1991) 
and the frequent application of fungicides required to con-
trol it remains a major constraint to sustainable production. 
Consequently, genetic resistance to BR is highly desirable 
in new cultivars.

Various resistance and tolerance germplasm sources are 
known (Byrne et al. 2012), and several efforts have exam-
ined the way in which M. fructicola infects fruits (Lee and 
Bostock 2007, Lee et al. 2010). Although fruit traits associ-
ated with resistance (Gradziel 2003) and part of their genet-
ic components (Martínez-García et al. 2013) have been 
characterized, successful breeding of resistant commercial 

cultivars remains elusive, due in part to the strong environ-
mental influence, the absence of a focused research effort 
including the development of an efficient evaluation crite-
ria. Characteristics of the fruit epidermis, such as thickness 
of the cuticle and epicuticular wax layer, and concentrations 
of pectin, phenolic, chlorophyll, and other biochemical 
compounds associated with tissue maturation (Gradziel and 
Wang 1993, Lee and Bostock 2007), are associated with the 
degree of resistance within a given phenotype when the 
fruits are not wounded. Epidermal barriers can be lost fol-
lowing mechanical or insect damage, leaving only mesocarp 
resistance factors such as high phenolic concentration or 
flesh textural integrity, which may be commercially undesir-
able (Gradziel 2003).

Procedures for characterizing epidermal characteristics 
are labor intensive, expensive, and inconsistent (Byrne et al. 
2012). In wounded fruit, where the epidermis has been 
breached, Martínez-García et al. (2013) identified three 
putative quantitative trait loci (QTLs) and two candidate 
genes associated with the BR resistance. However, because 
the phenotypic data and residuals distribution from non- 
wounded fruit exhibited serious departures from a normal 
distribution due to serious departures from homoscedasticity 
(i.e. heterogeneity of variance), the data was not used for 
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QTL analysis, which assumes homoscedasticity. In this 
case, data transformation would not help to alleviate the 
issues while not altering intuitiveness of the phenotypic 
scale during conclusion drawing. Information generated 
through artificial inoculation on non-wounded fruit is con-
sidered more reliable and representative of BR field resis-
tance (Byrne et al. 2012).

In peaches bred for canning, normally undesirable fruit 
epidermis-based resistance such as high phenolic concentra-
tion and cellular integrity can be targeted, since the epider-
mis is removed during processing. Towards this goal, sources 
of epidermis-based resistance from peach, including the re-
sistant cultivar ‘Bolinha’ (Feliciano et al. 1987), as well as 
from almond and related species have been incorporated into 
advanced breeding selections, through genetic introgression 
(Gradziel 2002, Gradziel et al. 2003). While BR resistance 
has been improved, the derived germplasm often shows re-
duced quality for important commercial traits as a result of 
linkage drag (Gradziel 2003, Gradziel and Wang 1993).

Concurrent selection for epidermis-based resistance and 
good fruit quality is consequently highly desirable, despite 
the genetic complexity of these traits and their often exotic 
origins. Towards this goal, a strategy based on Bayesian 
inference is presented as an application of the individual 
model (also known as “the animal model” in animal breed-
ing literature), referred to here as the Bayesian ordinal ani-
mal model (BOAM). A pedigree-based narrow-sense herita-
bility (h2) was estimated and the estimated breeding values 
(EBVs) were obtained by fitting ordinal logistic regression 
by means of the Gibbs sampler integrated in JAGS 
(Plummer 2003). To evaluate the robustness of BOAM, the 
evaluation of the goodness-of-fit was performed for several 
models, using distinct priors for the probability distribution  

of the square root of the additive genetic variance 
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Finally, a series of comparisons were performed. The first  
set compared the EBVs from each model, their correlations, 
and the ranking of individuals. Subsequently, a comparison 
of the ranking of the EBVs obtained from the analysis of a 
severity index evaluated through restricted maximum likeli-
hood (REML) was performed.

Materials and Methods

Plant material
The pedigree analyzed is composed of 221 accessions, 

including processing peach cultivars and breeding selec-
tions, the almond cultivar ‘Nonpareil’, and two segregating 
mapping populations (PopBR-1 and PopBR-2) resulting 
from the crosses ‘Dr. Davis’ × ‘F8,1-42’ and ‘Loadel’ ×  
‘96,4-55’, respectively (Fig. 1). The first cross, involved a 
resistant modern cultivar and a breeding line possessing BR 
resistance from almond, respectively. The second cross, in-
volved a resistant old cultivar and a breeding line possess-
ing BR resistance from the Brazilian cultivar ‘Bolinha’, 
respectively.

Phenotypic data and categorization
A severity index was determined for the progenies of the 

breeding crosses, as described by Martínez-García et al. 
(2013). In summary, twenty fruits at the tree-ripe maturity 
stage from a single individual were collected during each 
season, which extended over a 6 to 7 week period of July 
and August, during the 2007–2009 seasons. Fruit maturity 
differed slightly from season to season. The fruits were 
stored at 4 °C, for four days and subsequently warmed to 
room temperature for 24 h prior to inoculation. Fruit outer 
surfaces were sterilized for 30 seconds through immersion 
in 10% bleach (0.6% NaOCl), rinsed in deionized water, 
and dried. Fruits were then placed in humidified plastic con-
tainers (30.5 cm × 22.9 cm ×10.2 cm, Model 295C; Pioneer 
Plastics, Dixon, KY) with fruit tray liners (M-24B; FDS 
Manufacturing Co., Inc., Pomona, CA). Fruits were inocu-
lated with a 10 μL droplet containing conidia of M. fructicola 
(isolate MUK-1) at a concentration of 2.5 × 104 spores per 
mL from 7 to 10-day-old cultures maintained on V-8 juice 
agar.

Inoculations of non-wounded fruits (i.e., intact cuticle 
and epidermis) were performed in parallel with inoculations 
of wounded fruits, which were made by the application of a 
10 μL droplet of inoculum to a wound created by breaching 
the epidermis with a 22 gauge needle to generate a small 
hole to a depth of 2 mm. Lesion diameter (mm) was record-
ed three days after inoculation and incubation of the fruits in 
the humidified containers at room temperature (25 ± 1°C). 
Disease severity for each genotype was calculated as aver-
age lesion diameter × disease incidence (proportion of fruit 
with lesions greater than 3 mm). Standard cultivars (‘Ross’ 
or ‘Carson’) that are susceptible to brown rot were included 
each week, depending on their maturity and availability, as 
a positive control for each week’s disease assay.

BR susceptibility was categorized based on data of dis-
ease severity in the progenies and the empirical field obser-
vations and documented information of relative disease ex-
hibition for non-inoculated breeding selections and 
cultivars. Thus, five categories were created, with 1 indicat-
ing resistance and 5 indicating high susceptibility (Table 1). 
For old cultivars and breeding selections, because they were 
not considered in the inoculation experiment, values for BR 
and factors Year and (partially) for Treatment were lost; and 
recorded as missing values (i.e. not available, NA).

Model used to calculate estimated breeding values
An ordinal logistic model with a logit link function 

(Agresti 2013) was used to calculate EBVs taken as the 
random effects term of a logistic generalized linear mixed 
model. Ordered polytomous modeling was undertaken for 
each possible score (on the scale) at which a threshold 
could be used to divide genotypes into one of the five cate-
gories (C): highly resistant, moderately resistant, suscepti-
ble, moderately susceptible and highly susceptible. The 
probability 
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..., C. For the categories considered in the present analysis,  
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cut point for categories less than or equal j and categories 

greater than j, called the threshold value, and μikl is the con-
tinuous variable underlying the categorical trait, called a lia-
bility. This liability is expressed as: μikl = βTk + βYl + ai, 
where βTk and βYl are the fixed effects of treatment k and 
year l, respectively, and ai is the breeding value of the ith 
genotype (k = 1, 2; l = 1, 2, 3; i = 1, 2, ..., 221). For identifi-
ability, it is assumed that βT1 = βY1 = 0. Denoting β = (βT2, 
βY2, βY3)’ and a = (a1, a2, ... a221)’, liabilities of all samples 
(μ) are written as μ = Xβ + Za, where X and Z are known 
design matrices relating the fixed effects and breeding val-
ues of the sample.

Thus, it is possible to fit the reparameterized Bayesian 
additive genetic model proposed by Damgaard (2007) [based 
on the additive genetic model proposed by Bulmer (1980)], 
which derives from the univariate case of the Bayes rule: 

Fig. 1.	 Pedigree of the accessions studied. Each box represents the degree of BR resistance in non-wounded (left) and wounded (right) fruits. In 
light yellow are the almond cultivar ‘Nonpareil’ (oval), the source of BR resistance from almond, and ‘Bolinha’ (rectangle), the source of BR re-
sistance from peach, and in blue are the progenies PopBR-1 (01 09 XXX) and PopBR-2 (02 02 XXX and 02 07 XXX). Empty boxes mean no 
information is available for that accession, usually unknown male parentage. The pedigree figure was generated using PediMap 1.2 (Voorrips et 
al. 2012) and colored through Adobe Illustrator CS5.5.

Table 1.	 Phenotypic categories used in the present study

Category Value Average Lesion Diameter 
(mm)

Highly resistant 1 0–5
Moderately resistant 2 5–20
Susceptible 3 20–30
Moderately susceptible 4 30–50
Highly susceptible 5 >50
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The variance matrix of a is given as 
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A  , where A is a 
numerator additive relationship matrix of 221 genotypes 
and can be decomposed as A = TDT’ with T being a lower 
triangular sparse matrix and D being a diagonal matrix hav-
ing the ith diagonal element of Di. Following Damgaard 
(2007), a vector of breeding values a is reparametrized as  
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a TD η  , where η is the deviation of the progeny  

breeding value from the parental average breeding value, 
also known as the Mendelian sampling term, which basically 
is a vector sampled from a standard, multivariate normal 
distribution. Assuming that genotypes showed in Fig. 1 have 
been sorted from the oldest to the youngest and renumbered 
them from 1 to 221 (where the parents precede offspring), we  

applied the recursive formula for a, 
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where fi and mi indicate the female parent and male parents,  
respectively, of the genotype ith genotype and ηi is the ith 
element of η. If a female parent is unknown, then its afi = 0 
(Damgaard 2007). The founder genotypes were considered 
unrelated since those genotypes are also founders of the 
peach breeding germplasm in North America (Gradziel et 
al. 1993, Scorza et al. 1985) and have uncertain as well as 
unrelated origins.

Through the application of Markov chain Monte Carlo 
methods (Hastings 1970, Metropolis et al. 1953) the posterior  

sample distribution of a and 
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to yield posterior samples of a, as well as posterior point  
estimates and credible intervals. For the case of a, it has to 
be updated from the full conditional for a through the recur-
sive formula of the Mendelian sampling term for ai. We 
have called this procedure as Bayesian ordinal animal mod-
el (BOAM, Supplemental code 1).

BOAM was evaluated using JAGS (Plummer 2003) 
version 3.4.0, using the library rjags 3-13 (Plummer and 
Stukalov 2014) to interface with R version 3.1.0 (R Devel-
opment Core Team 2014). Since many of the genotypes 
were not evaluated over all of the years considered in the 
study, many individuals exhibited missing values for the 
factor year (which could take values of 1, 2 or 3). Values for 
year for these individuals were imputed through the dcat() 
function in JAGS, giving equal probabilities (1/3) to each 
one of the possible outcomes (1, 2 or 3). BOAM was fitted 
by running three independent chains for a total of 170,000 
iterations, and a burn-in of 20,000, per chain, and model 
parameters were saved every 30th iteration, in order to yield 
5000 samples to draw inferences. The category 1 for treat-
ment (non-wounded) and year (year 1 = 2007) was fixed as 

zero. The priors for γj and β were considered as normally 
distributed with mean zero and variance 100 [γj ~ N(0, 100) 
or βlk ~ N(0, 100)], for which γj with j = 1, 2, 3, 4, the con-
straint is that γ1 < γ2 < γ3 < γ4. Therefore, the initial values 
for γj and the slopes for treatment and year (βlk) were set as 
follows: γ1 = –0.5, γ2 = 0.0, γ3 = 0.5, γ4 = 1.0, β1k = NA, 
β2k = 0.1, βl1 = NA, βl2 = 0.1 and βl3 = –0.1.

For 
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 , which is required for the evaluation of ai and  

the estimation of EBVs, four priors were applied in order to  
evaluate the influence of the prior and the robustness of the  

estimation of the EBVs. Thus, the prior of 
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ered to be: Half-Cauchy-distributed, which is, basically, a  
Student’s t-distribution with one degree of freedom com-
prising positive values only, with mean zero and variance  

one 
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t  , as discussed by Gelman et al. (2008);  

a Half-Normal distributed prior was considered, which is  
a normal distribution comprising positive values only, with 
mean zero and, in this case, variance equal to 100  
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�  ; a Gamma-distributed prior with shape  

and rate equal to 0.001 
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  as shown by  

Damgaard (2007); and, finally, a uniformly distributed prior  

with minimum zero and maximum ten 
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as recommended by Gelman (2006). These four priors can be  
considered to be weakly informative. Thus, the narrow sense 

heritability (h2) was estimated through: 
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in which π2/3 is the parameterized variance for a logistic  
distribution (Gelman 2013) added to the underlying un
observed response tendency (Hedeker et al. 2006). Finally, 
Estimated breeding values were obtained through: EBV =  
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Parameters γj, β, 

 Page 19

2

σ
a

 , h2, and each EBV, were checked for  
convergence through visual inspection of the trace plots and 
through the convergence diagnostics of Gelman & Rubin 
(Brooks and Gelman 1998) and Raftery & Lewis (Raftery 
and Lewis 1992, 1995) included in the library coda 
(Plummer et al. 2013) for R version 3.1.0. In order to evalu-
ate the goodness-of-fit for the application of each of the pri-
ors mentioned above, for each model the Deviance Informa-
tion Criterion (DIC, Spiegelhalter et al. 2002) was 
calculated. The differences between the DICs among 
BOAM using distinct priors were calculated for the compar-
ison of the fitness of the models and conclusions were drawn  

about the probability distribution for 
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 . A comparison  

among the EBVs from each model, their correlations, and  
a ranking of individuals are presented.
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Results

Phenotypic data and categorization
To the categorization presented in Table 1, an additional 

criterion related to the breeding value per se for peach im-
provement was added; that is to say, the score based on the 
category and given to a genotype also included an empirical 
judgment of the likely use of the selection for peach genetic 
improvement. Since for old cultivars and breeding selec-
tions inoculation experiment was not available, 1034 data 
points, were considered for the analysis, of which 4% were 
missing data and imputed within the BOAM procedure. 
Considering the Year and Treatment combinations showed a 
clearly distinct behavior among combinations (Fig. 2), 
which provides support to the approach of considering si-
multaneously these factors into a logistic model.

Data analysis
The complete analysis required 12 hours, 5.2 GB RAM 

and 3.6 GB ROM on a desktop computer with a 2.8 GHz 
quad-core microprocessor.

The posterior mean, also known as the empirical mean, 
and the interval of the possible values for each parameter 

estimated through the model and with a respective prior for  
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  are shown (Table 2). Note the homogeneity of values  

for the coefficients of γj, β, and 
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  among the models using  
the Half-Normal, Gamma and Half-Cauchy-distributed pri-
ors, with the model using a uniformly distributed prior be-
ing the only one showing greater deviations in relation to 
the others. The coefficients were different than zero, exclud-
ing βT1 and βY1, which were fixed as zero. In biological and 
genetic terms, h2 is the most relevant parameter, ranging 
from 0.21 to 0.38, with mean 0.29, independently of the  

prior used for 
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 . The behavior of h2 is graphically shown  

in Fig. 3.
The deviance values (including their penalization) for 

DIC for each BOAM using each prior are shown in Table 3, 
in which the Gamma-distributed prior showed the best fit. 
Interestingly, the uniform-distributed prior showed the least 
fit, but also the least penalty among models; hence, consid-
ering the penalized DIC value, the uniformly-distributed 
prior would be ranked second, followed by the Half-normal 
and Half-Cauchy prior. The differences between the DIC 
among models are shown in Table 4. Thus, the Gamma- 

Fig. 2.	 Trellis plot showing the density distribution of the data according to Year-Treatment combinations. On axis X the distinct degrees of BR 
susceptibility as described in Table 1 are shown.
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distributed prior showed the best fit considering mean DIC 
but considering the pair-wise differences among models tak-
ing into account the penalized deviance, the uniformly dis-
tributed prior showed the best fit. However the difference is 
less than 2 units with the Gamma-distributed prior, and around 
3 units with respect to the half-normal-distributed prior.

The values for the EBVs ranged from –3.2546004 to 
4.81101782 (Table 5), with the lowest values indicating re-
sistance to BR and the highest indicating total susceptibility. 
The EBVs calculated through BOAM using distinct priors 
showed total correlation for the genotypes considered here, 
independently of the prior used. In contrast the EBVs esti-
mated through REML showed lower values of correlation 
with the EBVs estimated through BOAM (Fig. 4).

Discussion

Technical implications
The results of this study clearly show that the informa-

tion provided by the dataset and the strategy followed are 
robust. This is supported by the null influence of the priors 
used for the estimation of genetic parameters such as the 
additive genetic variance 
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 , h2 and EBVs, in addition to 
the similar values for the coefficients of γj, and β, which ba-
sically means that the likelihood is dominating on the priors 
[Pr(y|θ) >>> Pr(θ)]. Hence, the results derived through the 
application of the BOAM are reliable, supported through 
the sufficient degree of mixing and the convergence shown 
on the trace plots (Fig. 3) and by the convergence diagnos-
tics of Gelman & Rubin (data not shown), in which the me-
dian potential scale reduction factor and upper confidence 
limits are equal to 1.

Although the original analysis required 12 hours to be 
performed due to the number of iterations solicited 
(170,000), for this dataset, this amount of time can be se-
verely reduced using 7000 iteration only, using a burn-in pe-
riod of 2000 iterations and avoiding the application of thin-
ning, in order to keep 5000 samples for parameter inferences.

Because of the advancements in personal computational 
power, it has become feasible to perform statistical analysis 
based on MCMC such as the one presented here, while pre-
viously it was problematic (Damgaard 2007). It is expected 
that refinement of existing algorithms and development of 
new ones will enable researchers and applied breeders to fit 
more complicated models to more accurately estimate ge-
netic parameters and additional terms such as interactions. 
In addition, more efficient informatics samplers will en-
hance the speed at which results are produced. Examples 
can be seen in the development of Stan (Hoffman and 
Gelman 2014, Stan Development Team 2015) and in new 
approaches not based on sampling, such as Integrated Nested 
Laplace Approximation (INLA, see Holand et al. 2013) and 
the development of faster programming languages such as 
Julia (Bezanson et al. 2012).

The absence of difference among the estimations of 
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has also led to the absence of differentiation in the estima-
tion of the rest of the parameters, of h2 and of the EBVs. 
Hence, statistically speaking, our strategy is well supported. 
The use of vague priors for the estimation of h2, has been 
reaffirmed, with the Gamma-distributed prior being the best 
fitting; although showing a difference of 1.71 units with the 
uniformly distributed prior, and around 1.36 units with re-
spect to the half-normal-distributed prior. Therefore, one 
can consider that the differences in fit among Gamma, 
half-normal and uniformly distributed prior are negligible. 
However, the evidence is strong against the use of 
Half-Cauchy-distributed prior for 
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 , since the differences 
considering penalized deviances go above 19 units in pair-
wise comparisons with the other three priors.

It is commonly known that in order to get reliable and 
robust estimates through logistic regression, a complete da-
taset (i.e. no missing data in variables and factor levels) is 
preferred overall to avoid breaking the assumption of ran-
dom missingness which affects the pattern of risk factors 
observed in a whole dataset (Jewell 2004). Through the im-
plementation of an imputation of factor levels for Year, it 

Table 2.	 Empirical means and quantiles for parameters

Estimated 
value for:

Half-Normal distributed prior Gamma-distributed prior Half-Cauchy-distributed prior Uniformly distributed prior

Empirical 
mean

Quantiles Empirical 
mean

Quantiles Empirical 
mean

Quantiles Empirical 
mean

Quantiles
2.50% 97.50% 2.50% 97.50% 2.50% 97.50% 2.50% 97.50%

γ1 –2.35 –3.11 –1.62 –2.32 –3.08 –1.59 –2.31 –3.06 –1.59 –2.35 –3.11 –1.62
γ2 –0.66 –1.41 0.06 –0.63 –1.37 0.09 –0.62 –1.36 0.09 –0.66 –1.41 0.06
γ3 2.63 1.11 3.88 2.63 1.13 3.88 2.16 1.02 3.69 2.62 1.11 3.85
γ4 2.14 1.01 3.69 2.15 0.99 3.70 2.63 1.15 3.85 2.14 0.99 3.77
β1k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2k –0.21 –0.46 0.03 –0.21 –0.45 0.03 –0.21 –0.45 0.03 –0.22 –0.46 0.03
βl1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
βl2 –0.05 –0.44 0.34 –0.04 –0.44 0.35 –0.05 –0.44 0.34 –0.05 –0.45 0.34
βl3 –0.03 –0.43 0.36 –0.03 –0.42 0.36 –0.03 –0.41 0.36 –0.03 –0.42 0.36
h2 0.29 0.21 0.38 0.29 0.21 0.37 0.29 0.20 0.37 0.29 0.21 0.38
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 1.41 0.89 2.01 1.37 0.86 1.96 1.34 0.85 1.92 1.41 0.90 2.02

Empirical means and 2.50% and 97.50% quantiles for the parameters monitored in JAGS. These were calculated from the posterior distributions 
of each parameter.
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Fig. 3.	 Trace and density plots for heritability of BR susceptibility for each prior used to model the additive genetic variance.
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was possible to get robust estimations for genetic parame-
ters regardless of missing data and priors applied. Such an 
imputation of factor levels enabled us to take into account 
the available information for members of the pedigree that 
were not evaluated in the study. This is the case of commer-
cial cultivars and old breeding selections, for which infor-

mation can be obtained, for instance, in documented records 
of resistance in cultivar catalogs and extension reports or 
passport information from germplasm repositories.

The application of the Bayesian ordinal animal model on 
the study of brown rot resistance in peach

BR resistance in peach is the result of interactions among 
multiple structural and biochemical components; in the fruit 
epidermis and flesh which show large environmental effects 
(Cantoni et al. 1996, Gradziel et al. 2003, Gradziel and 
Wang 1993). Many of the components and their interactions 
can be measured, though the amount of information provid-
ed per component is restricted to the proportional effect of 
the component in the exhibition of BR resistance (Gradziel 
et al. 1998). However, the formation of categories involves 
a subjective component; in this case, the categorization is 
well-based on the understanding of the morphological and 
biochemical components of peach fruit involved in the exhi-
bition of BR infection. Although, the gene is the inheritance 
unit, the phenotype (the trait itself) continues being the ref-
erence unit for breeding. Thus, the use of categories based 
on breeder expertise is a summarization of all the processes 
involved in BR resistance exhibition; processes that often 
do not require genetic dissection for breeding to be per-
formed; although any additional information from dissec-
tions is highly desirable, particularly for marker-assisted 
selection. The information provided by the application of 
BOAM serves as a first support for decision-making in the 
breeding program to assist selection and design of crosses. 
Also, information based on BOAM can be useful to assist 
genetic dissection of traits by selecting those individuals 
with extreme EBVs and known lineages.

The utilization of Bayesian inference techniques through 
an ordinal logistic model has enabled us to obtain the first 
estimation for h2 for BR resistance within a pedigree of 

Table 3.	 Values for the Deviance Information Criterion (DIC)

Prior Mean deviance Penalty Penalized deviance
Gamma 4186 82.68 4248
Half-normal 4194 75.93 4270
Half-Cauchy 4196 93.98 4289
Uniform 4198 68.77 4266

For each model DIC were calculated using each prior for the additive 
genetic variance. Their locations correspond to the best-fitted model 
(top) to the least-fitted (bottom).

Table 4.	 Differences between the DIC and their standard errors

Half-Cauchy Gamma Half-Normal Uniform
Half-Cauchy – 20.80438

15.16039
19.44639
18.60957

22.51744
16.4013

Gamma –20.80438
15.16039 – –1.357996

17.86342
1.713055
17.0784

Half-Normal –19.44639
18.60957

1.357996
17.86342 – 3.071051

15.54499
Uniform –22.51744

16.4013
–1.713055

17.0784
–3.071051
15.54499 –

The differences in DIC and corresponding standard errors among 
BOAM applying a distinct prior. Thus, the difference between the 
Half-Cauchy and Gamma-distributed prior with respect to DIC is 
20.80438 and the sample standard error of this difference is 15.16039. 
These values show that the model using a Gamma-distributed prior 
for the additive genetic variance fits better than does a Half-Cauchy- 
distributed prior, which is observed in the difference of this same com-
parison but in the direction Gamma vs. Half-Cauchy, in which the 
DIC’s difference is negative, in favor for the Gamma-distributed prior.

Table 5.	 Ranking of EBVs yielded through the BOAM using each prior; 10 individuals in the top 30, as well as individuals in the bottom 10 are 
shown

Ranking Genotype Half-Normal Gamma Half-Cauchy Uniform
2 Bolinha –3.254600391 –3.178712853 –3.171238835 –3.23762941
3 01,9-271 –2.712693236 –2.680472621 –2.664983005 –2.709349014
6 Nonpareil-BF –2.396573347 –2.387498349 –2.381702153 –2.40188797
7 Orange Cling –2.396573347 –2.387498349 –2.381702153 –2.40188797
8 01,9-035 –2.291572396 –2.265968122 –2.254664605 –2.296784474

15 01,9-082 –2.276717584 –2.254075204 –2.244794489 –2.282397147
26 02,2-255 –2.239161688 –2.222356864 –2.210881871 –2.256686101
27 02,2-258 –2.239161688 –2.222356864 –2.210881871 –2.256686101
28 02,7-086 –2.247504491 –2.213871168 –2.211154439 –2.247187379
29 02,7-088 –2.247504491 –2.213871168 –2.211154439 –2.247187379

212 Dix-6-6 3.111762993 3.109898726 3.081505407 3.106417645
213 Dix-8 3.111762993 3.109898726 3.081505407 3.106417645
214 Everts 3.399790384 3.359438477 3.353500054 3.397536024
215 Jungerman 3.399790384 3.359438477 3.353500054 3.397536024
216 Dix-9 3.785353243 3.760980686 3.7623027 3.781094126
217 Dixon 3.785353243 3.760980686 3.7623027 3.781094126
218 Dix-22A-5 4.797976669 4.747679292 4.718376925 4.793894615
219 Dix-5A-1 4.797976669 4.747679292 4.718376925 4.793894615
220 D-30-3E 4.811017817 4.754630563 4.736022267 4.791423132
221 D25-9E 4.811017817 4.754630563 4.736022267 4.791423132
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peach, which reveals that the influence of the genetic com-
ponent involved in the exhibition of this trait is certainly not 
marginal, and there is still sufficient genetic variation to 
support advancements for the genetic improvement of 
peach, as has been demonstrated by Gradziel (see Gradziel 
et al. 2003 and Gradziel 2012) through the application of 
recurrent back-crosses. The h2 range from 0.21 to 0.38 is 
realistic in the light of the empirical experience gained in 
the breeding program.

Typically, the study of genetic traits begins with estimat-
ing genetic parameters such as additive genetic variance, 
genetic effects beyond additivity (dominance and epistasis), 
heritability, genetic correlations and breeding values. Previ-
ous estimates of genetic parameters in peach have been 

limited to the study of bi-parental populations and, in some 
cases, half-sib families (Hansche 1986, 1990, Hansche and 
Boynton 1986, Hansche et al. 1972). Estimating genetic 
parameters, including EBVs, within a pedigree has occurred 
only in the studies led by de Souza and Byrne (de Souza et 
al. 1998a, 1998b, 2000), where REML was applied to esti-
mate variance components. This scenario agrees with the 
assessment done by Piepho et al. (2008) for the case of an-
nual crops, in which the estimation of EBVs through BLUP 
is not as common as it is for animal breeding, regardless of 
the power of the methods. For annual crops, selection is not 
usually based on the individual genotype performance, as it 
is in animal (principally livestock) breeding. In this regard, 
fruit tree crop breeding has more similitudes to animal 

Fig. 4.	 Scatter plot of matrices (SPLOM) showing the correlation of EBVs calculated through BOAM for each prior and through REML. Scatter 
plots below the diagonal show the linear regression that fits for the two sets of EBVs, shown on the diagonal frequency histograms, while Pearson 
correlation (with pairwise deletion) values are shown above the diagonal, generated though using the function pairs.panels of the package psych 
version 1.4.4 (Ravelle 2014) for R version 3.1.0. EBVs_HNo: EBVs calculated with an additive genetic variance with a Half-Normal-distributed 
prior, EBVs_Gam: EBVs calculated with an additive genetic variance with a Gamma-distributed-prior, EBVs_HCa = EBVs calculated with an 
additive genetic variance with a Half-Cauchy-distributed-prior and EBVs_Uni: EBVs calculated with additive genetic variance with an uniformly 
distributed prior, EBVs_REML: EBVs calculated through REML using a BR severity index for wounded and non-wounded fruits of Pop-BR-1 
and PopBR-2, EBVs_REMW: EBVs calculated through REML using a BR severity index for wounded fruits only from PopBR-1 and PopBR-2, 
REMN: EBVs calculated through REML using a BR severity index for non-wounded fruits only from PopBR1 and PopBR-2.
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breeding (e.g. selection on individual genotypes, pedigree 
records, repeated measures, limited progeny size, exhibition 
of long juvenility), and thus the extension of the animal 
model is applicable.

Our estimation of h2 is in general agreement with those 
reported for other fungal disease resistance analyses in 
peach, such as peach leaf curl (Taphrina deformans (Berk.) 
Tul.] which was estimated as 0.34 ± 0.19 (Ritchie and 
Werner 1981), suggesting that the resistance to these fungal 
infections tends to be inherited quantitatively. Quantitative 
control is also supported by the mapped QTLs for BR resis
tance (Martínez-García et al. 2013) and peach leaf curl 
(Viruel et al. 1998). For another fungal infection, peach 
canker [Leucostoma persoonii (Nitschke) Höhn.], h2 was 
estimated as 0.72 (Chang et al. 1991), which suggests that 
for this particular disease the inheritance tends to be Mende-
lian (one or two genes) rather than quantitative (more than 
three genes).

Since the ordinal logistic model can be considered as an 
extension of the general linear model to ordinal categorical 
data, and hence of the of binary logistic model (Menard 
2002), changes in the scale (assuming appropriate sample 
size, null or minimum missing data, same ordinal usage for 
the categories, and independence among the dependent var-
iable choices) would be minimal for the ranking of the  

EBVs due to the estimation of 

 Page 12
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σ
a
  being mainly driven by  

pedigree data. However, the numerical values of EBVs are  
expected to exhibit differences as for the parameters γj and β.

Previous analyses applying the Average Information 
Algorithm on Restricted Maximum Likelihood (REML, 
Gilmour et al. 1995) on the severity index data (a continuous 
response variable) previously obtained for PopBR-1 and 
PopBR-2 only, yielded more optimistic h2 values. That anal-
ysis used data from both treatments (wounded and 
non-wounded fruits). The estimations (in gamma scale = 
variance component ratios) were 
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  = 1.53, and residual 
variance of the model (
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 ) = 1.35 and h2 = 0.53, while, for 
the analysis of wounded fruits, 
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h2 = 0.45, but, for the analysis of non-wounded fruits 
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  = =0.95, 

 Page 20

2

σ
e

  = 1.29 and h2 = 0.42 (unpublished results). 
These analyses were performed with the use of ASReml-R 
3.0 (Butler et al. 2009) using pedigree and taking into ac-
count missing records. These deviations may be due to vio-
lations of assumptions such as nonrandom sampling and no 
selection, which affect the estimations of BLUPs through 
REML, since these assumptions evidently do not apply in 
breeding programs, as suggested by Sorensen and Gianola 
(2002).

The EBVs yielded through BOAM, independently of the 
prior applied, are consistent with the empirical experience. 
Thus, the progenies from the families PopBR-1 and PopBR- 
2 show the expected segregation of the trait. Similarly the 
values for breeding lines and plant introductions were in 
accordance with their average performance across the years, 
and in the case of commercial cultivars, the values and 

ranks are in accordance with their documented descriptions. 
Even though the values of h2 yielded through REML can be 
considered as similar to the range reported here, the main 
reason for seeking out an alternative strategy for estimation 
of h2 and EBVs for BR resistance is the unrealistic ranking 
of the EBVs resulting from REML using a BR severity in-
dex. These issues can be seen in Fig. 4, where the deficient 
correlation with the EBVs estimated through BOAM using 
distinct priors is evident. Thus, the genotype ‘Bolinha’, rec-
ognized as the source of BR resistance in peach, was ranked 
155th out of 221 and ‘Dixon’, known for its high susceptibil-
ity to BR, was ranked 102st out of 221, while for BOAM the 
rankings of these cultivars were 2nd and 217th out of 221, 
respectively. Similar outcomes have been reported previ-
ously; EBVs calculated through a mixed linear mixed mod-
el were not co-linear with EBVs estimated through an ordi-
nal mixed model, which led to the conclusion that, when 
estimating EBVs for traits with ordinal responses, an ordi-
nal mixed model is preferable (Wilson et al. 2013). This last 
conclusion supports the performance of BOAM, since this 
method is also realistic and considers the ordinal nature of 
BR resistance and other traits.

In addition, BOAM can be extended for more accurate 
estimations of EBVs, which can be approached through the 
addition of other ordinal covariates, such as fruit maturity 
stage, agronomic treatments and regimes, postharvest han-
dling treatments such as time of cold conservation, or type 
of inoculum/inoculation. However, note that since the 
BOAM is based on iterative methods, the amount of time 
and computational power to fit the model(s) and achieve 
convergence can increase considerably. Also, model selec-
tion is advised, in order to identify the set of models holding 
desirable statistical characteristics (precision and ease of 
handling) as well as realistic predictions.

Perspective of the application of BOAM in the breeding 
program

Effective selection for BR resistance in peach is becom-
ing increasingly important for breeders and ultimately for 
growers and consumers as the use of chemical fungicides is 
reduced or eliminated. While important advances have been 
achieved during the last twenty years in the understanding 
of the nature of the pathogen(s) and the response of peach to 
infection (see Oliveira et al. 2016), the efficient selection 
for BR resistance remains challenging. Factors affecting ef-
ficacy include the few documented sources of resistance 
such as ‘Bolinha’, the harvest of fruit at the full-ripe stage 
which maximizes quality but also vulnerability, and the 
strong selection against enzymatic browning of fruit tissue 
despite its association with Bolinha-type resistance 
(Gradziel et al. 1998). Consequently, the introgression of 
novel sources of resistance from almond and related species 
has been pursued targeting genetic gain of desirable BR re-
sistance alleles simultaneously from both peach and exotic 
sources through recurrent backcrossing. The development 
of BOAM provides the required statistical tools for: a) the 
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combination of phenotypic data from evaluations of wound-
ed and non-wounded fruit which appear to represent distinct 
biological responses and so potential BR resistance alleles, 
and b) the phenotypic summarization of BR resistance 
expression through the use of a breeding relevant ordinal 
categorization. Because several mechanisms are known to 
be involved in BR resistance, including phenolic concentra-
tion, thickness of epidermis components, and flesh texture, 
selection should be simultaneously based on all known as 
well as unknown components, which according to our anal-
ysis are significant, having heritability ranging from 0.21 to 
0.38. Thus, the application of BOAM allows the breeder to 
summarize the phenomenon into categories, and thus sub
sequently consolidate available phenotypic information 
through defining individuals with high genetic merit (sup-
ported by their EBVs) to be further evaluated and potential-
ly used as parents in further optimized breeding schemes. In 
the effort to develop peach cultivars combining resistance 
from both almond and peach, results yielded by BOAM pro-
pose crosses with a higher probability, as expressed by their 
EBVs, of recovering progenies with combined resistance. 
For example, promising parental genotypes would include 
‘01,9-271’, ‘01,9-035’ or ‘01,9-082’ from PopBR-1 having 
the resistance from almond, combined with ‘02,2-255’, 
‘02,2-258’, ‘02,7-086’, or ‘02,7-088’ from PopBR-2 having 
resistance from peach. Bidirectional crosses would be rec-
ommended to determine whether there are maternal effects 
for this trait.

Three important factors have to be considered when 
breeding for disease resistance (Singh et al. 2002). The first 
consideration is the nature of the pathogenic agent, includ-
ing the diversity of virulence. The second is knowledge of 
the availability, diversity and types of genetic resistance 
within the breeding program, as well as within the species 
and close relatives. The third is the handling, developing 
and improving of screening methods and phenotyping, in-
cluding accurate selection of the appropriate environment 
for exhibition of resistance to allow its accurate tracking. 
The breeder plays a major role in addressing these factors, 
for the optimization of resources, which is fundamental to a 
successful breeding program. The estimation of h2 and 
EBVs is a tool for understanding and manipulating the ex-
ploitable genetic components available within breeding 
germplasm. Its use does not exclude additional strategies 
and tools and, in fact, can complement them. For example, 
the EBVs estimated here may be used to expand and support 
the results generated through QTL mapping, since the join-
ing of the genotypes or haplotypes of the molecular markers 
associated with the trait may be related to the breeding val-
ue, and thus, imply the most probable genetic/gametic phase 
for the selection of parents. This approach is pursued 
through the Pedigree Based Analysis under the Bayesian 
Framework (Bink et al. 2002, 2004, 2008, 2012, 2014), 
which enables breeders and researchers to map QTLs while 
providing prior knowledge about the number of QTLs that 
may be involved in the exhibition of the trait, and which 

thus yields genome positions and the denominated Genome- 
wide Estimated Breeding Values.

Here, a strategy based on Bayesian inference and breeder 
phenotypic information was developed and applied to esti-
mate genetic parameters such as h2 and EBVs to assist in 
selecting parents for BR resistance. BOAM was successful-
ly applied on a pedigree possessing two sources of resis
tance, one from peach and the other from almond, and with 
historical information from several well-known commercial 
cultivars, breeding selections, as well as two segregating 
populations. The results of BOAM proved more realistic 
than those yielded through analysis of a severity index 
through REML. These findings have been valuable for the 
genetic improvement for BR resistance by optimizing the 
introgression of both the peach and the almond alleles. This 
approach should prove useful for other species in which the 
traits of interest are ordinal and a pedigree structure is avail-
able. The continuous refinement of procedures based on 
Bayesian inference will allow future access to more robust 
quantitative genetic methods for fruit crop breeding, and we 
expect that application of procedures, such as those present-
ed here, will be extended to incorporate information from 
QTLs, haplotypes and molecular markers, as they become 
feasible through the addition of appropriate vectors and ma-
trices as terms of the model.
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