
ORIGINAL ARTICLE

Stress-Tolerant Viridibacillus arenosi Strain IHB B 7171 from Tea
Rhizosphere as a Potential Broad-Spectrum Microbial Inoculant

Rishu Thakur1,2 • K. C. Sharma3 • Ashu Gulati1,2 • R. K. Sud1,2 • Arvind Gulati1,2

Received: 21 December 2016 / Accepted: 24 January 2017 / Published online: 8 February 2017

� Association of Microbiologists of India 2017

Abstract Viridibacillus arenosi strain IHB B 7171 identi-

fied based on 16S rRNA gene sequence produced colony

forming units (cfu/ml) ranging from3.3 9 104 to 1.2 9 1010

under pH 5–11, 2.2 9 102 to 1.4 9 1010 for temperature

5–40 �C, 2.4 9 102 to 1.1 9 1010 for PEG 6000 10–30%,

2.2 9 102 to 1.4 9 1010 for 2.5–10% NaCl, 3.1 9 103 to

1.7 9 109 for 2.5–7.5 mM CaCl2, 2.2 9 102 to 1.4 9 107

for 2.5–7.5 mM AlCl3, and 3.2 9 102 to 1.2 9 107 for

2.5–7.5 mMFeCl3. The activities of plant growth-promoting

attributeswith the increasing acidity, desiccation and salinity

ranged from 408 to 101, 20 to 8, 14 to 5 lg/ml P-liberated

from tri-calcium phosphate, aluminium phosphate and iron

phosphate, 20–9% siderophore units, 14–4 lg/ml IAA and

190–16 a-ketobutyrate h/mg protein ACC-deaminase

activity. Plant height, leaf number, and leaf weight on

treatment with bacterial inoculum showed an increment of

9.5, 17.6, 54.5 and 31.0% in tea seedlings, respectively. The

bacterium also enhanced plant height and yield by 10 and

13% in pea and 2.8 and 13.9% inwheat. The results exhibited

stress-tolerance and plant growth-promoting activities by the

strain under stressed growth-conditions with potential as a

broad-spectrum plant growth-promoting rhizobacterium.

Keywords Viridibacillus arenosi � Abiotic stress-

tolerance � PGPR activities � Plant growth promotion �
Broad-spectrum PGPR

Introduction

Exploring plant growth-promoting rhizobacteria (PGPR) as

a useful biological tool has gained an immense interest for

improving growth and productivity of plants [1, 2]. Their

metabolic versatility manipulates the rhizosphere for plant

growth promotion mainly by liberation of bound P into uti-

lizable forms by plants, secretion of auxins involved directly

in plant growth and development, production of siderophores

which facilitate iron-uptake by plants, and synthesis of ACC

(1-aminocyclopropane-1-carboxylase) deaminase responsi-

ble for lowering the levels of plant stress-hormone ethylene

[3, 4]. However, the outcome of PGPR application is

impacted by environmental conditions and soil properties.

The stress-tolerance against acidity/alkalinity, temperature,

desiccation, salinity, andmetal ions has been tested only for a

few PGPR to ensure their field performance as the microbial

inoculants [5, 6]. This paper reports the efficacy of

Viridibacillus arenosi strain IHB B 7171 selected for abiotic

stress-tolerace and multiple plant growth-promoting attri-

butes as a broad-spectrum microbial inoculant.

Materials and Methods

Isolation and Characterization

The isolate IHB B 7171 purified on tryptone soya agar

(TSA) from the several hundred bacterial colonies obtained

by spread plating the serial soil dilutions of tea rhizosphere
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soils collected from a depth of 15–30 cm from Zen Tea

Estate Gopalpur (latitude 32�1103000N and longitude

76�2005400E) in the Kangra valley located in the Western

Himalayas. The isolate was identified by amplifying 16S

rRNA gene using the standard methods.

Stress Tolerance and PGPR Activities

The effect of stress parameters on culture growth was

studied in TSB: temperature—5, 10, 15, 30, 35 and 40 �C
at pH 7; acidity/alkalinity—pH 4, 5, 6, 7, 8, 9, 10, 11 and

12 at 28 �C; desiccation—10, 20 and 30% PEG 6000 at pH

7 under 28 �C; salinity—2.5, 5.0, 7.5 and 10% NaCl at pH

7 under 28 �C; and salt tolerance—2.5, 5.0, 7.5, and

10.0 mM CaCl2, FeCl3 or AlCl3 at pH 7 under 28 �C. The
growth was measured by determining cfu/ml by plating the

serial dilutions after 24 h incubation under various condi-

tions, excepting the cultures subjected to 5 �C were incu-

bated up to 72 h. All cfu values represent 1 ml of the

culture.

The plant growth-promoting activities were measured

using Barton’s reagent for P-liberated in Pikovskaya’s

broth (PVK) supplemented with 0.5% TCP, Al–P or Fe–P

[7], CAS reagent for siderophore production in succinate

broth [8], Salkowski reagent for IAA (indole-3-acetic

acid)-like auxins in nutrient broth (NB) supplemented with

0.1% tryptophan [9], and 2,4-dinitrophenylhydrazine

reagent for ACC-deaminase activity in NB supplemented

with ACC [10]. Organic acids produced during phosphate

solubilization were quantified using Lichrosphere RP-18

column (Merck, Germany) on Waters 996 High Perfor-

mance Liquid Chromatography system (HPLC) equipped

with PDA detector and Waters 717 Plus Autosampler. The

mobile phase consisted of 0.1% ortho-phosphoric acid

(Merck, Germany) with gradient flow of 0.4 ml min-1 for

0–8 min, 0.5 ml min-1 for 8–4 min and 1.2 ml min-1 for

14–25 min [7].

Plant Growth Promotion Under Controlled

Environment and Field Conditions

The carrier-based inoculum on activated charcoal at

approximately 108 cfu/g was applied to the surface-sterilized

uniformly pre-germinated seeds of maize (Zea mays var.

Girija) sown in the pots kept in a Randomized Block Design

(RBD) under temperature 25 ± 2 �C, R.H. 65–70% and

photoperiod 16 h in Controlled Environment Chamber. Data

on growth parameters were recorded after 30 days of treat-

ment. Likewise, the seeds collected from bushes of chinary

tea (Camellia sinensis var. HPKV1) were germinated,

selected for uniform radicle growth, and treated with the

inoculum. The inoculum treated seeds along with the seeds

treated with the carrier-base without inoculum to serve as the

control were grown in polysleeves in RBD in the Tea Plan-

tation Nursery, State Agriculture Department of Himachal

Pradesh at Diffarpatt. Data on growth parameters were

recorded after 1 year of inoculum application.

The field evaluations were done in the Experimental

Farms of Krishi Vigyan Kendra, CSKHPKV at Bajaura in

RBD in the plots measuring 4.08 m2 with 90 plants each

for pea (Pisum sativum var. Punjab 89) and 9.9 m2 with

900 plants each for wheat (Triticum aestivum var. HPW-

155). The inter-row and intra-plant distances were 45 and

10 cm for pea and 22 and 5 cm for wheat, respectively.

Data were recorded for growth parameters for 10 plants

randomly taken from each plot and for yield for all the

plants plot-wise.

Statistical Analysis

The STATISTICA data analysis software system version 7

(StatSoft Inc., Tulsa, OK, USA 2004) was used for the

analysis of variance (ANOVA).

Results and Discussion

Isolation and Characterization

The isolate was identified as V. arenosi strain IHB B 7171

based on 99.5% identity of 16S rRNA gene sequence with

V. arenosi LMG 22166 reported from a soil sample from

the Netherlands [11]. The phylogenetic analysis revealed

close relatedness with V. arenosi LMG 22166 and V. arvi

LLP-44 (ESM_1).

Stress Tolerance and PGPR Activities

Viridibacillus arenosi IHB B 7171 exhibited tolerance to

various abiotic stresses as evidenced by the culture growth

under stressful regimes of acidity/alkalinity, temperature,

desiccation, salinity, and Ca, Al and Fe salts (Fig. 1).

Growth over the wide pH range of 5–11 suggested its

suitability for application under both acidic and alkaline

soils [12–14]. High cfu values of 1.8 9 104 to 1.4 9 1010

of the cultures under 10–40 �C further indicated its toler-

ance to diurnal and seasonal temperature regimes through

the different cropping seasons [15]. Endurance to desic-

cation revealed by the high cfu of 2.4 9 104 to 1.1 9 1010

under 10–30% PEG 6000 was comparable to the high

desiccation tolerance reported for Bacillus pumilus, B. fir-

mus and Pseudomonas poae strains [13, 16]. The culture
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growth producing cfu of 1.4 9 1010 under 2.5% NaCl and

2.3 9 105 under 5% NaCl suggested its tolerance to the

saline growth conditions prevailing in the alkaline soils.

Likewise, the culture growth of 3.1 9 103 to 1.7 9 109,

2.2 9 102 to 1.4 9 107 and 3.2 9 102 to 1.2 9 107 cfu/ml

under the increasing concentrations of 2.5–7.5 mM CaCl2,

AlCl3 and FeCl3, respectively, revealed tolerance of the

strain to high concentrations reported for Ca in the alkaline

soils and Al and Fe in the acidic soils [17, 18].

Viridibacillus arenosi IHB B 7171 also exhibited the

multiple plant growth-promoting functions of phosphate

solubilization, siderophore production, production of IAA-

like auxins, and ACC-deaminase activity similar to the

efficient PGPR strains of Acinetobacter rhizosphaerae,

Arthrobacter sp., Bacillus sp., Burkholderia phytofirmans,

P. putida, Pseudomonas sp. and Serratia liquefaciens

(Fig. 2) [19–21]. The solubilization of different inorganic

phosphates indicated its suitability for application in the

acidic soils rich in Al and Fe-bound P and the alkaline soils

rich in Ca-bound P [20, 21]. In particular, the solubilization

of Al–P and Fe–P shown has been reported among the

rhizobacteria only for Arthrobacter sp., Bacillus sp., Mi-

croccocus sp. and P. fluorescens [22–24]. Under the culture

growth at pH 5 which prevails in the acidic soils of tea

plantations, the PGPR activities recorded P-liberation of

101.2, 21.2 and 14.2 lg/ml from TCP, Al–P and Fe–P

solubilization, respectively, 9% siderophore units, 4.2 lg/
ml IAA-like auxins and 16 nM a-ketobutyrate h/mg protein

ACC-deaminase activity. Likewise, the culture growth at

pH 8 which occurs widely in the cultivable alkaline soils

showed PGPR activities of 105, 20 and 14 lg/ml P-liber-

ation from TCP, Al–P and Fe–P solubilization, respec-

tively, 16% siderophore units, 11 lg/ml IAA-like auxins

and 595 nM a-ketobutyrate h/mg protein ACC-deaminase

activity (14). The test strain also exhibited the PGPR

activities to varying extent under the stressed growth

conditions (Fig. 2), recording 109 lg/ml TCP solubiliza-

tion, 20% siderophore units, 5 lg/ml IAA-like auxins and

190 nM a-ketobutyrate h/mg protein ACC-deaminase

activity under the salinity of 2.5% NaCl, and 408 lg/ml

P-liberation from TCP and 20% siderophore units under the

desiccation regime of 10% PEG 6000. Only TCP solubi-

lization has been reported under the stressed culture con-

ditions of acidity and alkalinity for Arthrobacter sp. and

Bacillus sp., acidity, alkalinity and temperature for Aceni-

tobacter sp., and acidity and salinity for Pseudomonas spp.

[21, 22].

Gluconic acid and oxalic acids commonly detected

during the solubilization of these phosphate substrates by

V. arenosi strain IHB B 7171 strain have been reported

among the major organic acids produced during the

microbial solubilization of phosphate substrates (Table 1).

Detection of lactic and succinic acids only during TCP

solubilization corroborated the influence of phosphate

substrates on the nature of organic acids produced by

microorganisms [25, 26]. However, only quantitative

decrease was marked in the production of various organic

acids by the test strain during solubilization of TCP, Al–P

and Fe–P under the stressed growth conditions. The pro-

duction of organic acids accompanied by the pH drop

of cultures corroborated the involvement of organic acids

in phosphate solubilization [7, 25, 26].

Plant Growth Promotion Under Controlled

Environment and Field Conditions

A significant improvement in plant growth with an incre-

ment of 9, 49.3, 30.7 and 93.3% of plant height, shoot dry
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Fig. 1 Growth of Viridibacillus arenosi strain IHB B 7171 cultures under different levels of pH, temperature, PEG 6000, NaCl (%), CaCl2,

FeCl3 and AlCl3 (mM). Values are the mean of three replicates, error bars indicate standard deviation
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weight, root length, and root dry weight in maize employed

as the quick screen demonstrated plant growth-promotion

potential of the strain (Table 2). Likewise, a significant

improvement in various growth parameters in tea seedlings

exhibited the usefulness of the strain for promoting growth

in tea [27, 28]. This is the first stress-tolerant PGPR with
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Table 1 Production of organic

acids by Viridibacillus arenosi

strain IHB B 7171 during TCP,

Al–P and Fe–P solubilization

under different stress

parameters

Parameter Organic acids production (lg/ml)

TCP Al–P Fe–P

Final pH GA LA OA SA GA OA GA OA

pH 5 3.9 217.8 629.3 117.8 434.3 16.2 125.3 24.8 14.8

6 4.1 1022.1 952.4 122.1 46.4 22.4 806.5 24.7 24.7

7 3.9 1125.2 722.1 125.2 172.1 55.7 822.1 34.4 24.2

PEG 6000 (%) 10 4.2 16.2 345.3 342.4 ND 16.8 111.3 ND ND

NaCl (%) 2.5 4.1 211.9 132.3 56.6 ND ND ND ND ND

CaCl2 (mM) 2.5 4.0 121.9 154.3 111.3 ND ND ND ND ND

AlCl3 (mM) 2.5 3.8 168.8 111.7 14.9 ND ND ND ND ND

FeCl3 (mM) 2.5 3.9 145.9 15.4 29.4 ND ND ND ND ND

Values are the mean of three replicates and significantly different from the control at p\ 0.05

ND not detected, TCP tricalcium phosphate, Al–P aluminium phosphate, Fe–P iron phosphate. OA oxalic

acid, GA gluconic acid, SA succinic acid, LA lactic acid
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multiple plant growth-promoting traits with the ability to

solubilize Al and Fe bound P for utilization by tea plants

for their growth limited by the binding of applied P with Al

and Fe cations in the acidic soils required for tea cultiva-

tion [28]. A significant increment in plant height, fresh and

dry weight and yield to the extent of 10, 16.9, 20.7 and

13% in pea and 2.8, 25, 27 and 13.9% in wheat demon-

strated the broad-spectrum growth-promotion by the test

strain considered important for undertaking bulk produc-

tion at commercial-scale (Table 2).

The stress-tolerant V. arenosi strain IHB B 7171 with

multiple plant growth-promoting activities and broad-

spectrum plant growth promotion is a prospective micro-

bial inoculant for improving productivity in tea plantations

and agricultural crops under stressed farming systems.
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