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Advantages and problems of 
nonlinear methods applied to 
analyze physiological time signals: 
human balance control as an 
example
Wolfram Müller1, Alexander Jung1,2 & Helmut Ahammer1

Physiological processes are regulated by nonlinear dynamical systems. Various nonlinear measures 
have frequently been used for characterizing the complexity of fractal time signals to detect system 
features that cannot be derived from linear analyses. We analysed human balance dynamics ranging 
from simple standing to balancing on one foot with closed eyes to study the inherent methodological 
problems when applying fractal dimension analysis to real-world signals. Higuchi dimension was 
used as an example. Choice of measurement and analysis parameters has a distinct influence on the 
computed dimension. Noise increases the fractional dimension which may be misinterpreted as a higher 
complexity of the signal. Publications without specifying the parameter setting, or without analysing 
the noise-sensitivity are not comparable to findings of others and therefore of limited scientific value.

Human physiology is predominated by nonlinear dynamical systems resulting in fractal patterns1–5. Fractals show 
self-similarity over a range of scales6, 7. For studying fractal physiological time signals, nonlinear measures includ-
ing fractal dimensions, entropies, and Hurst’s exponents are widely used1, 8. They characterize the complexity of 
the signal’s morphology, independently of the absolute signal elongations and enable direct investigations without 
phase space reconstruction.

Every day, each of us solves thousands of postural and balance control tasks of various levels of difficulty with 
seemingly little effort in amazingly elegant way. Because of the large number of degrees of freedom of the body’s 
mechanics, the nonlinear coupling of the body segments, and the complexity of neuro-muscular control mech-
anisms, balance control necessitates extremely sophisticated senso-motoric processes, even for every-day move-
ments. We synergistically use our visual, vestibular, and somatosensory systems for the feedback loops necessary 
to perform these complex motion tasks, to coordinate and optimise the interactions of motions of body parts, to 
perform two or more motion tasks in parallel such as walking and balancing a tray with a heavy load of dishes on 
it. The human postural control system has important basic functions that are necessary for our various interac-
tions with the external world: it builds up posture against gravity, it maintains balance, it controls the orientation 
and position of body segments with respect to the internal capabilities and to the boundary conditions given by 
the external world, and it creates a frame for our perception of the world surrounding us9.

To stay in balance can be improved substantially by training. This holds true for all persons including athletes 
and artists on the high performance end, and for older persons and patients who suffer from balance control defi-
cits, too10. The comprehensive balance test series (seven balance tasks lasting one minute each) we are presenting 
here is capable of quantifying balance capabilities ranging from simple standing on both feet to balancing on one 
ball of the foot with open eyes (except for some acrobats, the latter task performed with closed eyes cannot be 
solved anymore - because it is too difficult).

Besides traditional linear analysis methods, nonlinear methods are frequently used for studying a wide range 
of physiological and pathophysiological processes including disorders related to aging. Among them are: postural 
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control and gait11–18, heart rate variability19–22, brain activity22–25, and breathing26. Unfortunately, in many studies 
measurement and analysis parameters, and signal-to-noise ratios (SNR), that have decisive influence on the out-
come, are not reported sufficiently.

The signal’s absolute values of elongations are not of relevance for these nonlinear measures; in other words, 
multiplying the time signal with a constant factor does not change the values of these measures. Even very small 
signal elongations may influence the result substantially. Therefore, it is to be expected that noise, which accom-
panies any measurement, may have a pronounced influence on the results16, 27. When the physiological control 
process is very regular, for example when the pace of the heart shows little variation, the nonlinear measures for 
the signal complexity may mirror the noise rather than the actual control process. This also holds true for postural 
and balance control signals of the centre of pressure sway measured on a force plate. The set-up for such measure-
ments can be modified easily to study various cases of complexity, noise influences, and effects of measurement 
and analysis parameter settings.

As an example of nonlinear analysis, the Higuchi dimension DH
28 was used to compare the postural sway 

complexity of a series of balance tasks which we have developed to analyse balance abilities ranging from simple 
standing on both feet with eyes open to the difficult task of balancing on one foot with closed eyes. This study 
design is used here to analyse the important influences of noise and of the parameter settings on the computed 
fractal dimension. We used the Higuchi dimension for this exemplary analysis because this nonlinear measure is 
widely used and usually shows a high linearity in the double-logarithmic plot even for limited lengths of data sets.

Results
The results of the centre of pressure (COP) sway time signal analysis with respect to x-direction 
(anterior-posterior) and y-direction (medio-lateral) of the ground reaction force plate are shown in Fig. 1. The 
seven tasks lasted 60 s each and included standing on two feet (TF), two balls (TB), one foot (OF), and on one 
ball (OB). The tasks were performed with open eyes (OE) and, except for the latter (which turned out to be too 
difficult), also with closed eyes (CE). Columns in Fig. 1a represent the means (of one attempt of each of the 15 
test persons) of the standard deviations (SD) of the COP elongations in x-direction, and Fig. 1b represents those 
obtained in y-direction. Figsure 1c,d represent the respective means of the Higuchi dimensions of the COP sway 
time signals. The small standard errors of the means (SEM) are also indicated. Ranking of the balance tasks 
according to increasing means of SDs (n = 15) was not in line with the ranking according to decreasing DH. 
Largest mean of SD was found for OFCE in both directions. DH in y-direction was lowest for OFCE. The lowest 
DH in x-direction was found for standing on two balls with closed eyes (TBCE). Table 1 shows significant differ-
ences between tasks according to the SDs of the elongations and Table 2 according to DH. COP sway time signals 
in x-direction resulted in 14 significant differences (out of 21 comparisons between all tasks) when SD was used 
for the analysis, and 15 were found when DH was used. In y-direction, 15 and 16 comparisons resulted in signif-
icant differences, respectively. Significances of task comparisons based on SD-analysis and on DH-analysis did 
not correspond (indicated with brackets) in nine cases for x-direction COP sway, and in five cases for y-direction 
COP sway. All 15 participants performed each task three times. The first successful attempt was used for the 
analysis shown here. Three time signals out of 15 × 7 = 105 (two times OBOE and one time OFCE) lasted less 
than 60 s, but longer than the minimum criterion of 30 s (the longest time signal lasting between 30 s and 60 s was 
taken). When considering all 315 attempts, 19 did not last 60 s (11 such cases for OBOE, five cases for OFCE, two 
cases for TBCE, and one case for OFOE).

Figure 2 shows time signals and the according Higuchi dimensions DH of balance tasks differing in difficulty. 
The example of one participant is shown. The easy task standing on two feet with open eyes (TFOE) was asso-
ciated with small elongations in terms of centre of pressure sway in y-direction (Fig. 2a), i.e. in medio-lateral 
direction (and also in x-direction, not shown) and with a high Higuchi dimension DH (Fig. 2b). The black graph 
shows DH(t) using a gliding box length of 3000 data points, corresponding to a time interval of 6 s. The Higuchi 
dimension DH for the entire time signal (30,000 data points; 60 s) was 1.48 (grey line) and the values for the glid-
ing Higuchi dimension ranged from 1.30 to 1.62. The elongations measured during standing on one foot with 
closed eyes (OFCE) of the same participant is shown in Fig. 2c. The standard deviation of the elongations was 
11.9 times larger when compared to standing on two feet with open eyes (TFOE). This task is difficult to perform 
and needs high effort of the participant to remain standing. DH was very low (close to 1) and almost constant 
throughout the measurement time (Fig. 2d).

Double logarithmic plots for the Sy-time signals of an easy (TFOE) and a difficult task (OFCE) are shown in 
Fig. 3a. Sampling frequency was 500 Hz, and results obtained with down-sampled signals are also shown. The 
Higuchi dimension DH depends strongly on the choice of the data point interval kmax as can be seen in Fig. 3b. 
Over the entire range of kmax values, the coefficient of determination r2, which is used to determine the linearity 
in the double logarithmic plot, was larger than 0.98 (Fig. 3c). For comparison, one participant performed the test 
OFCE in an additional experiment with real sampling frequencies of 500, 250, and 125 Hz. These results (not 
shown) were highly similar to the results found with down-sampled signals.

For the results shown in Fig. 4, one time signal of each participant performing the tasks TFOE and OFCE was 
used for computing DH; means and SEMs are plotted. Down-sampling using constant kmax = 40 decreased DH for 
the easy task significantly (Fig. 4a), and increased it significantly for the difficult task. The difficult task was asso-
ciated with a high SD of the sway elongations and a high signal-to-noise ratio (SNR). Matching the sampling fre-
quency with kmax such that the time interval remained constant (0.08 s) resulted in very small (and insignificant) 
differences of DH for the difficult task, whereas the reduction of DH associated with the easy task still remained 
large and significant (Fig. 4b). Significant differences due to changes in sampling frequency (with and without 
adaption of kmax) are indicated by stars in the column diagrams.

In addition to the choice of the sampling frequency and of kmax, the level of noise also influences the value 
of DH substantially (Fig. 4c). Artificial (Gaussian random) noise with the same standard deviation as measured 



www.nature.com/scientificreports/

3Scientific Reports | 7: 2464  | DOI:10.1038/s41598-017-02665-5

experimentally (0.05 mm) was added to the time signals. For the easy task, this additional noise increased the 
mean DH (n = 15) from 1.42 to 1.58. Addition of noise with twice the standard deviation of the measured noise 

Figure 1.  Linear and nonlinear analyses of the seven balance tasks. Abbreviations: TF (two feet), OF (one foot), 
TB (two balls), OB (one ball), OE (open eyes), CE (closed eyes). Significant differences (Kruskal-Wallis test) are 
presented in Tables 1 and 2. The columns represent the mean values of the fifteen test persons who participated 
in the test series. Standard errors of mean (SEM) are also indicated. Analyses of the center of pressure (COP) 
sway in terms of standard deviations (SD) are shown in (a,b). (a) represents the SDs of the sway of the COP 
in (anterior-posterior) x-direction, and (b) in (medio-lateral) y-direction. The columns in (c) represent the 
Higuchi dimensions DH with respect to the x-component of the COP sway and (d) shows the DH values 
according to the y-component.
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increased the mean DH to 1.74. For the difficult task, the addition of noise also increased the mean DH, but differ-
ences were much smaller (DH changed from 1.05 to 1.06 and to 1.10, respectively).

Discussion
Human posture control and balancing tasks used to study methodical aspects of nonlinear 
time signal analyses.  Every healthy human can stand on two feet, most of us can stand on one foot and can 
stand on the balls of both feet without major problems, but trying to stand on one ball for a minute shows that 
this is quite difficult. Standing on both feet with closed eyes can also be done easily - otherwise we would have 
problems standing in the dark.

Analysing the balance control is not only of core importance for understanding and quantifying features of the 
human motor control system, it can also be advantageously applied for analysing the reliability of fractal dimen-
sion calculations at various settings of the measurement and of the nonlinear time signal calculation parameters, 
and further, results from a wide range of task difficulties can be compared. We have developed a series of balance 
tests for studying the control processes ranging from easily performable tasks like standing on both feet to diffi-
cult ones like standing on one ball with open eyes (OBOE), or closed eyes on one foot (OFCE), or on two balls 
(TBCE). The standard deviations (SDs) of the COP elongations were highest for OFCE, whereas the lowest DH 
was found for TB CE in this group of 15 young persons.

Fractal dimension analysis (DH) resulted in 15 significant differences between tasks for the x-direction and in 
16 for the y-direction, but eight of these 31 differences were not significant when using SD for the analysis. This 
indicates that the nonlinear time signal analysis is capable of distinguishing between different regulation mecha-
nisms when compared to the analysis of SDs of COP sways.

Determination of fractal dimensions may fail to assess complexity of a given dynamical pro-
cess appropriately when effects of noise and parameter settings are not considered ade-
quately.  Inadequate choices of nonlinear analysis parameter settings can affect the quantification of the 
complexity of a process substantially as shown in Figs 3 and 4a,b for the sampling frequency and the choice of 
kmax. The appropriate parameter setting has to be based on both the demands given by the nature of the processes 
to be studied and by the demands resulting from the mathematical analysis method and its practical application 
to the given time signals, which can never fulfil the criteria for ideal fractal patterns. Additionally, the SNR always 
influences the outcome of nonlinear time signal analyses (experimentally measured time signals always contain 
noise). Noise should be kept as low as possible. This sounds like a trivial statement, but in many publications 
this important aspect is not sufficiently considered or ignored at all. The SNR must be specified, otherwise com-
parisons of results obtained by various research groups are not possible in a meaningful way. In cases where the 
determination of the noise level is difficult, e. g. when studying ECG or EEG signals where the physiologically 
given signal cannot be switched off, dummy or cadaver measurements should be performed, or, if this is not easily 

TFOE TFCE OFOE OFCE TBOE TBCE OBOE

TFOE n ** ** (n) ** **

TFCE n (*) ** (n) ** **

OFOE ** ** (**) (n) ** (n)

OFCE ** ** ** (**) (n) **

TBOE ** (**) (n) ** ** n

TBCE ** ** (**) (n) ** (**)

OBOE ** ** n ** (n) n

Table 1.  Significant differences between balance task results for standard deviations SD of balance motion 
elongations. Above the diagonal, evaluations of the components in x-direction were used, significances 
indicated below the diagonal refer to the components in y-direction. Brackets indicate a significance found for 
DH but not for SD and vice versa. Kruskal-Wallis, *p ≤ 0.05, **p ≤ 0.01, “n” means not significant.

TFOE TFCE OFOE OFCE TBOE TBCE OBOE

TFOE n * ** (**) ** **

TFCE n (n) * (**) ** **

OFOE ** ** (n) (**) ** (**)

OFCE ** ** ** (n) (**) *

TBOE * (n) (*) ** * n

TBCE ** ** (n) (**) * (n)

OBOE ** ** n * (**) n

Table 2.  Significant differences between balance task results for Higuchi dimensions DH. Above the diagonal, 
evaluations of the components in x-direction were used, significances indicated below the diagonal refer to the 
components in y-direction. Brackets indicate a significance found for DH but not for SD and vice versa. Kruskal-
Wallis, *p ≤ 0.05, **p ≤ 0.01, “n” means not significant.
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possible, a noise sensitivity analysis should be done by adding artificial noise. For the easy task TFOE, Figure 4c 
shows that a different fractal dimension (1.58 instead of 1.42, statistically highly significant) already results when 

Figure 2.  Time signals and Higuchi dimensions. (a) Typical COP sway during two-footed stand with open 
eyes (TFOE) in y-direction (Sy). 30,000 data points were sampled with a frequency of 500 Hz in 60 s. The insert 
in the figure shows an enlargement of the signal. This easy task is associated with small elongations. Standard 
deviation (SD) was 0.74 mm (SD of noise was 0.05 mm) resulting in a signal-to-noise ratio (SNR) of 14.8. (b) 
Higuchi dimension DH as a function of time (black graph; gliding box length l = 3000 data points; DH ranged 
from 1.30 to 1.62), and for the entire time signal (grey line; DH was 1.48). (c) Analogous to (a), but for the 
difficult task one-footed stand with closed eyes (OFCE) which is associated with large elongations. SD was 
8.82 mm (SD of noise was 0.05 mm) resulting in a SNR of 176.4. (d) Analogously to (b), but for the signal shown 
in (c). DH ranged from 1.03 to 1.08 and was 1.06 for the entire time signal.
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artificial noise of the same SD as found in the measured time signal (SD = 0.05 mm) is added. Adding noise with 
a SD of 0.1 mm resulted in a Higuchi dimension of 1.74 (this is an increase of 76% when considering that the scale 
for DH starts out from 1.0). For the difficult task OFCE, addition of noise increased the DH value only slightly. 
These examples show that enormous differences in the results for the fractal dimension can result from small 
differences of the noise level, which may erroneously be interpreted as a biological effect. We have shown the large 
impact of Gaussian noise on the Higuchi dimension value as an example. As the fractal dimension computation 
does not depend on the signal amplitude, other types of noise, even when noise amplitudes are low, can also be 
expected to influence the outcome substantially, e.g. power line noise, low frequency noise, 1/f noise, or shot 
noise. Both, the choice of parameter settings for the time signal measurement and also for the nonlinear analy-
sis method applied to it influence the resulting value of the chosen measure of complexity substantially. For all 
investigations using any nonlinear time signal analysis method to quantify complexity of physiological (or other) 
processes, we recommend to investigate and protocol the effect of varying noise levels, either by adding artificial 
noise or/and by changing instrument settings to alter SNR.

The influence of mismatched parameter settings and increased noise levels are exemplarily 
shown in this balance analysis using the Higuchi dimension.  For the methodical discussion of this 
nonlinear time signal analysis, we picked out the easy task TFOE and the difficult task OFCE. The crucial meas-
urement parameters are: sampling frequency, SNR, and measurement duration. Sampling frequency of 500 Hz 
was chosen to include also the fast human biomechanical control processes with reaction times down to 0.04 s in 

Figure 3.  Examples of double logarithmic plots and Higuchi dimensions for Sy- time signals of one randomly 
chosen participant. Left diagrams correspond to the easy task TFOE and right diagrams correspond to the 
difficult task OFCE. Data was sampled with 500 Hz (blue circles), and results obtained from down-sampled data 
are shown in green (250 Hz) and red (125 Hz). (a) Double logarithmic plots according to equation (6) described 
in the methods with kmax = 200. (b) Higuchi dimensions as a function of kmax. (c) Coefficients of determination 
r2 according to (b). All values are above 0.98.
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case of trained top level athletes29. This would correspond to a maximum frequency of 250 Hz. The sensitivity of 
nonlinear dynamics analysis of postural control COP measurements on sampling frequency and signal filtering 
has been shown by Rhea et al.30. In the study presented here, minimum noise (SD: 0.05 mm) was obtained by 
setting the force plate measurement range to the lowest possible values for these measurements. The noise signal 
only contained the electronically determined noise and vibrations transferred via the ground; any additional 
sources of vibrations (like walking in the lab) were avoided. 60 s was chosen as the standard task duration (30 s was 
the minimum criterion) to make sure that eventually occurring slower control processes would also be captured.

Figure 4.  Effect of sampling frequency and noise on the Higuchi dimension for Sy- time signals. Left diagrams 
correspond to the easy task TFOE, and right diagrams correspond to the difficult task OFCE. Mean values and 
standard errors of means (n = 15) of the first attempt of each participant to remain standing over the full 60 s are 
given. Significant differences (Games-Howell, *p ≤ 0.05, and **p ≤ 0.01) are indicated. (a) Effect of sampling 
frequency on the Higuchi dimension. DH was computed from time signals taken with a sampling frequency of 
500 Hz (blue columns) and kmax was set to 40. DH-values at 250 Hz (green columns) and 125 Hz (red columns) 
were calculated from down-sampled signals. (b) Effects of sampling frequency and data point interval kmax. 
Analogously to (a), but kmax was matched to the sampling frequency, such that the effective time interval (0.08 s) 
remained constant. (c) Influence of noise on the Higuchi dimension. The blue columns again correspond to 
the originally measured signal (500 Hz, kmax = 40), the hatched columns show DH means when artificial noise 
(Gaussian random noise, SD = 0.05 mm) was added to each data point of the time signal. Dotted columns show 
DH means when the same artificial noise was added again.
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The crucial parameters for the Higuchi dimension calculation are the number of data points (which should be 
large) and the choice of the scaling parameter kmax. In most attempts, 30,000 data points were captured (minimum 
criterion were 15,000). This is the maximum that can be applied for this series of balance tasks because a sampling 
frequency above 500 Hz would not make sense from the physiological perspective, and the test duration had to be 
limited; otherwise, for the difficult tasks, the number of failed attempts would be too high.

When analysing time signals, kmax represents the maximum temporal data point interval. At 500 Hz sampling 
frequency, a value of kmax = 40 corresponds to 0.08 s, which is about twice the minimal human reaction time29. 
Up to the kmax value, the linear regressions of the double logarithmic plots (results obtained by one of the 15 test 
persons for two of the seven tasks are shown in Fig. 3a) should have high coefficients of determination. In all tests 
performed in this study, at kmax = 40, r2 values for all persons and all tests were above 0.984. The point at kmax = 40 
is approximately where a visual inspection of the plot, e.g. for OFCE in Fig. 3a, indicates a bending of the line 
(this visual check is usually used to fix the value of kmax). The DH values shown in Fig. 1c,d were obtained with 
kmax = 40.

We can try to quantify this approach by using a minimum criterion for r2. Figure 3c shows that all kmax values 
up to 200 result in r2 values above a threshold of 0.98. When accepting this threshold of 0.98 for the linearity 
assessment, all kmax values up to 200 would be acceptable. But, as plotted in Fig. 3b, the DH value is not independ-
ent of kmax; therefore, also the choice of a high r2-value (e.g. 0.98) cannot determine in an objective way what kmax 
to use. It just defines the interval within which the kmax value should be chosen.

The final choice of kmax can only be derived from the time course of the biological process studied. In human 
biomechanical dynamics, the shortest reaction time (minimum of about 0.04 s in highly trained individuals) is a 
major determinant for mastering a task or for failing. 500 Hz sampling frequency and k = 20 (or 125 Hz and k = 5) 
would correspond to a time shift of 20/500 = 0.04 s. For the balance tests presented here, the choice of kmax = 40 
covers a k-range symmetrically around k = 20 which brings the fast balance regulation dynamics into the focus 
of attention.

For the difficult task OFCE, Figure 4a shows that a reduced sampling frequency without kmax adaption would 
increase DH because the (important) fast regulation processes would be missed, whereas DH remained at the low 
value when kmax was adapted accordingly (Fig. 4b). For the easy task TFOE (and also for other easy tasks, not 
shown), we always (with and without kmax adaption) get reduced DH values when sampling frequency is reduced 
(Fig. 4a,b) because a lower bandwidth results in a lower noise level, and the loss of high frequency control com-
ponents is not relevant in easy tasks where rapid reactions do not occur.

Summary

•	 Higuchi dimensions resulting from time signal of human control processes (or from other physical processes) 
are only comparable when the same or similar measurement and DH calculation parameters are used.

•	 Changing the sampling frequency can have a significant effect on the DH (Fig. 4a).
•	 Changing both, the sampling frequency and using adapted kmax values (such that the effective data point 

interval remained constant; Fig. 4b) resulted in the same and relevant DH for the difficult task OFCE where 
the SNR was high, but it resulted in a significant change of the DH for the easy task TFOE, where the SNR was 
low.

•	 The choice of kmax has a significant impact on the DH value. A change of the kmax value may even invert the 
order of DH values, particularly when SNR of the time signal is low (Fig. 3b). It is of paramount importance to 
choose the effective data point interval in accordance with the characteristic dynamics of the process.

•	 DH-computations are very sensitive to the SNR (Fig. 4c).
•	 Without analysing the sensitivity to noise in a given setting, it cannot be distinguished whether a high DH is 

due to a more pronounced stochastic component of the studied process or because of a low SNR.
•	 With increasing noise, DH differences between easy and difficult (complex) control processes increase. Our 

experiments have shown that adding the same noise level increases the DH of easy tasks (where SNR is low) in 
a more pronounced way when compared to difficult tasks (Fig. 4c).

With the set of parameters used in this study, the standard errors of the means for DH (n = 15, i.e. 15 test per-
sons performed each test) were remarkably small in all seven tests (Fig. 1c,d).

Nonlinear time signal analysis was capable of distinguishing between different regulation determining mech-
anisms than the analysis of SDs of COP sways. This may enable more differentiated diagnoses of balancing prob-
lems associated with diseases on the one side, and also an improved analysis of high balance performance levels 
of trained persons on the other.

When patients suffering from dizziness or other posture control deficiencies, or when trained balance acro-
bats performed the test series, pronounced differences from the means shown in Fig. 1c,d can be expected. The 
test series and the measurement and data evaluation procedure presented here for the first time can be used as a 
comprehensive approach to study balancing abilities and intervention effects in persons ranging from top level 
athletes to patients suffering from dizziness (in the latter case, a subset of the balance tasks will be sufficient). 
Usage of the balance control test series described here as a standardised approach could lead to a much better 
comparability of balance variable measurements, which is currently lacking10.

Fractal dimension analyses can detect signal features that cannot be derived from linear time signal analyses, 
but a standardization of the measurement and the fractal dimension computation parameter setting is necessary 
because results obtained with different parameter settings may easily lead to incoherent results, and even trends 
obtained with one set of parameters can turn upside-down with other settings. This can also happen because of 
changing noise levels that may be present when different experiments (tasks) are compared. Results that have 
been published so far without specification of the measurement and dimension calculation parameter settings, 
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without specification of the SNR in the time signals, and without a noise sensitivity analysis are not comparable 
to results obtained by others - and therefore without scientific value.

Methods
Study design.  All 15 participants performed the balance task series consisting of seven balance tasks. Each 
participant performed the series three times, with pauses of 90 s between each series. The order of the balance 
tasks was always the same: standing on two feet flat on the ground with open eyes (TFOE), two feet flat on the 
ground with closed eyes (TFCE), one foot flat on the ground with open eyes (OFOE), one-foot flat on the ground 
with closed eyes (OFCE), two balls of the feet with open eyes (TBOE), two balls of the feet with closed eyes 
(TBCE), and one ball of the foot with open eyes (OBOE). Test duration was 60 s, but attempts interrupted after 
at least 30 s were also accepted for statistical analyses. For the analysis of parameter settings and noise effects, the 
first attempt was used or, in case that there was no attempt lasting 60 s the test with the longest duration was taken. 
Within a series, only after OFCE and after the three tasks on the ball(s) pauses of 30 s were inserted. All partici-
pants were instructed to stand upright on the force plate without shoes as stable as possible and without talking. 
For the tasks with both legs, feet had to be positioned at the width of the pelvis. For the tasks on one leg, they were 
allowed to choose a preferred leg, but they had to remain with this leg.

Higuchi dimension.  The Higuchi dimension is a fractal dimension characterizing the complexity of time 
signals directly in the time domain28. The values of the Higuchi dimension for one dimensional time signals fall 
into the closed interval [1, 2]. Periodic signals, e.g. sinusoidal signals, have a dimension DH = 1, whereas purely 
random signals (noise), have a dimension DH = 2.

A discrete time signal, e.g. a digitized analogue signal, consists of a finite set of data points:

…S x x x x N: (1), (2), (3), , ( ), (1)

with N being the total number of data points. From the given discrete time signal S, new time signals S(m, k) are 
constructed, with m indicating the initial data point and k the data point interval.
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where ⌊ ⌋ denotes the floor function which rounds the number down to the nearest integer. For each S(m, k), the 
normalized lengths Lm(k) are calculated as follows:

∑=















+ − + −







−















=




− 


−
L k

k
x m ik x m i k N

k
( ) 1 ( ) ( ( 1) ) 1 ,

(3)

m
i

N m
k

N m
k1

where m and k are integers and −






−

N

k

1
N m

k

 is a normalization factor. For each k the mean length L(k) is calculated
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If the power law

∝ −L k k( ) (5)DH

is fulfilled, the given time signal S is fractal with the dimension DH. If L(k) is plotted against k on a double loga-
rithmic scale, the data should fall on a straight line with the negative slope

= −D L k
k

dln( ( ))
dln( ) (6)H

defined as the Higuchi dimension DH. For measured data, linear regressions with coefficients of determinations 
r2 close to 1 are required to classify the time signal to be fractal. However, DH depends on kmax and therefore, it is 
important to apply a criterion for choosing kmax. The slope should be as linear as possible for all investigated time 
signal. For this study, kmax = 40 was chosen; all coefficients of determination r2 were above 0.984. Sampling fre-
quency was 500 Hz. Down-sampled time signal were also investigated where kmax was set to 20 at 250 Hz and kmax 
was set to 10 at 125 Hz. The Higuchi dimension DHwas computed for the entire time signal as well as for intervals 
I(n, n + l) with n = 1,2, …, N − l throughout the entire time signals yielding a function of time of the Higuchi 
dimension (“gliding DH”). The box length l was set to 3000 data points. Higuchi dimensions were computed with 
the open access software IQM31.

Measurement system.  Ground reaction forces were measured with a piezoelectric force measurement sys-
tem (Kistler Instrument Corporation, Switzerland, platform: 9286AA, data acquisition: 5691A). Measurement 
ranges were set to the minimum necessary to detect the force amplitudes occurring during the experiments (Fx: 
130N; Fy: 130N; Fz: 568N; Fz was found to be linear up to 1000N) to keep the electronically determined noise 
level as low as possible. Resolution was 16 bit. Data was recorded with a sampling frequency of 500 Hz over 
60 s. This corresponds to 30,000 force vectors at the four measurement sites of the force plate. Kistler BioWare 
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software computes the time signals of the resulting ground reaction forces, the moments, and the coordinates 
of the centre-of-pressure (COP) in the measurement plane. Kister Bioware provides post-processing filters, but 
they were not applied. Post-processing filters were only used for the analysis of down sampled signals (two-point 
moving average).

During the balance tests, the participants looked into the x-direction. COP sway time signals Sx(t) and Sy(t) 
were used for mapping the anterior-posterior (Sx) and medio-lateral (Sy) movement of the body. In contrast to 
the vertical ground reaction force Fz, the COP elongations in x- and y-direction were not sensitive to heart beats.

Noise, drift, and cross-talk of the measurement system were analysed for Sx(t) and Sy(t) signals by using cal-
ibrated weights on the force plate. Ten measurements over 60 s were performed. The standard deviation of each 
of the ten noise measurements was used to represent the noise level; maximum was 0.03 mm for Sx and 0.05 mm 
for Sy. DH of the noise signals were close to 2.0 [1.95, 2.00]. Drifts ranged from −0.06 mm to 0.11 mm, but did 
not influence the value of the Higuchi dimension DH (this was tested experimentally by adding an artificial drift). 
Cross talk effects of Fz on Fx and Fy were less than 0.12%. The effect on COP shifts was smaller than 0.06 mm, i.e. 
negligible at the maximal measured force Fz = 900N. This small cross-talk did not alter the DHvalues.

Down-sampling.  The analysis of sampling frequencies on the outcome could be done by setting the sampling 
frequency of the measurement system. This would necessitate three measurements of each task to compare three 
sampling frequencies. However, this would sum up to very long measurement sessions, and the limited perfor-
mance reproducibility of the test persons (including fatigue or possible training effects) would complicate the 
interpretation of the results. Therefore, down-sampled time signals with effective sampling frequencies of 250 Hz 
and 125 Hz were constructed by applying two-point moving average filtering.

Simulated noise.  Artificial randomly distributed noise was added to experimentally gained time signals. 
In order to ensure comparability, the standard deviations of the noise values were set to 0.05 mm and 0.10 mm 
(0.05 mm was the average standard deviation of the measured noise signals). The artificial noise simulations were 
obtained by adding a random value to each data value, but not by adding a separate noise signal which might have 
contained higher frequency components.

Participants.  Six females and nine males participated in the study. Means and standard deviations of the 
participants were: age (25 ± 4) y, body height (176 ± 8) cm, body mass (65.9 ± 8.6) kg. Ethical approval was given 
by the Ethics commission of the Medical University of Graz (20-295ex 08/09). All methods were performed in 
accordance with the relevant guidelines and regulations. Informed consent was obtained from all participants.

Statistics.  Anthropometric data of participants are given in means ± SD. Normal distribution was fulfilled 
according to the Shapiro-Wilk test (p ≤ 0.05). In column diagrams, mean values and standard errors of means 
(SEM) are shown.

Not all balance data sets (Fig. 1, Tables 1 and 2) were normally distributed (Shapiro-Wilk test, p ≤ 0.05) and 
therefore the Kruskal-Wallis test, including post-hoc tests, was applied to determine significances (*p ≤ 0.05, 
**p ≤ 0.01) between the cases.

The two balance data sets in Fig. 4, the down-sampled data, the k-value adapted data, and the data sets with 
added noise were normally distributed (Shapiro-Wilk test, p ≤ 0.05). Welch’s-ANOVA was applied. Variance 
homogeneity was not fulfilled (Levene’s test, *p ≤ 0.05). Games-Howell post-hoc tests were used to determine 
significances (*p ≤ 0.05, **p ≤ 0.01) between the cases. Software SPSS (Version 23) was used.
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