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ABSTRACT H5N6 avian influenza virus (AIV) has posed a potential threat to public
health since its emergence in China in 2013. To understand the evolution and emer-
gence of H5N6 AIV in the avian population, we performed molecular surveillance of
live poultry markets (LPMs) in Wugang Prefecture, Hunan Province, in central China,
during 2014 and 2015. Wugang Prefecture is located on the Eastern Asian-Australian
migratory bird flyway, and a human death due to an H5N6 virus was reported in the
prefecture on 21 November 2016. In total, we sampled and sequenced the complete
genomes of 175 H5N6 AIVs. Notably, our analysis revealed that H5N6 AIVs contain at
least six genotypes arising from segment reassortment, including a rare variant that
possesses an HA gene derived from H5N1 clade 2.3.2 and a novel NP gene that has
its origins with H7N3 viruses. In addition, phylogenetic analysis revealed that geneti-
cally similar H5N6 AIVs tend to cluster according to their geographic regions of ori-
gin. These results help to reveal the evolutionary behavior of influenza viruses prior
to their emergence in humans.

IMPORTANCE The newly emerged H5N6 influenza A virus has caused more than 10
human deaths in China since 2013. In November 2016, a human death due to an
H5N6 virus, in Wugang Prefecture, Hunan Province, was confirmed by the WHO. To
better understand the evolution and emergence of H5N6 viruses, we surveyed live
poultry markets (LPMs) in Wugang Prefecture before the reported human death,
with a focus on revealing the diversity and genomic origins of H5N6 in birds during
2014 and 2015. In general, H5N6 viruses in this region were most closely related to
H5N1 clade 2.3.4.4, with the exception of one virus with an HA gene derived from
clade 2.3.2 such that it represents a novel reassortant. Clearly, the ongoing surveil-
lance of LPMs is central to monitoring the emergence of pathogenic influenza vi-
ruses.
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Since its emergence in Guangdong Province in 1996, the highly pathogenic H5N1
avian influenza A virus (AIV) has become endemic in poultry in multiple regions of

China, developing into both genetically and antigenically distinct lineages (1) and
causing a number of human deaths (2). This H5 subtype virus has also undergone
frequent reassortment with cocirculating AIV subtypes, generating a number of novel
viruses (3, 4).

Recently, a novel AIV type—H5N6 —was isolated in Asia and was initially identified
as a reassortant between H5N1 and H6N6 viruses (5–7). This virus has caused more than
10 human deaths since 2014 (8; http://www.who.int/csr/don/archive/country/chn/en/).
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Recently, with more H5N6 genomes sequenced, it has become clear that the gene
segments of these viruses derived from a variety of AIV subtypes. Specifically, the PB2
gene of some H5N6 AIVs derived from that of H6N6 viruses, while the PB1 gene
originated in H3 subtype viruses (9); a novel H5N6 virus isolated from migratory
waterfowl possessed a hemagglutinin (HA) gene that was related to that of H5N2
viruses (10); the internal genes of viruses isolated from two human cases in 2015
derived from H7N9/H9N2 viruses in chickens (11); human infections in Guangdong
Province, China, in 2015 were due to a newly emerged H5N6 virus that was a
reassortant between H6N6 and H9N2 viruses (12); and a human-associated H5N6 (clade
2.3.3.4) virus sampled in China during 2014 to 2015 was a triple reassortant derived
from H6N6, H5N1 (clade 2.3.1.1), and H5N6 (2.3.4.4) viruses (13). In addition, a recent
study of multiple live poultry markets (LPMs) in southern China revealed that the HA
gene of H5N6 viruses derived from clade 2.3.4.4, the NA gene derived from H6N6
viruses, and all six internal gene segments had their origins in clades 2.3.4.4 and 2.3.2.1
of H9N2/H7N9 viruses (14).

To better understand the complex molecular evolution and emergence of H5N6
viruses at the local level, we sampled AIVs in LPMs in Wugang Prefecture, Hunan
Province, in central China. Notably, these LPMs are located on the Eastern Asian-
Australian migratory bird flyway, and a human death in this prefecture that was caused
by an H5N6 virus was reported and confirmed by the WHO on 21 November 2016
(http://www.who.int/csr/don/07-december-2016-ah5n6-china/en/). In addition, the LPMs
in this area are located in close proximity to each other and hence provide an ideal
sampling framework to understand the local evolution of H5N6 in central China since
its emergence in 2013.

RESULTS
H5N6 AIV in Wugang Prefecture. Of the 175 H5N6 AIVs reported in this study (see

Table S1 in the supplemental material), 169 were isolated from LPMs in Wugang
Prefecture, Hunan Province. Ducks (n � 79) and Muscovy ducks (n � 37) were the major
hosts, representing 68.6% of the H5N6 AIVs. Other hosts were chickens (n � 26; 15.4%)
and geese (n � 26; 15.4%). Unsurprisingly, all isolated H5N6 viruses fell into clade
2.3.4.4 in the HA phylogeny. However, it was striking that our phylogenetic analysis
revealed that one of the newly sequenced H5N6 strains—A/duck/Hunan/HN232/2015
(H5N6)— had an HA gene seemingly derived from clade 2.3.2 (Fig. S1) (see below).

Geographic clustering of Wugang H5N6 AIVs. Our phylogenetic analysis of HA
suggested that H5N6 AIVs tend to cluster geographically (Fig. 1A). In particular, several
major geographic clusters with high Bayesian posterior probability values (�95%) were
identified in Wugang Prefecture. These were denoted WG1 (with “WG” denoting
Wugang Prefecture; n � 60), WG2 (n � 6), WG3 (n � 34), and WG4, which contained
four subclusters: WG4.1 (n � 6), WG4.2 (n � 5), WG4.3 (n � 15), and WG4.4 (n � 42).
With the exception of WG2, all these clusters also contained viruses sampled outside
Hunan Province (shown by the mix of colors in Fig. 1). In this context, it is noteworthy
that a virus isolated from a human case of H5N6 (A/Guangdong/ZQ874/2015) infection
from a different (Guangdong) province was embedded within cluster WG4.

Phylogenetic history of the H5N6 NA segment. Two major clusters of H5N6
viruses were observed in the NA phylogeny (Fig. 2); one was characterized by an
11-amino-acid deletion at residues 58 to 68, while the other, less frequent cluster had
no such deletion. All the viruses sampled from Wugang Prefecture belonged to the
former cluster, suggesting that the deletion mutant is dominant in central China.

Reassortment and genesis of H5N6 genomic diversity. We next used phyloge-
netic analysis to determine the extent of reassortment in the H5N6 viruses sampled for
the present study. This revealed segments with complex evolutionary origins (Table 1;
Fig. 3; Fig. S1). Specifically, PB2 gene segments were derived from H5N1, H5N2, and
H6N2 viruses; PB1 from H5N8 and H9N2 viruses; PA from H5N1 and H5N2 viruses; NP
from H5N1, H5N2, and H7N3 viruses; M from H5N1 and H5N2 viruses; and NS from
H5N2 viruses. To our knowledge, the H7N3 origin of the H5N6 NP gene segment has
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not been reported previously (Fig. 3). Strikingly, as noted above, we also found one
virus—A/duck/Hunan/HN232/2015 (H5N6) (Fig. 3)—that possessed an HA gene derived
from H5N1 clade 2.3.2 (exhibiting 98.9% nucleotide identity to A/chicken/Wuhan/
HAQL07/2014 [H5N1]).

To reveal the phylogenetic positions of the newly isolated AIVs, we performed a
phylogenetic analysis using all H5N6 AIVs isolated in different Asian countries, including
China (n � 487). Such analysis revealed that the viruses from Wugang (i.e., Hunan
Province) generally formed distinct clusters indicative of largely in situ evolution (Fig. 4).
A notable exception was several H5N6 AIVs sampled in Vietnam at the end of 2014 and
in early 2015 that fell within a Hunan cluster. All reassortant strains detected in this
study (Table 1) fell within the Hunan or Anhui clusters and were phylogenetically
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FIG 1 Time-scaled evolutionary history of H5N6 AIVs. (A) An MCC tree of the HA sequences of viruses sampled in China (n � 281) is shown, with
the viruses collected in Wugang Prefecture (WG) highlighted in blue. A virus from a human case of H5N6 (A/Guangdong/ZQ874/2015) infection
distributed within WG4 is marked with an asterisk. Shaded bars represent the 95% highest probability distribution for the age of each node. (B)
Analysis of root-to-tip divergence against sampling date for the HA and NA gene segments. A group of clear outliers in the HA graph is marked
(and was removed from the BEAST analysis).
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distinct from those sampled outside China (Fig. 4), suggesting that they arose within
China.

Evolutionary dynamics of H5N6. An initial analysis of temporal structure by use of
a root-to-tip regression provided evidence for some temporal (i.e., clock-like) structure
for both the HA (n � 284; correlation coefficient � 0.71; R2 � 0.51) and NA (n � 284;
correlation coefficient � 0.72; R2 � 0.52) gene segments sampled from China. However,
there was also clearly rate variation, and when three clear outliers (Fig. 1B) were
removed from the HA regression, the R2 value increased to 0.63. In addition, it is
possible that evolutionary rates may be elevated to some extent by time dependency
(15, 16), particularly given the short time span of sampling in this study. Hence, all
evolutionary rates estimated here should be treated with caution. Using a Bayesian
method, the rate of nucleotide substitution in the H5N6 viruses (for the same data sets
as those described above) was estimated to be 4.28 � 10�3 nucleotide substitution/
site/year (95% highest probability density [HPD] � 3.42 � 10�3 to 5.17 � 10�3
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FIG 2 Phylogenetic history of the H5N6 NA gene segment. This time-scaled phylogeny reveals two major groups: those
with and without an 11-amino-acid deletion. The Wugang strains determined here are marked “WG.” Shaded bars
represent the 95% highest probability distribution for the age of each node.
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substitution/site/year) for the HA gene and 5.27 � 10�3 substitution/site/year (3.55 �

10�3 to 6.63 � 10�3 substitution/site/year) for the NA gene. Using the HA rate, we
estimated that the times of origin (95% HPD) of the four major clusters (Fig. 1A) of
viruses were as follows: WG1, March 2013 to June 2014; WG2, February 2015 to October
2015; WG3, November 2013 to May 2014; and WG4, November 2013 to June 2014. All
these estimated dates are close to when (i.e., around 2014) the first human H5N6 case
was reported in China.

DISCUSSION

As H5N1 avian influenza viruses pose a threat to public health, it is clearly significant
that the H5N6 virus, which emerged in 2013, has internal genes derived from multiple
subtypes, including H5, H6, H7, and H9 AIVs. This concern was heightened by a report

TABLE 1 H5N6 avian influenza viruses isolated for this study and published viruses to which they show the highest nucleotide identities

Segment Virus Closest GenBank virus by genetic distance Identity (%)

HA A/duck/Hunan/HN232/2015 A/chicken/Wuhan/HAQL07/2014 (H5N1) 98.8
PB2 A/duck/Hunan/HN232/2015 A/chicken/Wuhan/HAQL07/2014 (H5N1) 97.4

A/muscovy duck/Hunan/HN359/2015 A/chicken/Guangdong/C273/2011 (H6N2) 93.2
A/goose/Hunan/HN325/2015 A/duck/Hubei/SZY250/2016 (H5N2) 99.4

PB1 A/goose/Hunan/HN325/2015 A/duck/Eastern China/L0423/2011 (H5N8) 93.1
A/muscovy duck/Hunan/102/2014 A/chicken/Jiangsu/245/2004 (H9N2) 95.8

PA A/duck/Hunan/HN232/2015 A/chicken/Wuhan/HAQL07/2014 (H5N1) 99.3
A/goose/Hunan/HN325/2015 A/duck/Hubei/SZY250/2016 (H5N2) 99.3

NP A/duck/Hunan/HN232/2015 A/duck/Wenzhou/HAYXLG07/2015 (H5N1) 99.4
A/goose/Hunan/HN325/2015 A/duck/Hubei/SZY250/2016 (H5N2) 99.3
A/duck/Hunan/HN214/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3
A/duck/Hunan/HN234/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3
A/duck/Hunan/HN236/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3
A/duck/Hunan/HN238/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3
A/duck/Hunan/HN240/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3
A/duck/Hunan/HN242/2015 A/duck/Jiangxi/31028/2013 (H7N3) 99.3

M A/duck/Hunan/HN232/2015 A/chicken/Wuhan/HAQL07/2014 (H5N1) 99.6
A/goose/Hunan/HN325/2015 A/duck/Hubei/SZY250/2016 (H5N2) 99.7

NS A/goose/Hunan/HN325/2015 A/duck/Hubei/SZY250/2016 (H5N2) 99.3
A/chicken/Anhui/AH325/2015 A/mallard/Italy/4223-2/2006 (H5N2) 97.3

H5N8

H6N6 Clade 2.3.4.4 H5Nx

H5N6 H5N6

Clade 2.3.4.4 H5N6 H9N2 H6N2 H7N3 H5N2

Clade 2.3.2 H5N6

Clade 2.3.2 H5N1

H5N6 H5N6 H5N6H5N6 H5N6

FIG 3 Genesis of H5N6 AIV. Virus particles are shown as colored ovals containing horizontal bars that
represent the eight gene segments (from top to bottom: PB2, PB1, PA, HA, NP, NA, M, and NS). To
illustrate the history of reassortant events, segments in descendant viruses are colored according to their
corresponding source viruses.
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on 21 November 2016 that a human death due to H5N6 had occurred in Wugang
Prefecture, which was later confirmed by the WHO (http://www.who.int/csr/don/07
-december-2016-ah5n6-china/en/). We therefore sought to examine the evolution and
emergence of H5N6 AIV in the avian population in Wugang Prefecture prior to this
human spillover event.

Our surveillance of H5N6 viruses in LPMs in Wugang Prefecture revealed that at least
six types of reassortant H5N6 viruses have circulated in this region, covering all
reassortant viruses reported to date and further illustrating the complexity of H5N6
evolution and the ability of H5N6 viruses to reassort with other AIV subtypes. In
addition, all these reassortant strains were genetically close to genotypes previously
reported in China, although sampling biases make it difficult to determine exactly
where each reassortment event occurred.

As all currently reported H5N6 AIVs are members of H5N1 clade 2.3.4.4, our
observation that one H5N6 virus seemingly carried an HA gene directly derived from
H5N1 clade 2.3.2 is important. In particular, this demonstrates that earlier lineages of
H5N1 AIV may still coinfect and reassort with more recently circulating H5N6 AIVs.

In sum, we have revealed a complex pattern of evolution and emergence of H5N6
viruses in a single locality in central China—Wugang Prefecture, Hunan Province— over
a 2-year period. Clearly, H5N6 viruses are capable of receiving gene segments, even
including the HA gene, from different subtypes and can act as the genomic source for
other subtypes, such as H3N6 (17, 18). A careful monitoring of H5N6 viruses in LPMs
and wild birds is evidently necessary to help prevent the virus from establishing itself
in the human population.

MATERIALS AND METHODS
Sampling and virus isolation. During 2014 and 2015, cloacal swabs and fecal samples from ducks

and geese and environmental samples from LPMs in Wugang Prefecture, Hunan Province, were collected
and screened for avian influenza virus. Samples were purified and propagated in 9- to 10-day-old
specific-pathogen-free (SPF) embryonated hen eggs incubated at 37°C and were manually checked every
24 h until the eggs were sacrificed within 48 to 72 h. An HA inhibition assay was performed to determine
the HA subtype of the isolated virus by using chicken anti-HA serum for each subtype. PCR was then
performed to further identify HA and NA subtypes (conditions and primers are available on request).
Allantoic fluids were collected and stored at �70°C until use.

RNA extraction, RT-PCR amplification, and sequencing. Viral RNA was extracted from virus-
infected allantoic fluid by use of a QIAamp viral RNA minikit (Qiagen). Viral cDNAs were synthesized from
viral RNAs by reverse transcription (RT) using the primer Uni12, which is complementary to the conserved
3= ends of all AIV RNA segments, and amplified by PCR with primers complementary to the conserved
promoter and noncoding regions of each gene segment (primer sequences are available on request). The
PCR products were purified using a gel extraction kit (Omega) according to the manufacturer’s protocol
and then sequenced using an ABI 3730 sequencer with BigDye Terminator cycle sequencing reagents
(Applied Biosystems).

Phylogenetic analysis. We analyzed all 175 H5N6 sequences generated in this study (see Table S1
in the supplemental material) together with sequences downloaded from the Influenza Virus Database
in GenBank (NCBI) and the GISAID database that were released before 15 March 2017. All sequences were
aligned using MUSCLE (version 3.8.31) (19), and each segment was analyzed independently. Phylogenetic
relationships among all 487 H5N6 HA sequences were inferred using the maximum likelihood (ML)
method available in PhyML (version 3.1) (20), utilizing subtree pruning and redrafting branch swapping
and the GTR � � model of nucleotide substitution. The robustness of each node on the phylogenetic tree
was determined using the Shimodaira-Hasegawa approximate likelihood ratio test (21).

Evolutionary dynamics of H5N6. We next estimated rates of evolutionary change (i.e., nucleotide
substitution) in the HA and NA gene segments of H5N6 viruses. For efficiency of analysis, we focused on
H5N6 AIVs sampled in China alone (n � 284) and representative of the entire phylogenetic diversity of
H5N6. To ensure that there was sufficient temporal structure in the HA and NA alignments for reliable
rate estimation, we first performed a regression of root-to-tip genetic distances on the ML tree against
exact sampling dates by using TempEst (22). This process revealed a small number of sequences (n � 3)
that showed a clear deviation from clock-like behavior and that were removed from the analysis (see
Results).

To obtain a more robust rate estimate, we used the Bayesian Markov chain Monte Carlo (MCMC)
method implemented in the BEAST package (version 1.8.3) (23), employing the SRD06 nucleotide
substitution model (24), an uncorrected lognormal relaxed molecular clock model, and a Bayesian
Skyride coalescent model. Multiple runs of the MCMC method were computed and combined using
LogCombiner (version 1.8.3) (http://beast.bio.ed.ac.uk/), utilizing 3.5 � 108 total steps for each data set,
with sampling every 5,000 steps. Convergence (i.e., effective sample sizes of �200) of relevant param-
eters was assessed using Tracer (version 1.6) (http://beast.bio.ed.ac.uk/). The posterior distribution of
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trees obtained from the BEAST analysis (with 10% of the runs removed as burn-in) was also used to
obtain the maximum clade credibility (MCC) tree for each segment.

Accession number(s). All nucleotide sequences obtained in this study were compiled and edited
using Lasergene (version 7.1) (DNASTAR). All viral genomes sequenced here have been deposited in the
GISAID database (http://platform.gisaid.org/), and all accession numbers are listed in Table S1 in the
supplemental material.
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