
Bacteria, Rev Your Engines: Stator
Dynamics Regulate Flagellar Motility

Amy E. Baker, George A. O’Toole
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New
Hampshire, USA

ABSTRACT Many bacteria move through liquids and across surfaces by using fla-
gella—filaments propelled by a membrane-embedded rotary motor. Much is known
about the flagellum: its basic structure, the function of its individual motor compo-
nents, and the regulation of its synthesis. However, we are only beginning to iden-
tify the dynamics of flagellar proteins and to understand how the motor structurally
adapts to environmental stimuli. In this review, we discuss the external and cellular
factors that influence the dynamics of stator complexes (the ion-conducting chan-
nels of the flagellar motor). We focus on recent discoveries suggesting that stator
dynamics are a means for controlling flagellar function in response to different envi-
ronments.

KEYWORDS flagella, stators, MotAB, swarming, swimming, c-di-GMP

The flagellar motor is an intricate machine that drives the rotation of the flagellum
by converting ion motive force to mechanical energy (1). Torque is generated via

association between two main motor components: membrane-embedded stator com-
plexes and the cytoplasmic rotor (Fig. 1). On the basis of work with the model organism
Escherichia coli, each stator complex is composed of protein subunits, MotA and MotB,
assembled in a 4MotA-2MotB stoichiometry (2). MotB has been shown to interact with
the P-ring protein FlgI (3) and is also thought to associate with peptidoglycan through
its peptidoglycan-binding motif. The interactions made by the periplasmic domain of
MotB likely serve to anchor stator complexes around the rotor, where the stators act as
ion channels. It is thought that the ions passing through these channels are bound by
a conserved aspartic acid residue in the transmembrane segment of MotB, causing
conformational changes in MotA (4). These conformational changes are coupled to
rotation by specific electrostatic interactions between MotA and the rotor protein FliG
(5, 6). Work with Vibrio alginolyticus suggests that FliG contributes to both rotation and
stator assembly (7).

While stators are named for their “stationary” role as the nonrotating motor com-
ponent, the composition of stators surrounding the motor is highly dynamic (Fig. 2).
Stator dynamics were first demonstrated in “resurrection experiments.” These experi-
ments showed that stators could incorporate themselves into and restore rotation to
paralyzed flagellar motors, with each successive stator incorporation resulting in a
stepwise increase in motor speed (8, 9). Importantly, stochastic fluctuations in torque
were also observed in these experiments, in which torque would periodically decrease
in steps (8). Specifically, 11 distinct rotational speeds were observed in E. coli, indicating
that a maximum of at least 11 stator complexes can engage in the motor at any one
time in this species (10). Stator turnover was directly observed and measured by total
internal reflection fluorescence microscopy combined with fluorescence recovery after
photobleaching (FRAP) and fluorescence loss in photobleaching. These experiments
demonstrated that green fluorescent protein (GFP)-labeled MotB proteins remain in the
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motor for an average of only 30 s and exchange with a pool of stators on reserve in the
inner membrane (11).

Stator dynamics become more complex in species with multiple stator systems,
some of which are driven by different ions (reviewed in reference 12). Proton-de-
pendent stators power most flagella, but motors in several species (especially those in
marine environments) depend instead on sodium flux. To regulate motor function in
these more complicated systems, bacteria must select and swap between types of
stators. Here, we summarize what is known about the factors governing stator arrange-
ment and exchange. We illustrate that stator dynamics are a common mechanism for
regulating motor function in response to diverse external and cellular signals.

ENVIRONMENTAL FACTORS DRIVING STATOR EXCHANGE
External load. As bacterial cells move through heterogeneous environments, they

encounter various fluids of different viscosities. Thus, under changing conditions,
bacteria experience different levels of viscous drag (or mechanical load) on their
flagella. In more viscous environments, motors must generate more force to rotate
flagella and do so by recruiting stators to the motor in a load-dependent manner (13,
14) (Fig. 2A). Using E. coli with fluorescently labeled stator proteins, Lele et al. (13)
showed that when rotating flagellar stubs are abruptly tethered to latex beads, the
motor initially slows because of the increased load. The motor responds to the heavy
load by recruiting additional stator units and then increases speed in a stepwise
manner. Experiments by Tipping et al. (14) also demonstrated that adding Ficoll to the
medium leads to an increasing mechanical load and a corresponding increase in stator
incorporation.

These experiments suggest that light loads only require the power of a few stators;
as the load increases, the motor recruits additional stators to provide enough torque to
support flagellar rotation. The concept that torque increases proportionally with added

FIG 1 Flagellar motor structure. Stator complexes assemble in a ring in the inner membrane. Each stator
unit is formed by four MotA and two MotB proteins, and the MotB protein anchors the complex to
peptidoglycan. Each stator unit forms two channels through which ions can flow (H� indicates protons
in this example, with arrow indicating the direction of ion flow). Electrostatic interactions between the
MotA and FliG proteins in the C ring generate the torque necessary to power rotation of the flagellum.
OM, outer membrane; PG, peptidoglycan; IM, inner membrane. The arrow at the base of the motor
indicates a motor complex capable of rotating the flagellum. Copyright, William Scavone; used with
permission.
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FIG 2 Models of stator dynamics. (A) Additional MotAB stators are incorporated into the motor as the
mechanical load on the flagellum increases in E. coli (13, 14). (B) Some bacteria contain both proton-
powered MotAB stators and sodium-powered PomAB stators. Work with S. oneidensis has demonstrated
that the number of MotAB stators engaged in the motor decreases as the sodium concentration
increases (30). (C) P. aeruginosa uses two proton-powered stator sets—MotAB and MotCD. Here we
illustrate the current model suggesting that the ratio of the two stator complexes changes at different
c-di-GMP levels. In this model, when levels of the signaling molecule c-di-GMP are low, there are
increased levels of MotCD in the motor (50). When c-di-GMP levels are high, c-di-GMP (cdG) binds to FlgZ;
when bound to c-di-GMP, FlgZ interacts with the MotC component of the MotCD stator complexes (51).
We hypothesize that the c-di-GMP-dependent FlgZ-MotC interaction facilitates MotCD disengagement
from the motor and decreases motor speed. Here, for ease of illustration, we show a flagellar motor that
accommodates 10 stators, but the average number of each stator, as well as the total number of stators
in the inner membrane, is unknown for most organisms. The arrow at the base of the motor indicates
a motor complex capable of rotating the flagellum; the thicker line indicates the capability of generating
relatively greater torque. Copyright, William Scavone; used with permission.
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stators is supported by recent electron cryotomography experiments that show the
motor in new detail. These structural studies illustrate diversity in motor architecture
among species, in which species known to generate high motor torque have wider
stator rings that are likely to accommodate additional stators (15, 16). Clearly, this
arrangement and load-dependent regulation of stator incorporation allow the motor to
work efficiently and only use as many ions as necessary.

The mechanism of load-dependent stator assembly is not entirely understood,
although evidence suggests that load sensing requires motor torque and is indepen-
dent of motor rotation. For example, sufficient ion motive force is necessary to keep
stators bound to the motor (17–19); however, Tipping et al. (14) demonstrated that
motors stalled under a heavy load still contain the maximum number of stators,
indicating that motor rotation is unnecessary to maintain stator binding. There is also
indirect evidence that MotB directly contributes to load sensing; that is, mutational
analysis of MotB suggests that the periplasmic domain of MotB is important for
maintaining motor torque under light loads (20). Mutation of the critical aspartic acid
residue (which binds cations) of Salmonella MotB to a glutamic acid resulted in
unexpected speed fluctuations under light loads and stable rotation rates under heavy
loads (21). The load-dependent effects of this mutation suggest that the load may
impact the coupling between ion translocation and stator conformational changes for
torque generation. Thus, load changes may influence the incorporation of stator
complexes by triggering conformational changes in MotB.

While it is still not understood how cells sense an external load placed on the
flagellum, it is clear that bacteria have exploited this external cue. The concept that cells
respond to constraints on flagellar rotation (i.e., flagellar mechanosensing) is wide-
spread in the literature (reviewed in reference 22). Flagellar mechanosensing is one
possible mechanism by which bacteria sense surface contact to promote surface-
associated behaviors, such as swarming motility and biofilm formation. Surface contact
and viscous (i.e., heavy-load) growth conditions result in slowed flagellar rotation and
trigger swarmer cell differentiation in Vibrio parahaemolyticus (23) and Proteus mirabilis
(24). The flagellar mechanosensing pathway is also induced in V. parahaemolyticus by
phenamil, a sodium channel inhibitor. These data indicate that V. parahaemolyticus may
be sensing decreased flagellar rotation or decreased Na� flux through the stators (25).
Interestingly, Harshey and Partridge proposed that changes in flagellar rotation speed
and/or ion flux might be a direct response to an altered conformation at the rotor-
stator interface (26). Such a model would posit that an external change in load is
propagated to an intracellular change in the motor shape and thereby serve as a means
to initiate a signal transduction event.

Ion availability. Ion availability can also serve as a signal to modify stator compo-
sition. Early experiments with E. coli demonstrated that varying membrane potential via
an external voltage source resulted in loss of torque at low membrane potentials and
subsequent resurrection upon reestablishment of proton motive force (PMF) (18). Later
experiments demonstrated a stepwise stator resurrection upon PMF restoration, along
with visualization of motor dissociation upon loss of PMF (17), analogous to what is
observed as the load changes. The delayed recovery in speed upon the return of PMF
supports the conclusion that stators dissociate upon loss of PMF and take time to return
to the motor.

Stators that use sodium motive force (SMF) also exchange depending on ion
availability. Extracellular Na� is required for stator assembly in species including V.
alginolyticus (19), and stator engagement (or resurrection) upon restoration of the SMF
was observed (27). Notably, these dynamics in response to ions may not be universal
across species since there is no evidence of stator loss when PMF is disrupted in
Salmonella (28).

Organisms with multiple stator sets sense ion availability to select the appropriate
stator set. In Shewanella oneidensis MR-1, an organism with both H�-powered and
Na�-powered stators, the exchange rate of stators depends on Na� levels (29) (Fig. 2B).
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Higher Na� levels had no apparent effect on the localization or turnover of the
Na�-dependent stator PomAB, but there is evidence of increased incorporation of
MotAB at low Na� concentrations (30). These results imply that this bacterium can
sense when low Na� conditions require it to engage its proton motor.

It has been suggested that the width of the ion channels created by the stators
determines ion selectivity (31), but it is still not known how the flagellar motor senses
changing ion availability and how the exchange of stators is subsequently controlled.
Since ion motive force (which refers, in general, to the force generated by protons, Na�,
or any other ion) appears to be critical for stator engagement in most cases, it may be
that ion limitation causes stators to more rapidly dissociate from the motor. Whether
this dissociation is secondary to loss of ion flow or if other factors are required to
displace the stator is an open question. It is clear that for organisms with multiple
stators powered by different ions, such as S. oneidensis, the two-stator systems provide
distinct motor functions under different environmental conditions. This makes ion
sensing and the associated stator exchange a critical regulatory mechanism for bacteria
to move efficiently through their varying habitats.

CELLULAR FEATURES DRIVING STATOR EXCHANGE
Flagellum-associated FliL. FliL is a flagellum-associated protein important for

motility and stator function in many bacterial species. For example, FliL is essential for
swimming motility in Caulobacter crescentus (32) and Rhodobacter sphaeroides (33).
Deletion of fliL has only a small effect on swimming by E. coli, Salmonella, and P.
mirabilis but completely abolishes swarming motility (34, 35). Similarly, a fliL mutant of
V. alginolyticus, swims more slowly than wild-type cells only in high-viscosity liquids
(36). Thus, in some species, FliL only seems to play a significant role under conditions
wherein the flagellum experiences a greater external load.

FliL may function via its ability to make direct contact with the stator. For example,
bacterial two-hybrid assays suggest an interaction between FliL and MotB in Campy-
lobacter jejuni (37) and between FliL and MotAB complexes in Salmonella (38). Similarly,
in V. alginolyticus, localization of FliL to the flagellar pole depends on the stator (36).
Electron cryotomography experiments place FliL between the stators and the rotor in
Borrelia burgdorferi (39). Furthermore, FliL’s impact on motility and its interaction with
the stators imply that FliL impacts stator engagement, and this conclusion is consistent
with FRAP experiments by Partridge et al. (38), which showed that in Salmonella,
recovery of MotA-yellow fluorescent protein was 5 to 10% higher in wild-type cells than
in a fliL mutant. It is unknown whether FliL increases stator engagement by influencing
the rate of stator incorporation or the stator dwell time in the motor. Mutations in the
plug domain of MotB that allow proton leakage restore higher motor speeds to a fliL
mutant, suggesting that FliL increases ion flux through stator channels or, alternatively,
responds to changes in ion flux by regulating stator insertion/displacement (38). It is
also possible that the role of FliL is to sense the load on the flagellum or ion availability.

c-di-GMP. Cyclic diguanylate (c-di-GMP) is a widespread intracellular signaling
molecule that regulates a variety of cellular processes in bacteria, including the
motile-to-sessile transition (40). In general, low levels of c-di-GMP promote motility and
high c-di-GMP levels stimulate surface attachment and biofilm formation (41, 42).
c-di-GMP controls motility by a variety of mechanisms that impinge on flagellar
biosynthesis and function (43). PilZ domain proteins are a class of c-di-GMP effectors
that share a conserved c-di-GMP binding motif (44). In E. coli and Salmonella enterica,
a PilZ domain protein, YcgR, is thought to act as a “backstop brake” on the flagellar
motor to slow flagellar rotation and bias the direction of rotation in response to
c-di-GMP. It was reported that YcgR impacts flagellar rotation through direct interac-
tions with components of the motor (45–47). Studies by different groups suggest that
YcgR interacts with different partners, including MotA (45) and rotor proteins FliG (46,
47) and FliM (47). While YcgR’s exact mechanism of action is still unclear, these models
all imply disruption of the rotor-stator interface as a mechanism of motility regulation.
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One recent addition to c-di-GMP’s repertoire of motility control mechanisms is the
influence of this signal on stator selection in Pseudomonas aeruginosa. P. aeruginosa has
two distinct stator complexes, MotAB and MotCD, to power the rotation of a single
flagellum. However, only MotCD supports motility under increased-load conditions—
swarming motility on a surface (48–50). Visualization of functional stator proteins fused
to GFP in P. aeruginosa reflects dynamic localization, indicating stator exchange. The
localization patterns of MotAB and MotCD suggest that these two stator sets coexist in
flagellar motors (50). Localization of MotCD to the cell pole decreases in mutants with
high c-di-GMP levels, suggesting that c-di-GMP influences the dynamics of MotCD, the
“powering stator” required for flagellar rotation during swarming (50) (Fig. 2C). MotCD
localization is influenced by c-di-GMP via direct interactions between MotC and FlgZ, a
YcgR homolog (51). Another c-di-GMP effector, MapZ, in P. aeruginosa was recently
found to control flagellar output by regulating chemotaxis (52). It is likely that c-di-GMP
plays a role in flagellar motor dynamics in other species in which a high c-di-GMP level
generally leads to reduced motility.

The ability of c-di-GMP to regulate stator exchange offers a mechanism for cells to
respond and adapt quickly to changing environments. While c-di-GMP levels clearly
influence stator incorporation, the input signals leading to altered c-di-GMP levels are
not well understood in many organisms. In V. parahaemolyticus, changes in c-di-GMP
occur as a response to surface growth, which then stimulates lateral flagellum forma-
tion (53). Although evidence suggests that these changes in c-di-GMP are induced by
quorum sensing (54), we speculate that changes in c-di-GMP levels that occur upon
surface growth in organisms such as P. aeruginosa may be a response to altered stator
engagement.

AN OPEN QUESTION: MECHANISM OF STATOR EXCHANGE

By analyzing bacterial genomic sequences, Thormann and Paulick (12) identified 69
species encoding two or more putative stators for a single flagellar system. How do
these organisms that have multiple stator systems regulate stator exchange? In S.
oneidensis MR-1, the rate of stator exchange is highest when both the H�-powered
(MotAB) and Na�-powered (PomAB) stator sets are present (30). This finding suggests
that even with ion availability as a critical factor for stator incorporation, MotAB and
PomAB are able to share space in the flagellar motor.

In contrast, for an organism like P. aeruginosa, with multiple stator sets driven by the
same ion, we suspect that competition between stators could play an important role in
these dynamics. It is not understood why P. aeruginosa has two stator sets both
powered by the same ion, while other bacteria (e.g., E. coli) only require one set. It is
likely that the two sets in P. aeruginosa are important under different environmental
conditions or perhaps even play distinct roles in flagellar function. One stator set
(MotCD) seems to generate torque more efficiently than the other (MotAB), and it is
apparent that MotCD plays a key role in swarming motility (48–50). We speculate that
MotAB may tune the motor for behaviors, such as near-surface swimming or spinning
(55), that may be critical for surface attachment or detachment.

CONCLUSIONS

Flagellar motility is a critical survival tool for many motile bacteria. The activity and
regulation of flagella contribute to mechanisms that control the transition between the
free-swimming and surface-attached lifestyles. As we highlight in this review, stator
exchange remains a poorly understood mechanism by which bacteria control their
flagellar motility in response to a variety of stimuli. It is apparent that load and ion
availability can have diverse effects on the motor among these different species, which
experience unique environments. Some bacteria also use flagellum-associated proteins
such as FliL and signaling molecules, including c-di-GMP, to facilitate stator remodeling
and function. Because stator rearrangement is a common output to extracellular
stimuli, we and others speculate that the level of stator engagement within the motor
may be actively recognized by cells (26) and could thereby serve as an input for
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subsequent signal transduction events. Alternatively, modulation of stator occupancy
or exchange offers a way for the bacterium to indirectly sense and/or respond to
environmental perturbations, such as surface contact and ion availability, by surveying
its motor status. The dynamic exchange of stators also provides a means to respond to
environmental cues on the order of seconds rather than the longer response times that
would be required for the synthesis of new cellular components in response to
environmental cues.

A next challenge will be to identify the molecular mechanisms by which the motor
modulates its stator exchange dynamics. Understanding how the composition of the
flagellar motor is regulated is critical for understanding how bacteria establish and
disperse from biofilms and how biofilm establishment can be prevented. Although we
focus on stator dynamics, plasticity is common to other parts of the motor as well. For
example, components of the rotor—FliN and FliM—also turn over frequently and their
exchange is likely important for motility control (56–58). Further molecular analyses in
combination with new, ever advancing and evolving microscopy techniques will un-
doubtedly improve our understanding of motor arrangement and dynamics.
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