
Herpes Simplex Virus 1 UL34 Protein
Regulates the Global Architecture of the
Endoplasmic Reticulum in Infected Cells

Fumio Maeda,a,b Jun Arii,a,b Yoshitaka Hirohata,a,b Yuhei Maruzuru,a,b

Naoto Koyanagi,a,b Akihisa Kato,a,b Yasushi Kawaguchia,b

Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The
University of Tokyo, Tokyo, Japana; Department of Infectious Disease Control, International Research Center for
Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japanb

ABSTRACT Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain
(CD98hc) is redistributed around the nuclear membrane (NM), where it promotes vi-
ral de-envelopment during the nuclear egress of nucleocapsids. In this study, we at-
tempted to identify the factor(s) involved in CD98hc accumulation and demon-
strated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion
throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, gly-
coproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type
HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers cal-
nexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplas-
mic dispersion of these markers; (iii) the ER markers colocalized efficiently with
CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells;
(iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression
around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of
the ER; and (v) the UL34-null mutation significantly decreased the colocalization effi-
ciency of lamin protein markers of the NM with CD98hc and gB. Collectively, these
results indicate that HSV-1 infection causes redistribution of the ER around the NM,
with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM
and that UL34 is required for ER redistribution, as well as for efficient recruitment to
the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1
induces remodeling of the global ER architecture for recruitment of regulators medi-
ating viral nuclear egress to the NM.

IMPORTANCE The ER is an important cellular organelle that exists as a complex net-
work extending throughout the cytoplasm. Although viruses often remodel the ER
to facilitate viral replication, information on the effects of herpesvirus infections on
ER morphological integrity is limited. Here, we showed that HSV-1 infection led to
compression of the global ER architecture around the NM, resulting in accumulation
of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids.
We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Fur-
thermore, we demonstrated that UL34 was required for efficient targeting of these
regulators to the NM. To our knowledge, this is the first report showing that a her-
pesvirus remodels ER global architecture. Our study also provides insight into the
mechanism by which the regulators for HSV-1 nuclear egress are recruited to the
NM, where this viral event occurs.
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Herpes simplex virus 1 (HSV-1) is classified in the subfamily Alphaherpesvirinae of the
family Herpesviridae. It is one of the best-studied members of the family and is an

important human pathogen, causing a variety of disease states, including mucocuta-
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neous diseases, keratitis, skin diseases, and encephalitis (1). After entry of HSV-1 into the
host cell, the nucleocapsid is transported to a nuclear pore, enabling the entry of the
viral genome into the nucleus and initiation of viral gene expression (1). Viral DNA
replication, capsid assembly, and packaging of replicated viral genomes into capsids
take place in the nucleus (1). The nascent progeny nucleocapsids of HSV-1, like those
of other herpesviruses, then traverse the inner nuclear membrane (INM) and outer
nuclear membrane (ONM) by a unique nuclear egress mechanism designated vesicle-
mediated nucleocytoplasmic transport (2, 3). In this nucleocytoplasmic transport sys-
tem, progeny nucleocapsids acquire a primary envelope by budding through the INM
into the perinuclear space between the INM and the ONM (primary envelopment), and
the enveloped nucleocapsids then fuse with the ONM and are released into the
cytoplasm (de-envelopment) (2, 3). A heterodimeric complex of HSV-1 proteins UL31
and UL34, which are conserved in all subfamilies of herpesviruses, is critical for primary
HSV-1 envelopment and has been designated the nuclear egress complex (NEC) (1–8).
UL34 is a type II integral membrane protein that is targeted to both the INM and the
ONM (9, 10). UL31 is a soluble component that is held in close apposition to the inner
and outer surfaces of the INM and ONM, respectively, through its interaction with UL34
(4). Therefore, the topology of the NEC indicates that it should be displayed on the
inner surfaces of primary enveloped virions. The NEC has been reported to play
multiple roles in primary envelopment, including deformation of the INM (6–8, 11);
recruitment of nucleocapsids to the INM by binding to a capsid protein (2, 3, 12); and
recruitment of cellular factors, such as members of the protein kinase C (PKC) family,
which have been thought to dissolve the nuclear lamina by phosphorylation of lamin
proteins in order to facilitate access of nucleocapsids to the INM (2, 3, 13, 14). In
addition to the core components UL31 and UL34, the NEC appears to contain the HSV-1
serine/threonine protein kinase Us3, the major HSV-1 structural protein UL47, the HSV-1
regulatory protein ICP22, and the cellular protein p32 (10, 15–17). Consistent with this
observation, Us3, UL47, and p32 were shown to be components of the primary
enveloped virion (10, 16, 17); UL47 and ICP22 were found to be required for efficient
primary envelopment of HSV-1 (15, 16); and p32 and Us3 affected the phosphorylation
status of the nuclear lamina (18–20), which might result in its disintegration, leading to
efficient access of nucleocapsids to the INM, as described above.

Several viral and cellular regulatory proteins involved in the HSV-1 de-envelopment
step have been identified. Mutation(s) or depletion(s) that abrogates either the expres-
sion or catalytic activity of HSV-1 Us3; the expression of both HSV-1 envelope glyco-
proteins B (gB) and H (gH); the phosphorylation of UL31; both the Us3 phosphorylation
of gB and gH expression; and the expression of the cellular proteins p32, CD98 heavy
chain (CD98hc), and �1 integrin have been reported to induce membranous structures
that contain primary enveloped virions, which are invaginations of the INM into the
nucleoplasm, and to induce the aberrant accumulation of primary enveloped virions in
the perinuclear space and within the induced invagination structures (17, 21–24).
Aberrant accumulation of virions within membranous invagination structures has been
thought to reflect an imbalance between the rate of virion delivery into the perinuclear
space and the rate of egress from this space: the rate of virion egress from the
perinuclear space may have decreased, while the rate of egress from the nucleoplasm
may have not changed or not decreased to the same degree. Therefore, Us3, gB, gH,
UL31, p32, CD98hc, and �1 integrin were suggested to be the regulators for HSV-1
de-envelopment (17, 21–24). Curiously, in uninfected cells, p32, CD98hc, and �1
integrin are localized predominantly in the cytoplasm and/or at the cell surface, and
HSV-1 infection leads to redistribution of these cellular proteins to the region around
the NM (17, 24). The accumulation of p32 around the NM requires its HSV-1 binding
partner, UL47 (17), whereas the mechanisms for the redistribution of CD98hc and �1
integrin remain unknown.

CD98hc is a type II membrane glycoprotein that acts as an amino acid transporter
on the cell surface by associating through its extracellular domain with one of several
light chains (25). It also regulates integrin signaling, which is involved in cell adhesion
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and migration, by associating with �1 and �3 integrins through its cytoplasmic and
transmembrane domains (26–29). As observed with HSV-1 de-envelopment, CD98hc
was found to regulate membrane fusion mediated by several enveloped RNA viruses
and to require �1 integrin for this activity (30–33). These findings suggest that CD98hc
and �1 integrin may be common regulators for membrane fusion mediated by these
enveloped viruses. In this study, we attempted to identify the factor(s) involved in the
accumulation of CD98hc around the NM of HSV-1-infected cells. Specifically, since
CD98hc was reported to interact with multiple HSV-1 and cellular proteins, including
gB, gH, UL31, UL34, Us3, and �1 integrin (24), we investigated whether these protein
interactors with CD98hc were involved in the regulation of CD98hc localization in
HSV-1-infected cells.

RESULTS
Characterization of recombinant viruses generated in this study. To examine

the effect of UL34 on the localization of CD98hc in HSV-1-infected cells, we constructed
the UL34-null mutant virus YK722(ΔUL34) and its repaired virus, YK723(ΔUL34-repair)
(Fig. 1). As expected, HEp-2 cells infected with wild-type HSV-1(F) or YK723(ΔUL34-
repair) expressed UL34, but cells infected with YK722(ΔUL34) did not (Fig. 2A). In
agreement with a previous report (34), the level of accumulation of UL31 in HEp-2 cells
infected with YK722(ΔUL34) was slightly lower than that in cells infected with wild-type
HSV-1(F) or YK723(ΔUL34-repair) (Fig. 2A). In contrast, HEp-2 cells infected with
YK722(ΔUL34) at a multiplicity of infection (MOI) of 5 for 24 h accumulated the
immediate-early gene products ICP0 and ICP27, the early gene products ICP8 and
UL12, and the late gene products and gB at levels similar to those infected with
wild-type HSV-1(F) or YK723(ΔUL34-repair) (Fig. 2A). These results indicate that that
YK722(ΔUL34) mostly retained the wild-type expression levels of the viral proteins
examined in these studies. Viral production of YK722(ΔUL34) in HEp-2 cells at MOIs of
5 and 0.01 was remarkably impaired compared to that of wild-type HSV-1(F) (Fig. 2B).
UL31, the binding partner of UL34, appeared as a distinct, smooth line localized to the
nuclear rim in HEp-2 cells infected with wild-type HSV-1(F), whereas it was localized to
and diffusely distributed throughout the nucleus and was colocalized with a nuclear
viral protein, UL12 (35), in cells infected with YK722(ΔUL34) (Fig. 2C). Wild-type-virus
replication and UL31 localization were restored in cells infected with YK723(ΔUL34-
repair) (Fig. 2B and C). These features of YK722(ΔUL34) were in agreement with
previous reports characterizing other UL34 deletion mutants (4).

HSV-1 and cellular protein interactions with CD98hc affected the localization
of CD98hc in HSV-1-infected cells. To examine the effects of the HSV-1 protein
interactors with CD98hc, including gB, gH, Us3, UL34, and UL31, on the localization of
CD98hc in HSV-1-infected cells, HEp-2 cells were mock infected or infected with wild-type

FIG 1 Schematic diagrams of the genome structure of wild-type HSV-1(F) and the relevant domains of
the recombinant viruses generated in this study. 1, wild-type HSV-1(F) genome; 2, domain of the UL33
to UL35 genes; 3, domain of the UL34 gene; 4 and 5, recombinant viruses with mutations in the UL34
gene.
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HSV-1(F), YK701(ΔgB), YK713(ΔgH), YK720(ΔUL31), R7041(ΔUs3), YK722(ΔUL34), or
YK723(ΔUL34-repair) at an MOI of 5 (Fig. 3, 4, and 5; see Fig. 7 and 8). In addition, to
examine the effects of cellular interaction between CD98hc and �1 integrin, sh-�1
integrin-HEp-2 cells (in which the expression of �1 integrin is reduced by the expression
of short hairpin RNA [shRNA] against �1 integrin compared to that in sh-Luc-HEp-2
cells, which express control shRNA against firefly luciferase [Fig. 6A]) (24) and sh-Luc-
HEp-2 cells were mock infected or infected with wild-type HSV-1(F) at an MOI of 5.
These infected cells were fixed at 24 h after infection, and localization of CD98hc, gB,
gH, UL31, UL34, cadherin, lamin A/C, and/or lamin B1 was examined by immunofluo-
rescence. Cadherin was shown to be a marker of the plasma membrane, and lamin A/C
and lamin B1 were shown to be markers of the NM (36, 37).

As reported previously (24), CD98hc was detected predominantly at the plasma
membrane and indeed colocalized with cadherin in mock-infected cells (Fig. 3A). In
contrast, CD98hc was predominantly detected around the nuclear rim and colocalized

FIG 2 Characterization of UL34-Vero cells and recombinant viruses generated in this study. (A) (Left) Vero
and UL34-Vero cells mock infected or infected with wild-type HSV-1(F) or YK722(ΔUL34) at an MOI of 5
for 18 h were analyzed by immunoblotting with the indicated antibodies. (Right) HEp-2 cells mock
infected or infected with wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-repair) at an MOI of 5 for 24
h were analyzed by immunoblotting with the indicated antibodies. (B) HEp-2 cells were infected with
wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-repair) at an MOI of 5 (left) or 0.01 (right). Total virus
from the cell culture supernatants and infected cells was harvested and assayed on UL34-Vero cells. (C)
HEp-2 cells were mock infected or infected with wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-
repair) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with the indicated antibodies, and
examined by confocal microscopy. Scale bars, 10 �m.
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partially with lamin A/C (Fig. 3B) and more completely with gB and gH (Fig. 4)
in wild-type-HSV-1(F)-infected cells. Similarly, in cells infected with YK713(ΔgH),
YK701(ΔgB), R7041(ΔUs3), or YK720(ΔUL31), CD98hc was detected around the nuclear
rim and colocalized with gB or gH (Fig. 4). We verified that, in agreement with previous
reports (4, 38), the UL31- and Us3-null mutations caused dislocation of UL34 in
HSV-1-infected cells: in cells infected with YK720(ΔUL31) or R7041(ΔUs3), UL34 was
detected both at the nuclear rim and in the perinuclear region in the cytoplasm (Fig.
5A) or as punctate structures at the nuclear rim (Fig. 5B), respectively. Furthermore,
wild-type HSV-1(F) infection caused the accumulation of CD98hc around the nuclear
rim in sh-�1 integrin-HEp-2 cells, as observed in sh-Luc-HEp-2 cells (Fig. 6B).

In contrast, the distribution of CD98hc in cells infected with YK722(ΔUL34) was
apparently different from its distribution in cells infected with wild-type HSV-1(F) or
YK723(ΔUL34-repair) (Fig. 7). Thus, CD98hc was more diffusely distributed throughout
the cytoplasm in cells infected with YK722(ΔUL34) than in cells infected with wild-type
HSV-1(F) or YK723(ΔUL34-repair) (Fig. 7 and 8). Similarly, in cells infected with
YK722(ΔUL34), gB and gH were also more diffusely distributed throughout the cyto-
plasm than in cells infected with wild-type HSV-1(F) or YK723(ΔUL34-repair) (Fig. 8A and
B) and were colocalized with CD98hc in these infected cells (Fig. 8C and D). The level
of accumulation of CD98hc in cells infected with YK722(ΔUL34) was similar to that in
cells infected with wild-type HSV-1(F) or YK723(ΔUL34-repair) (Fig. 7C).

Taken together, the results of the interactions of the HSV-1 proteins gB, gH, Us3,
UL34, and UL31 with CD98hc for the localization of CD98hc in HSV-1-infected cells
indicate that UL34 was required for the appropriate localization of CD98hc, gB, and gH
in HSV-1-infected cells, but gB, gH, Us3, UL31, and �1 integrin were not.

Effect of UL34 on the distribution of the ER in HSV-1-infected cells. gB and gH
have been reported to be predominantly colocalized with NM and ER markers in
wild-type HSV-1-infected cells (21, 39, 40). As shown in Fig. 6 and 7, the localizations of
CD98hc, gB, and gH were simultaneously changed in similar ways by the absence of
UL34 in HSV-1infected cells. These observations led us to hypothesize that, similarly to
gB and gH in HSV-1-infected cells, CD98hc is also associated with the endoplasmic

FIG 3 Localization of CD98hc in HSV-1-infected cells. HEp-2 cells were mock infected or infected with
wild-type HSV-1(F) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with anti-CD98hc
antibody in combination with anti-cadherin (A) or anti-lamin A/C (B), and examined by confocal
microscopy. Scale bars, 10 �m.
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reticulum (ER) and that UL34 is involved in the regulation of the ER global architecture
and thereby regulates the localization of ER-associated proteins. To test this hypothesis,
HEp-2 cells mock infected or infected with wild-type HSV-1(F), YK722(ΔUL34), or
YK723(ΔUL34-repair) were fixed, and the localization of the ER markers calnexin and
ERp57 (41, 42) was analyzed by immunofluorescence. As reported previously (41, 42),
calnexin and ERp57 were distributed throughout the cytoplasm in mock-infected cells
(Fig. 9). In contrast, these ER marker proteins were concentrated around the nuclear rim
in cells infected with wild-type HSV-1(F) or YK723(ΔUL34-repair) and were partially
colocalized with lamin A/C or lamin B1 (Fig. 9). In cells infected with YK722(ΔUL34), the
ER marker proteins were more diffusely distributed in the cytoplasm than in cells
infected with wild-type HSV-1(F) or YK723(ΔUL34-repair) (Fig. 9). The distributions of
calnexin and ERp57 in cells infected with wild-type HSV-1(F), YK722(ΔUL34), or
YK723(ΔUL34-repair) were similar to those of gB, gH, and CD98hc. Indeed, these ER
marker proteins mostly colocalized with gB, gH, and CD98hc in the infected cells
(Fig. 10).

To investigate the effect of UL34 on the distribution of the ER in HSV-1-infected cells
at the ultrastructural level, HEp-2 cells infected with wild-type HSV-1(F), YK722(ΔUL34),
or YK723(ΔUL34-repair) were analyzed by electron microscopy. At the ultrastructural
level, the ER membranes were distributed throughout the cytoplasm in mock-infected
cells (Fig. 11), as described previously (43). In agreement with the immunofluorescence
analysis of the ER marker proteins (Fig. 9 and 10), the ER membranes were concentrated
around the nuclear rim in cells infected with wild-type HSV-1(F) or YK723(ΔUL34-repair)
and were more diffusely distributed throughout the cytoplasm in cells infected with
YK722(ΔUL34) than in cells infected with wild-type HSV-1(F) or YK723(ΔUL34-repair)
(Fig. 11).

FIG 4 Effects of mutations in gH, gB, or UL31 on localization of CD98hc in HSV-1-infected cells. HEp-2
cells were mock infected or infected with wild-type HSV-1(F) (A to D), YK713(ΔgH) (A), YK701(ΔgB) (B),
R7040(ΔUs3) (C), or YK720(ΔUL31) (D) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with
the indicated antibodies, and examined by confocal microscopy. Scale bars, 10 �m.
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Collectively, these results suggest that UL34 was required for proper global archi-
tecture of the ER in HSV-1-infected cells. gB, gH, and CD98hc appeared to be tightly
associated with the ER in HSV-1-infected cells, and therefore, their localization was
closely linked to the distribution of the ER.

Effect of ectopic expression of UL34 and/or UL31 on the distribution of the ER.
To examine whether UL34 by itself can regulate the distribution of the ER marker and
the localization of CD98hc, HEp-2 cells were transfected with a UL34 expression plasmid
or an empty expression plasmid, and the localizations of UL34 and calnexin or CD98hc
were analyzed by immunofluorescence. In agreement with a previous report (4),
transiently expressed UL34 was mainly detected as aggregates in the cytoplasm (Fig.
12A and C). As shown in Fig. 12A, the pattern of localization of calnexin in cells
transfected with the empty plasmid was apparently different from that in cells tran-
siently expressing UL34. Specifically, a fraction of calnexin was recruited to the UL34
aggregates and colocalized with UL34 (Fig. 12A). In contrast, ectopic expression of UL34
had no effect on the pattern of localization of CD98hc (Fig. 12C). These results indicate
that UL34 has the ability to regulate the distribution of the ER marker in the absence
of any other HSV-1 protein, whereas it was not sufficient to regulate the localization of
CD98hc without HSV-1 infection.

The ectopic coexpression of UL34 and UL31 reportedly targets these viral proteins
to the NM (4). Therefore, we also examined the effects of the ectopic coexpression of
UL34 and UL31 on the localization of the ER marker calnexin and on the localization of
CD98hc. In agreement with previous reports (4), the ectopic coexpression of UL34 and
UL31 led to the localization of these viral proteins predominantly at the nuclear rim (Fig.
12B and D). In cells expressing both UL34 and UL31, calnexin was recruited around the
nuclear rim and was partially colocalized with these viral proteins at the nuclear rim
(Fig. 12B), as was also observed in wild-type HSV-1(F)-infected cells (Fig. 12E). In
contrast, the coexpression of UL34 and UL31 had no effect on the localization of
CD98hc (Fig. 12D). These results suggest that the NEC was sufficient for the recruitment
of the ER to the region around the nuclear rim.

FIG 5 Effects of mutations in UL31 or Us3 on localization of UL34 and/or UL31 in HSV-1-infected cells.
HEp-2 cells were mock infected (A) or infected with wild-type HSV-1(F) (A and B), YK720(ΔUL31) (A), or
R7040(ΔUs3) (B) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with the indicated
antibodies, and examined by confocal microscopy. Scale bars, 10 �m.
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Effects of UL34 on recruitment of CD98hc, of gB, and, in addition, of gD to the
NM. Finally, we examined whether UL34 was involved in the recruitment to the NM of

the ER-associated viral and cellular regulators of HSV-1 nuclear egress, which include
CD98hc and gB. We also investigated the involvement of UL34 in recruitment of gD to
the NM, since UL34 was reported to promote gD localization at the NM (44). To this end,
HEp-2 cells infected with wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-repair)
were fixed, and immunofluorescence analysis of the localization of the NM marker
lamin A/C or lamin B1, CD98hc, gB, and gD was performed. Colocalization between
each of the NM markers and CD98hc, gB, or gD was quantified. In agreement with a
previous report (44), the efficiency of colocalization between gD and lamin B1 in cells
infected with YK722(ΔUL34) was significantly lower than that in cells infected with
wild-type HSV-1(F) or YK723(ΔUL34-repair) (Fig. 13A), confirming that UL34 promoted
gD localization at the NM. Similar results were also obtained for efficiencies of colo-
calization between CD98hc and lamin A/C, and gB and lamin B1 (Fig. 13B and C). The
differences in intensity levels of the fluorescence emissions of gB, gD, CD98hc, lamin B1,
and lamin A/C between cells infected with YK722(ΔUL34) and cells infected with
wild-type HSV-1(F) or YK723(ΔUL34-repair) were either not significant (gB, gD, lamin B1,
and lamin A/C) or did not decrease (CD98hc) (Fig. 14), eliminating the possibility that
the effects of the UL34-null mutation on the colocalization efficiencies of gB, gD, and
CD98hc and on the colocalization efficiencies of the NM markers were not due to
the decreased expression of these cellular and viral proteins in infected cells. The
results indicate that UL34 is required for efficient accumulation of gD, gB, and
CD98hc at the NM.

FIG 6 Effects of �1 integrin knockdown on localization of CD98hc in HSV-1 infected cells. (A) Expression
of �1 integrin in sh-Luc-HEp-2 and sh-�1 integrin-HEp-2 cells was analyzed by immunoblotting with the
indicated antibodies. (B) sh-Luc-HEp-2 and sh-�1 integrin-HEp-2 cells were mock infected or infected
with wild-type HSV-1(F) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with the indicated
antibodies, and examined by confocal microscopy. Scale bars, 10 �m.
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DISCUSSION

Viruses frequently induce remodeling of the membranes of host cellular organelles,
which appears to facilitate viral replication, especially replication of viral genomes, and
the morphogenesis of virions (45–50). Indeed, RNA and DNA viruses that replicate their
genomes in the cytoplasm utilize the remodeled cellular membranes to create com-

FIG 7 Effects of mutation in UL34 on localization and accumulation of CD98hc in HSV-1-infected cells. (A
and B) HEp-2 cells were mock infected or infected with wild-type HSV-1(F), YK722(ΔUL34), or
YK723(ΔUL34-repair) at an MOI of 5 for 24 h. The cells were fixed, permeabilized, stained with
anti-CD98hc antibody in combination with anti-cadherin (A) or anti-lamin A/C (B) antibody, and exam-
ined by confocal microscopy. Scale bars, 10 �m. (C) The cells were also analyzed by immunoblotting with
the indicated antibodies.
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partments, which are designated replication factories (45–50). These compartments
appear to function as physical support for the coordinated accumulation of the viral
and cellular components required for efficient viral replication and/or as a barrier that
prevents exposure of viral nucleic acids to the host’s immune system (45–51). In
contrast, information on the remodeling of the membranes of cellular organelles
mediated by HSV-1 infection has been limited. Thus, it has been reported that HSV-1
infection modifies the Golgi apparatus and the trans-Golgi network (TGN) (52), i.e.,
whereas these organelles are localized in the juxtanuclear cytoplasmic domain in
normal cells, they are dispersed throughout the cytoplasm in infected cells (52).
However, in the case of HSV-1 infection, the biological significance of the modification
of organelle membranes by HSV-1 remains largely unknown.

The ER is the largest host cellular organelle and forms a complex network that
extends from the NM to the plasma membrane (43). This membranous organelle plays
a central role in the synthesis, modification, and transport of secretory and membrane
proteins and is the site of the biosynthesis, processing, and transport of lipids (53).
Interestingly, the ER is most often hijacked by a variety of viruses for the creation of viral
replication factories. Therefore, viruses that use the ER in this way cause substantial
alterations in its morphology (45–47, 50). However, information on the effects of
herpesvirus infections on the morphological integrity of the ER is scarce. In this study,
we showed that HSV-1 infection dramatically altered the global architecture of the ER
and that UL34 was required for the HSV-1-induced alteration of the ER. To our

FIG 8 Effects of mutation in UL34 on localization of gB (A) and gH (B) and on colocalization of CD98hc
with gB (C) or gH (D) in HSV-1-infected cells. HEp-2 cells were mock infected or infected with wild-type
HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-repair) at an MOI of 5 for 24 h and then fixed, permeabilized,
stained with the indicated antibodies, and examined by confocal microscopy. Scale bars, 10 �m.
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knowledge, this is the first report to show that a herpesvirus remodels the morphology
of the ER and to identify the herpesvirus protein responsible and required for ER
remodeling. Since the mechanism by which the spatial integrity of the ER in normal
cells is regulated largely remains to be elucidated, we suggest that UL34 could be used
as a probe for investigating the cellular mechanism involved in regulating the spatial
integrity of the ER.

Newly synthesized membrane proteins are sorted from the ER into various mem-
branous compartments and to the plasma membrane. The membrane of the ER is
continuous with the ONM and INM, but not with either the plasma membrane or the
membranes of other cytoplasmic organelles, such as the Golgi apparatus, TGN, and
endosomes (43). Therefore, the mechanisms by which membrane proteins target the
plasma membrane and the cytoplasmic membranous organelles are distinct from those
by which membrane proteins specifically accumulate at the NM. The membrane
proteins targeted to the plasma membrane and the cytoplasmic membranous organ-
elles are in general sorted from the ER by the vesicular trafficking system (54). In
contrast, recent live-imaging and mathematical analyses support the diffusion and

FIG 9 Effect of mutation in UL34 on localization of the ER markers calnexin (A) and ERp57 (B) in
HSV-1-infected cells. HEp-2 cells were mock infected or infected with wild-type HSV-1(F), YK722(ΔUL34),
or YK723(ΔUL34-repair) at an MOI of 5 for 24 h and then fixed, permeabilized, stained with the indicated
antibodies, and examined by confocal microscopy. Scale bars, 10 �m.
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retention model for specific targeting of membrane proteins to the NM (55, 56). Thus,
newly synthesized membrane proteins targeted to the NM are inserted into the
membranes of the ER and are thought to move laterally from the ER to the ONM and/or
the INM by free diffusion (57, 58). It appears that enrichment of the INM proteins in the

FIG 10 Effect of mutation in UL34 on colocalization of the ER markers ERp57 (A) and calnexin (B and C)
with each of the de-envelopment factors CD98hc (A), gB (B), and gH (C) in HSV-1-infected cells. HEp-2
cells were mock infected or infected with wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-repair) at
an MOI of 5 for 24 h and then fixed, permeabilized, stained with the indicated antibodies, and examined
by confocal microscopy. Scale bars, 10 �m.
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INM occurs by interaction with nuclear binding partners, such as the lamin proteins or
chromatin, which would be required to retain INM proteins at the INM (55, 56).
Enrichment of the ONM proteins in the ONM is driven by interaction with INM proteins
in the perinuclear space (59). In agreement with this model, it has been reported that
HSV-1 gD interacts with the HSV-1 NEC, and the efficient retention of HSV-1 gD at the
INM requires the NEC in HSV-1-infected cells (44). At present, although it remains to be
elucidated whether our study findings that the UL34-mediated ER compression around
the NM and the UL34-mediated recruitment of the de-envelopment regulators to the
NM are related, it is conceivable that the compression of the ER around the NM could
physically promote the diffusion of membrane proteins from the ER toward the NM,
thereby leading to their accumulation at the NM in HSV-1-infected cells. Moreover, the
HSV-1 NEC was shown to localize at both the INM and ONM (10), and therefore, it is
possible that, for the cellular membrane protein CD98hc, which has been shown to
interact with UL34 and UL31 (24), its retention at the NM might be further promoted
by its interaction with the HSV-1 NEC.

In this and previous studies (24), the level of CD98hc localization at the plasma
membrane in HSV-1-infected cells was shown to be remarkably reduced compared to
that in mock-infected cells. These observations suggest that HSV-1 infection changed
the extent of CD98hc retention at the plasma membrane, which is determined by the
balance between the rate of its delivery to the plasma membrane and the rate of its
internalization into the cytoplasm (60). Conceivably, HSV-1 infection inhibits the trans-

FIG 11 Effect of mutation in UL34 on the distribution of the ER in HSV-1-infected cells at the ultrastructural level. HEp-2 cells were mock
infected (A) or infected with wild-type HSV-1(F) (B), YK722(ΔUL34) (C), or YK723(ΔUL34-repair) (D) at an MOI of 30 for 24 h; embedded;
sectioned; stained; and examined by transmission electron microscopy. The arrowheads indicate the ER. Nu, nucleus; Cy, cytoplasm. Scale
bars, 1 �m.

Remodeling of the ER by HSV-1 UL34 Journal of Virology

June 2017 Volume 91 Issue 12 e00271-17 jvi.asm.org 13

http://jvi.asm.org


port of this cellular membrane protein to the plasma membrane and/or enhances its
endocytosis. Notably, whereas we showed that the ectopic coexpression of UL34 and
UL31 caused redistribution of the ER marker calnexin around the NM, which was also
observed with markers of the ER in HSV-1-infected cells, the ectopic coexpression of
UL34 and UL31 had no effect on the retention of CD98hc at the plasma membrane and
did not cause it to accumulate around the NM. This result was in contrast to the effect
of UL34 on CD98hc accumulation around the NM in HSV-1-infected cells. These
observations suggest that HSV-1 infection induces an HSV-1 regulator(s) other than
UL34 and UL31 or a cellular regulator(s) that inhibits the retention of CD98hc at the
plasma membrane, causing the accumulation of CD98hc at the ER in infected cells, and
then the UL34 and UL31 proteins somehow induce the compression of the ER around
the INM, resulting in the accumulation of CD98hc around the NM.

Many mechanisms have evolved in a variety of viruses, including the herpesviruses,
that restrict the retention of viral and cellular proteins at the plasma membrane,
especially proteins such as the major histocompatibility complex (MHC) molecules,
which target infected cells for the host immune response (61–64). In fact, various
herpesvirus proteins, such as human cytomegalovirus Us2 and Us11 and the open
reading frame 66 (ORF66) protein kinase encoded by varicella-zoster virus, have been
reported to inhibit the transport of MHC molecules to the cell surface through the

FIG 12 Localization of calnexin and CD98hc in cells ectopically expressing UL34 and/or UL31 or in HSV-1-infected
cells. (A to D) HEp-2 cells were transfected with the empty plasmid alone (A to D), the UL34 expression plasmid
alone (A and C), or the UL34 and UL31 expression plasmids (B and D) for 48 h and then fixed, permeabilized, stained
with anti-calnexin (A and B) or anti-CD98hc (C and D) antibody in combination with the indicated antibodies, and
examined by confocal microscopy. (E) HEp-2 cells were mock infected or infected with wild-type HSV-1(F) at an MOI
of 5 for 24 h and then fixed, permeabilized, stained with anti-UL34 antibody and anti-calnexin antibody, and
examined by confocal microscopy. Scale bars, 10 �m.
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vesicular trafficking system (61, 64). HSV-1 Us3 was shown to inhibit the expression of
gB, which is known to be an inducer of the host immune response (65), at the cell
surface by enhancing its endocytosis (66, 67). Further studies that should be of interest
and are under way in our laboratory include both identifying the HSV-1 and/or cellular
protein(s) involved in inhibiting the retention of CD98hc at the plasma membrane and
clarifying the role of such a protein(s) in inhibiting the retention of CD98hc at the
plasma membrane.

MATERIALS AND METHODS
Cells and viruses. Vero, rabbit skin, and HEp-2 cells were described previously (68, 69). Flp-In-CV-

1/�27-gB, UL31-CV1, and Vero-gH cells expressing gB, UL31, and gH, respectively, were described
previously (39, 70, 71). sh-Luc-HEp-2 and sh-�1 integrin-HEp-2 cells expressing shRNA against firefly
luciferase and shRNA against human �1 integrin, respectively, were described previously (24). The HSV-1
wild-type strain HSV-1(F), gB-null mutant virus YK701(ΔgB), UL31-null mutant virus YK720(ΔUL31),
Us3-null mutant virus R7041(ΔUs3), and gH-null mutant virus YK713(ΔgH) were described previously (15,
39, 70, 72). R7041(ΔUs3) was kindly provided by Bernard Roizman. For experiments with YK720(ΔUL31),
wild-type HSV-1(F) and YK720(ΔUL31) viruses were propagated and assayed in UL31-CV1 cells. For
experiments with YK701(ΔgB), wild-type HSV-1(F) and YK701(ΔgB) viruses were propagated and assayed
in Flp-In-CV-1/�27-gB cells. For experiments with YK713(ΔgH), wild-type HSV-1(F) and YK713(ΔgH)
viruses were propagated and assayed in Vero-gH cells.

Plasmids. The plasmids pcDNA3.1-UL34 and pcDNA3.1-UL31, which were used for expression of
HSV-1 UL34 and UL31, respectively, were generated by cloning fragments containing these ORFs, which
had been amplified by PCR from the HSV-1(F) genome, into pcDNA3.1(�) (Invitrogen). The transfer
plasmid pBS-UL34-rep, used to generate the recombinant virus YK723(ΔUL34 repair) (Fig. 1), in which the
UL34 deletion in YK722(ΔUL34) was repaired, was constructed by cloning the PCR-amplified domain
containing the UL34 ORF (a 513-bp upstream sequence flanking the UL34 start codon and a 500-bp
downstream sequence flanking the UL34 stop codon) from the HSV-1(F) genome into pBluescript II KS(�)
(Stratagene). The UL34 gene sequence, optimized for expression in human cells, was synthesized by
GenScript and cloned into pMxs-puro to construct pMxs-UL34o, which was used for generating cell lines
stably expressing UL34. The optimized U34 sequence was as follows: 5=-ATGGCTGGGCTGGGGAAACCTT
ACACTGGACATCCTGGGGACGCCTTTGAGGGGCTGGTGCAGAGAATTAGACTGATTGTGCCTTCAACCCTGAGA
GGCGGCGACGGCGAGGCTGGCCCTTACAGCCCAAGCTCCCTGCCATCCCGGTGCGCCTTCCAGTTTCACGGCCA
CGACGGCTCTGATGAGAGCTTCCCCATCGAATACGTGCTGCGGCTGATGAACGATTGGGCCGAGGTGCCCTGTA
ACCCTTATCTGCGGATCCAGAATACAGGCGTGAGCGTGCTGTTTCAGGGCTTCTTTCACAGACCTCACAACGCTC
CAGGCGGCGCTATCACCCCCGAGAGAACAAATGTGATCCTGGGCTCTACCGAGACCACAGGCCTGAGCCTGGG
CGACCTGGATACAATCAAGGGCCGGCTGGGCCTGGACGCTAGACCCATGATGGCCTCCATGTGGATCTCTTGCT
TCGTGAGAATGCCCAGGGTGCAGCTGGCCTTCCGGTTTATGGGCCCTGAGGATGCCGGCAGAACCCGGAGAAT
CCTGTGCAGGGCTGCTGAGCAGGCTATCACCAGGCGGAGAAGGACACGGAGATCCCGGGAGGCCTATGGCGCT

FIG 13 Effects of mutation in UL34 on colocalization of the NM markers with gD, gB, or CD98hc in
HSV-1-infected cells. HEp-2 cells were infected with wild-type HSV-1(F), YK722(ΔUL34), or YK723(ΔUL34-
repair) at an MOI of 5 for 24 h and then fixed; permeabilized; stained with anti-lamin B1 (A and B) or
anti-lamin A/C (C) in combination with anti-gD (A), anti-gB (B), or anti-CD98hc antibody (C); and
examined by confocal microscopy. Colocalization between gD and lamin B1 (A), gB and lamin B1 (B), or
CD98hc and lamin A/C (C) was quantified using Manders’ colocalization coefficient. Each value is the
mean and standard error (n � 40) and is expressed relative to the mean value of wild-type HSV-1(F)-
infected HEp-2 cells, which was normalized to 1. Statistical analysis was performed by one-way analysis
of variance with the Tukey test; n.s., not significant.
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GAGGCTGGCCTGGGCGTGGCTGGCACCGGCTTCAGGGCTAGAGGCGACGGCTTTGGCCCACTGCCCCTGCTGA
CACAGGGCCCATCTAGACCTTGGCACCAGGCCCTGAGGGGCCTGAAGCACCTGAGAATCGGCCCTCCTGCCCTG
GTGCTGGCCGCAGGACTGGTGCTGGGAGCCGCCATTTGGTGGGTCGTCGGGGCAGGGGCAAGACTGTGA-3=.

Establishment of Vero cells stably expressing UL34. Plat-GP cells were cotransfected with pMDG
and pMxs-UL34o, and the supernatants were harvested. Vero cells were transduced with the superna-
tants and selected with puromycin (5 �g/ml), as described previously (73). Resistant cells were cloned
from a single colony and designated UL34-Vero cells. Expression of UL34 protein in UL34-Vero cells was
confirmed by immunoblotting (Fig. 2A).

Mutagenesis of viral genomes in E. coli and generation of recombinant HSV-1. A UL34-null
mutant virus, YK722(ΔUL34) (Fig. 1), in which the UL34 gene was disrupted by replacing UL34 codons 2
to 228 with a foreign gene cassette containing an I-SceI site and a kanamycin resistance gene, was
generated by Red-mediated mutagenesis using Escherichia coli GS1783, carrying pYEbac102 (68), a
full-length infectious HSV-1(F) clone, as described previously (74), except that the primers 5=-GTTTACG
CGGGCACGCACGCTCCCATCGCGGGCGCCATGGAGGATGACGACGATAAGTAGGG-3= and 5=-CCGCAGGGCC
TGGTGCCACGGGCGGGAGGGCCCTTGGGTTCAACCAATTAACCAATTCTGATTAG-3= were used, and Vero-
UL34 cells were transfected with pYEbac102 carrying the UL34-null mutation, with the use of
Lipofectamine 2000. The replacement of UL34 codons 2 to 228 with a foreign gene was previously used
to generate an HSV-1 UL34-null mutant (5). The recombinant virus strain YK723(ΔUL34-repair), in which

FIG 14 Effect of mutation in UL34 on the total intensity of fluorescence of gD (A), gB (B), or CD98hc (C)
in HSV-1-infected cells detected by confocal microscopy. Total intensities per cell in the infected HEp-2
cells analyzed in Fig. 13 were obtained using ZEN software (Zeiss). Each value is the mean and standard
error (n � 40) and is expressed relative to the mean value of wild-type HSV-1(F)-infected HEp-2 cells,
which was normalized to 1. Statistical analysis was performed by one-way analysis of variance with the
Tukey test; n.s., not significant.
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the UL34-null mutation in YK722 was repaired, was generated by cotransfection of rabbit skin cells with
pYEbac102, carrying the UL34-null mutation, and pBS-UL34-rep, as described previously (15). Viruses
were isolated from plaques and purified 2 additional times on Vero cells. Restoration of the original UL34
sequence was confirmed by sequencing. In experiments with YK722(ΔUL34), wild-type HSV-1(F),
YK722(ΔUL34), and YK723(ΔUL34-repair), viruses were propagated and assayed in Vero-UL34 cells.

Antibodies. Commercial mouse monoclonal antibodies to gB (H1817; Virusys), gH (52-S; American
Type Culture Collection), gD (BL6; Santa Cruz Biotechnology), ICP0 (5H7; Santa Cruz Biotechnology),
ICP27 (8.F.137B; Abcam), ICP8 (10A3; Chemicon), lamin A/C (636; Santa Cruz Biotechnology), ERp57
(MaP.ERp57; Santa Cruz Biotechnology), pancadherin (CH-19; Sigma), and �-tubulin (DM1A; Sigma);
commercial rabbit polyclonal antibodies to CD98hc (H-300; Santa Cruz Biotechnology), calnexin (c4731;
Sigma), and lamin B1 (ab16048-100; Abcam); and commercial goat polyclonal antibody to �1 integrin
(N20; Santa Cruz Biotechnology) were used in this study. The rabbit polyclonal antibodies to UL12, UL34,
and UL31, and mouse polyclonal antibody to UL31 were described previously (16, 75). Rabbit polyclonal
antibody to UL31 was used for immunoblotting, and mouse polyclonal antibody to UL31 was used for
immunofluorescence assay. Chicken polyclonal antibody to UL34 (a generous gift from R. Roller) was
described previously (4) and was used for immunofluorescence assay with mouse polyclonal antibody to
UL31 or rabbit polyclonal antibody to calnexin.

Immunoblotting and immunofluorescence assay. Immunoblotting was performed as described
previously (76). Immunofluorescence assays were performed as described previously (24), except that
samples were examined with an LSM5 or LSM800 laser scanning confocal microscope (Zeiss).

Measurement of colocalization in infected cells. Images acquired by the LSM800 microscope
(Zeiss) were analyzed with the colocalization function in ZEN2.1 software (Zeiss). Regions of the image
that did not contain a visual signal were selected and used to threshold the image. Manders’ colocal-
ization coefficient (M) was calculated using the following equation, as described previously (77–79): M �
�iXi.colocalized/�iXi, where Xi is equal to the intensity of marker X at a pixel and Xi.colocalized is the intensity
of the pixels where the intensity of the other marker is greater than the threshold value. An M value of
1.0 indicates 100% colocalization, and 0 indicates 0% colocalization.

Electroporation. The indicated expression plasmids were electroporated into HEp-2 cells with the
use of a Super Electroporator NEPA21 type 2 (NEPA Gene), according to the manufacturer’s instructions.
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