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Abstract

Substantial evidence suggests that human category learning is governed by the interaction of 

multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn 

stimulus-response associations, and declarative memory is used to apply explicit rules and test 

hypotheses about category membership. However, much less is known about the interaction 

between these systems: how is control passed between systems as they interact to influence motor 

resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural 

and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) 

whose activity was bidirectionally modulated depending on switch direction. We also identified 

regions of the default mode network (DMN) that were selectively connected to left Crus I during 

switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role 

in passing control between procedural and declarative memory systems.
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1. Introduction

Evidence that humans have multiple memory systems (Eichenbaum & Cohen, 2001; Squire, 

2004; Tulving & Craik, 2000) inspired theories that humans also have multiple, qualitatively 

distinct category-learning systems (Ashby et 1998; Erickson & Kruschke, 1998). According 

to this view, procedural memory is used to form many-to-one stimulus-to-response 

mappings (S-R associations), whereas declarative memory is used to apply rules and test 

explicit hypotheses about category membership. Much of the neuroimaging evidence 

supporting these distinctions depends on prior research with rule-based (RB) and 

information-integration (II) category-learning tasks (Hélie et al., 2010a; Nomura et al., 2007; 

Soto et al., 2013; Waldschmidt & Ashby, 2011). In RB tasks, the categories can be learned 
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via an explicit hypothesis-testing procedure (Ashby et al., 1998). In the simplest variant, 

only one dimension is relevant (e.g., bar width), and the task is to discover this dimension 

and then map the different dimensional values to the relevant category responses. In II tasks, 

accuracy is maximized only if information from two or more stimulus dimensions is 

integrated perceptually at a pre-decisional stage (Ashby & Gott, 1988). In most cases, the 

optimal strategy in II tasks is difficult or impossible to describe verbally (Ashby et al., 

1998). Verbal rules may be (and sometimes are) applied, but they lead to suboptimal 

performance. Example II and RB categories are illustrated in panels A and B of Figure 1.

Much evidence suggests that II tasks recruit procedural memory, whereas RB tasks recruit 

declarative mechanisms. Even so, a natural question for readers unfamiliar with the 

category-learning literature is how any classification task can be a good choice for studying 

procedural behaviors. For instance, how can a task with such simple motor demands (e.g., 

“push a button”) possibly recruit procedural networks that are strongly tied to motor 

processes? In fact, the empirical evidence is strong that performance improvements in some 

types of classification tasks are mediated via procedural learning and memory. At least 25 

different behavioral dissociations tie II learning to procedural memory and RB learning to 

declarative memory (for reviews, see Ashby & Maddox, 2005, 2010; Ashby & Valentin, 

2017b).

This hypothesis is further supported by a variety of investigations into the neural 

underpinnings of successful II and RB learning. Specifically, success in RB tasks depends 

on a broad neural network that includes the prefrontal cortex (PFC), anterior cingulate, the 

head of the caudate nucleus, and medial temporal lobe structures— regions that are also 

frequently associated with declarative memory and executive attention (Brown & Marsden, 

1988; Filoteo et al., 2007; Muhammad et al., 2006; Seger & Cincotta, 2006). Arguably, the 

most important region in this network is the PFC, where rules are thought to be initially 

represented (Miller & Cohen, 2001; Wallis et al., 2001). Success in II tasks, on the other 

hand, depends on regions that have been implicated in procedural memory, including the 

striatum, premotor cortex, and the associated sensorimotor basal ganglia loop (Ashby & 

Ennis, 2006; Filoteo et al., 2005; Knowlton et al., 1996; Nomura et al., 2007). This network 

is consistent with the idea that S-R associations are built at cortical-striatal synapses via 

dopamine-dependent reinforcement learning (Ashby & Crossley, 2011; Houk et al., 1995; 

Joel et al., 2002).

This article asks what brain networks mediate switching between procedural and declarative 

control. This question is important because the survival demands of daily life are not 

laboratory-tuned in favor of one system or the other. Rather, some tasks are best solved by 

declarative systems and others by procedural systems. Control must therefore be passed 

back-and-forth between the two systems. To address this question, we used a task that 

required participants to switch between previously-learned RB and II categorization tasks in 

a trial-by-trial manner. This paradigm allowed us to investigate the activity associated 

exclusively with switching between systems, rather than with simple performance of one 

task or the other. Because the task was fairly difficult, our analyses are limited to the subset 

of participants who were invited back because of their proficiency at the task. Our results 

Turner et al. Page 2

Neuroimage. Author manuscript; available in PMC 2018 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



therefore apply to members of the population who demonstrate aptitude in such system 

switching.

Note that our aims are distinct from typical studies of “task-switching,” which usually focus 

on networks that mediate the switching between separate declarative memory-based tasks. 

For example, Monsell (2003) describes a popular variation in which participants switch back 

and forth between deciding whether a single digit is odd or even and whether it is high or 

low in value. Thus, the focus of the task-switching literature has been on switching between 

tasks within the same memory system, whereas our focus is on switching between tasks 

mediated by anatomically and functionally distinct memory systems. This difference may 

anticipate our main findings. In particular, much of the existing work on task-switching has 

focused either on task-general switch-related activity (“switch” contrasted with “stay,” 

collapsing across tasks), or else on task-specific switching activity (e.g., isolating “switch > 

stay” activity for a particular task, possibly contrasted with another task).

In contrast, we are interested in identifying networks that show modulated activity during 

switching for both tasks, regardless of the direction of modulation for each task. There are a 

variety of theories for how control might be passed between systems, which make a variety 

of predictions for how activity will change depending on the direction of the switch. In order 

to adjudicate among these theories, we used an analysis method that could identify any 

common regions, irrespective of the direction of modulation. To preview our key result, we 

identified a region that showed bidirectional activity: increased activity when switching one 

direction, and decreased activity in the other.

2. Methods

2.1. Participants

Participants for the fMRI experiment were prescreened in order to identify those who were 

able to switch successfully between category structures (see below). A total of 179 

participants were prescreened, of whom 46 were invited back for scanning. Our criteria for 

inviting participants back were based on the results of decision bound modeling (see 

‘Decision Bound Models’ section below). Specifically, we invited participants back if their 

data were best fit by a model that assumed a decision strategy of the optimal type on each 

category structure during any two of the three 100-trial blocks of switch training. A total of 

28 participants responded to our invitation, were eligible for scanning, and participated in 

the fMRI experiment. Of these, seven were excluded (due to technical problems or 

claustrophobia, excess motion, or problems with the analysis/too few trials of certain types). 

Our final sample included 21 participants (mean age: 19 years; 16 female; 18 right-handed). 

All participants were given course credit (during prescreening) and paid (for the fMRI 

portion) for their participation, and all had normal or corrected to normal vision. Participants 

were scanned between 7–23 days after completing prescreening (mean interval = 12.29 

days).
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2.2. Stimuli and Categories

Stimuli were gray-scale, circular sine-wave gratings that varied across trials in spatial 

frequency (cycles per degree, CPD) and orientation (radians, rad). Each stimulus sub-tended 

approximately 5 degrees of visual angle and was displayed against a gray background using 

routines from the Psychophysics toolbox (Brainard, 1997).

Stimuli were sampled from one of four possible distributions (illustrated in panel C of 

Figure 1), following the randomization technique developed by Ashby & Gott (1988). To 

control for statistical outliers, any sample whose Mahalanobis distance (Fukunaga, 1990) 

was greater than 3.0 was removed and resampled. This process was repeated until 400 

Category A, 400 Category B, 400 Category C and 400 Category D exemplars had been 

generated. Parameters for these category distributions are reported in Table 1. Each random 

sample (x, y) was converted to a stimulus according to the nonlinear transformations 

proposed by Treutwein et al. (1989). This transformation is important, for example, to 

ensure that all changes of say 10 units in bar width are equally perceptually salient.

2.3. Decision Bound Modeling

Perfect performance requires a procedural strategy (i.e., perceptual integration) for the II 

categories and an explicit strategy (one-dimensional rule) for the RB categories. Even so, a 

one-dimensional explicit rule can achieve accuracy well above chance on the II categories. A 

participant using an explicit rule on the II categories would be switching between two 

different declarative memory strategies, rather than between declarative and procedural 

memory strategies, and so it is critical that we are able to identify such participants before 

analyzing their fMRI data. We used decision bound modeling to solve this problem (Maddox 

& Ashby, 1993; Ashby & Gott, 1988).

Decision bound models assume that classification is achieved by dividing the perceptual 

space into separate response regions via a decision bound, deciding on which side of the 

bound the current stimulus lies, and then emitting the associated response (Maddox & 

Ashby, 1993; Ashby & Gott, 1988). We fit three different types of decision bound models—

one type that assumed an explicit rule strategy, one type that assumed a procedural strategy, 

and one type that assumed random guessing. For details, see Ashby & Valentin (2017a).

Briefly, explicit rule models assume either a horizontal or vertical decision bound, which is 

equivalent to classifying stimuli according to whether their orientation is shallow or steep, or 

whether their bars are thin or thick. Explicit rule models have two free parameters (a 

criterion on the relevant dimension and a perceptual noise variance). Procedural models 

assume a general linear decision bound of any arbitrary slope and intercept. These models, 

which assume linear integration across the two stimulus dimensions, have three free 

parameters (the slope and intercept of the linear decision bound and a perceptual noise 

variance). The guessing models assume random guessing that is either unbiased (both 

responses guessed with equal probability; so no free parameters) or biased (guess one 

response with probability p and the other with probability 1 − p, where p is a free 

parameter).
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We estimated best-fitting parameters via maximum likelihood, and used the Bayesian 

information criterion (BIC; Schwarz, 1978) for model selection. BIC is defined as BIC = r ln 

N − 2 ln L, where r is the number of free parameters, N is the sample size, and L is the 

likelihood of the model given the data. The BIC statistic penalizes models for extra free 

parameters. To determine the best-fitting model, the BIC statistic is computed for each 

model, and the model with the smallest BIC value is the winning model.

2.4. Procedure

The experiment consisted of one pre-screening session lasting approximately 50 minutes in 

duration that included 7 blocks of 100 trials each, and one scanning session that took place 

at a later date.

2.4.1. Pre-screening—Participants were required to classify a stimulus into one of four 

categories on every trial. Stimuli sampled from the RB categories were framed by a blue 

box, and stimuli sampled from the II categories were framed by a green box (see Figure 2). 

Participants were informed that the frame colors indicated that different categorization 

strategies would be necessary for optimal performance. They were further informed that 

stimuli displayed with a blue frame (RB trials) only required attention to one dimension and 

that stimuli displayed against a green frame (II trials) required attention to both dimensions. 

They were instructed to press the ‘s’ key with the middle finger of their left hand for 

category ‘A’, to press the ‘l’ key with the middle finger on their right hand for category ‘B’, 

to press the ‘d’ key with the index finger on their left hand for category ‘C’, and to press the 

‘k’ key with the index finger on their right hand for category ‘D’ (see Figure 1). Participants 

were further informed that all stimuli displayed with a blue frame belonged to either 

category ‘A’ or ‘B’ and that stimuli displayed with a green frame belonged to either 

category ‘C’ or ‘D’. Throughout the entire experiment the category labels ‘A’, ‘B’, ‘C’, and 

‘D’ appeared along the bottom of the screen in a spatial position and order that corresponded 

to the response key – category label mapping.

Each trial began with a fixation cross lasting 750 ms. A stimulus was then presented for a 

maximum of 5 s. If the participant responded within 5 s the stimulus disappeared, and 500 

ms later a feedback tone was presented for 1 s. Correct responses were indicated by a pure 

tone (500 Hz, 730 ms in duration), and incorrect responses were indicated by a saw-tooth 

tone (200 Hz, 1220 ms in duration). Participants were first trained on the RB categories for 

50 trials, then on the II categories for 300 trials, and then on randomly intermixed RB and II 

categories for 350 trials. Participants were free to rest as long as they wished between each 

block of 50 trials.

2.4.2. Scanning—The task used in the scanning session was identical to that used during 

prescreening, except that II and RB trials were intermixed the entire time, and the timing 

was modified to ensure estimability. Additionally, in order to provide feedback compatible 

with the loud fMRI environment, correct responses were indicated with a large green check-

mark, and incorrect responses were indicated with a large red X, rather than via auditory 

tones. In particular, we used a partial trials design (Ollinger et al., 2001; Serences, 2004). 

The ‘canonical’ trial included a cue (that is, the colored box, but without a stimulus) for two 
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seconds, followed by a stimulus plus cue for two seconds, and finishing with visual feedback 

for two seconds. However, on 50% of trials, the cue was omitted, and on 25% of trials, 

feedback was omitted. Previous work has demonstrated that a partial feedback rate of 75% is 

sufficient to maintain performance, especially after performance has stabilized (Ashby et al., 

1999; Ashby & O’Brien, 2007). Figure 2 illustrates all of these possible trial types.

The exact sequence of events (that is, whether each trial presented an II or RB stimulus and 

included a cue or feedback) was generated using custom scripts that simulated behavior 

based on each participant’s observed II and RB accuracies during prescreening, and then 

searched through design space for the order that maximized power for the contrasts of 

interest (described below), with the constraints that each block contained 50 RB and 50 II 

trials, and that the cue and feedback probabilities were 50% and 75%, respectively. Six such 

blocks, comprising 600 trials total, were generated for each participant. Simulations 

confirmed that neither this design optimization nor our use of a partial trials design resulted 

in confounds.

2.5. Data Acquisition

fMRI data were acquired at the UCSB Brain Imaging Center on a 3T Siemens Tim Trio 

MRI scanner with an 8-channel phased array head coil. Head motion was minimized using 

foam cushions placed around the participant’s head. Functional runs used a T2*-weighted 

single shot gradient echo, echo-planar sequence (TR: 2000 ms; TE: 30 ms; FA: 90° DC4; 

FOV: 192 mm) with generalized auto-calibrating partially parallel acquisitions (GRAPPA). 

Each volume consisted of 33 slices (interleaved acquisition, 3 mm thick with .5 mm gap; 3 

mm × 3 mm in-plane resolution) acquired at an angle manually adjusted to maximize 

cortical and cerebellar coverage and minimize orbitofrontal distortions. There were a total of 

six functional runs per participant; the length of each run was determined by the specific 

sequence created for that run, and ranged from 214–249 TRs (7:08–8:18), with a mean of 

233 TRs (7:46). A high-resolution anatomical scan was acquired using a T1-flash sequence 

(TR: 15 ms; TE: 4.2 ms; FA: 20°; 192 0.89 mm thick sagittal slices; .9 mm × .9 mm in-plane 

resolution; 256 × 256 matrix). Additional scans included a localizer, a GRE field map, and a 

DTI scan, none of which were used in the analyses presented here.

The experiment was run using Psychophysics Toolbox (Brainard, 1997). During scanning, 

participants responded using the Lumina Response Pad System (model LU400-Pair), with 

the same finger–category mapping as during the in-lab pre-screening. Stimuli and feedback 

were presented on a digital projector and screen viewed through a head-coil-mounted mirror 

during scanning sessions.

2.6. Data Analyses

This section describes the fMRI analyses employed in this article. Note that all reported 

results are qualitatively unchanged when a parametric regressor encoding response time, 

demeaned with respect to the mean of all trials in a given functional run, is included in the 

GLM model or the LS-S activity estimation model.
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2.6.1. Preprocessing—Data were preprocessed using FEAT v5.98, part of FSL 

(Jenkinson et al., 2012). Preprocessing steps included motion correction, brain extraction, 

spatial smoothing (kernel full-width at half-max of 5 mm), and temporal filtering (high pass 

filter with 120 second cutoff). The data were registered to the MNI atlas using nonlinear 

registration (warp resolution of 10 mm). The data were prewhitened with respect to the 

model described in the following section.

2.6.2. GLM Analyses—The GLM analyses were carried out in FEAT v5.98. Events of 

interest were all defined based on the identity of the current stimulus, conditioned on the 

identity of the stimulus from the preceding trial. Every stimulus was either from the RB 

categories or from the II categories. Therefore, let J|K denote the event in which the current 

stimulus is of type J and the stimulus from the preceding trial was of type K, for J and K = 

RB or II. Then the four events of primary interest are II|II, II|RB, RB|II and RB|RB 

(corresponding to II stay, II switch, RB switch, and RB stay trials, respectively). These 

events were defined only for trials in which responses to both members of the pair were 

correct. There were 12 other event types of non-interest: II incorrect stimulus, RB incorrect 

stimulus, post-error stimulus, cue for each of II|II, II|RB, RB|II, RB|RB, post-error cue, II 

positive feedback, II negative feedback, RB positive feedback, and RB negative feedback. 

Each of these events was convolved with a gamma HRF (phase = 0 s; sigma = 3 s; delay = 6 

s), and included with its temporal derivative. Additionally, the six relative motion parameters 

returned by MCFLIRT and their six temporal derivatives were included without convolution 

as nuisance parameters. All events were temporally filtered using the same temporal filtering 

that was applied to the data.

The primary contrasts of interest were between II|RB and II|II, and between RB|II and RB|

RB—that is, II switch versus stay and RB switch versus stay. These contrasts were designed 

to identify activity associated exclusively with switching to an II or RB task, while removing 

activity associated with performing II or RB categorization per se. These events were 

defined at the low-level analyses in FEAT. The results from each functional run within 

participants were combined using a “mid-level” analysis, treating runs as a fixed effect. 

Finally, results across participants were combined using FEAT’s FLAME 1.

Regions that show common switching activity—i.e., increased or decreased activity for one 

type of switch and increased or decreased activity for the other type of switch— may be 

involved in passing control from one system to the other (or equivalently, in switching 

between suppressing and enhancing a single system). In order to identify such regions, we 

carried out conjunction analyses (Nichols et al., 2005) of each pair of switch versus stay 

SPMs described above (e.g., II|RB>II|II with RB|RB>RB|II, or RB|II>RB|RB with II|II>II|

RB). That is, we constructed the minimum statistic map for each pair, and thresholded the 

resulting image using FEAT’s cluster-based thresholding tool (voxelwise z threshold = 2.33; 

cluster p threshold = 0.05).

2.6.3. Functional Connectivity Analyses—The data for the functional connectivity 

analysis were preprocessed as described above. The connectivity analysis we performed 

attempts to estimate BOLD responses for individual trials, and is consequently potentially 

heavily impacted by motion artifacts. To mitigate this effect, we took the betas associated 
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with the motion regressors from the above GLM, and used the residuals with respect to the 

predicted timeseries derived from these betas as the (motion-scrubbed) timeseries in the 

subsequent connectivity analysis. With the estimated effect of motion removed, motion 

parameters were excluded from the models for the connectivity analysis. These steps 

improve the stability of the activity estimation procedure described below. Nevertheless, the 

results reported here are qualitatively unchanged if this motion regression step is skipped.

Functional connectivity analyses were carried out using the “beta series regression” 

approach first employed by Rissman et al. (2004) (see also Bush & Cisler, 2013). This 

approach requires a separate estimate of activity for each occurrance of each event of 

interest. We generated these estimates using a variant of the least-squares separate (LS-S) 

approach of Mumford et al. (2012) and Turner et al. (2012). Briefly, the activity due to event 

i at instance j, Bi,j, is uniquely estimated by entering it into a GLM as a unique event, while 

combining all other occurrences of event i into a single regressor, alongside regressors for all 

occurrences of all other events. The events for which we generated trial-unique estimates are 

defined in the section “GLM analysis”. However, several events of non-interest were 

combined for the sake of model stability. In particular, error and post-error stimulus events 

were combined; positive feedback trials were combined; and negative feedback trials were 

combined. The resulting design matrix contained 11 events, of which all instances of the 

correct stimulus events (II|II, II|RB, RB|II, RB|RB) were held out in turn for unique 

estimation.

In addition to applying this estimation procedure across the whole brain in a voxelwise 

manner, we generated an ROI-average timeseries, for the ROI identified in the conjunction 

analysis described above. We did this by transforming and resampling the group-level 

cluster in functional space (using nearest-neighbor interpolation) and taking a weighted 

average of the timeseries of all voxels within this cluster. LS-S was then applied to this ROI-

averaged timeseries to generate vectors of ROI-specific activity estimates. This ROI serves 

as our seed region in the subsequent whole-brain connectivity analysis.

After generating event-by-event activity estimates (whole brain as well as for our 

functionally-defined ROI), we further processed the estimates as follows. Separately for 

each participant and each functional run (and within voxel, where applicable), the vectors of 

estimates for each class of event (that is, II|II, II|RB, etc.) were demeaned relative to the 

mean for that class within that functional run. Then, the demeaned vectors of estimates were 

aggregated across runs. Note that this procedure is conservative, insofar as it prevents 

variations across runs, which may be caused by true signal, from driving connectivity.

After aggregating across runs, the vector of estimates from our functional ROI for each event 

was correlated with the vector of estimates from the same event in every voxel in the whole 

brain using a Spearman correlation. This yields four correlation maps per participant: one 

each for II|II, II|RB, RB|II, and RB|RB. Finally, each of these maps was normalized by 

subtracting the weighted average correlation in the functional ROI (weighted according to 

the conjunction statistic values) from every voxel. This step ensures that differences, for 

example, in sample size or overall noise level, do not drive the results. All reported results 

are qualitatively unchanged if this normalizing step is skipped.
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These normalized connectivity maps were combined across participants into two contrast 

SPMs: II|RB versus II|II, and RB|II versus RB|RB. In particular, for each participant we 

created a difference image for each of these pairs between the raw Spearman correlation 

values (that is, II|RB—II|II and RB|II-RB|RB) and carried out a Wilcoxon signed-rank test 

across participants in each voxel; the resulting statistic was converted to an equivalent z 

statistic, and the resulting maps were cluster thresholded (voxelwise z threshold = 1.96; 

cluster p threshold = 0.05). Note that the raw correlation value, rather than a z-transformed 

version thereof, was used to prevent differences in degrees of freedom from driving the 

results; the Wilcoxon signed-rank test was used to accommodate the non-normality inherent 

in correlation values.

2.6.4 Difficulty analyses—The goal of this research was to study switching between 

procedural and declarative systems. However, there is one major alternative explanation 

which may confound our interpretation: healthy humans find the RB categorization task 

used here to be much easier than the II task1. It is therefore possible that our results reflect 

switching between “easy” and “difficult” tasks. Although we know of no theories that bear 

on issues of task difficulty and predict the patterns observed here, we nonetheless feel it is 

important to address this potential confound.

To begin, we note that according to this counter hypothesis, our labels of “II” and “RB” are 

really just synonyms for “difficult” and “easy” respectively. Luckily, the paradigm we 

employed has another built-in “easy”/“difficult” distinction that is orthogonal to the II/RB 

distinction: distance to the categorization decision bound. Previous research has confirmed 

the theoretical prediction that classification decisions for stimuli closer to the category 

boundary are more difficult than for those stimuli far from the boundary (e.g., Spiering & 

Ashby, 2008). By doing a within-distribution median split of stimuli on the basis of distance-

to-bound, separately for each functional run, we classified every pair of successive 

categorization stimuli as near|far, near|near, far|far, and far|near. Note that this classification 

scheme is completely orthogonal to the original classification based on the II/RB distinction. 

As a result, the two analyses are logically unrelated. In other words, any cross-event pattern 

in activity observed in one analysis can exist without conflicting with any pattern observed 

for the other analysis.

With these new labels based on distance-to-bound, we reran the above GLM analysis, 

substituting “near” in place of “II” (because both are, according to the difficulty hypothesis, 

reducible to “difficult”), and “far” in place of “RB.” So long as the difficulty (i.e., accuracy) 

difference observed for II versus RB replicates for near versus far, the difficulty hypothesis 

must predict that results on the basis of the near/far distinction have the same form as those 

based on the II/RB distinction, although the magnitudes may differ due to differences in 

power, separability, etc. Therefore, rather than focus on the whole-brain results for each of 

these distance-to-bound analogs of the previous analyses, we will restrict our discussion of 

1This difference is in sharp contrast to pigeons, who learn both category structures equally well and at exactly the same rate (Smith et 
al., 2011). These pigeon data show that there is no inherent complexity difference between the tasks, and that the human difference 
must therefore be due to the fact that humans learn the two tasks in qualitatively different ways.
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the distance-to-bound results to the question of whether the key patterns observed in our 

main analyses are duplicated in this distance-to-bound analysis.

3. Results

We present our results in four parts. We focus first on the behavioral results, which support 

our contention that participants are in fact switching between systems on a trial-by-trial 

basis. Second, we describe results of a standard GLM analysis that was designed to isolate 

regions where activity differs between switch and stay trials—and in particular, where 

activity was modulated differentially across tasks when switching to one system versus to 

the other. Third, we present the results of an analysis based on the alternative hypothesis that 

our GLM results are driven by differences in task difficulty, rather than system identity. 

Finally, we describe the results of a functional connectivity analysis designed to identify the 

networks associated with a key region of interest (ROI) discovered in the GLM analysis—

again, with a particular focus on networks in which connectivity with this key ROI differs 

between switch and stay trials.

3.1. Behavioral Results

Due to our prescreening procedure, our scanning participants generally performed well on 

the task, despite its difficulty. Mean accuracies on each of the key trial types were as follows 

(with standard deviations in parentheses): II|II: 83.7% (3.9%); II|RB: 82.7% (6.1%); RB|II: 

93.7% (2.6%); RB|RB: 95.9% (3.0%). Accuracy was significantly higher on RB trials than 

on II trials, both on switch trials (difference = 11.0%; t(20) = 7.39, p < .001) and stay trials 

(difference = 12.1%; t(20) = 17.27, p < .001).

Following standard methods, we define the switch cost as the accuracy on stay trials minus 

the accuracy on switch trials. So, for example, the II switch cost equals the mean accuracy 

on II|II trials minus the mean accuracy on II|RB trials. Switch cost was not significant on II 

trials (1.0%, t(20) = 1.00, p > .3), but was significant on RB trials (2.2%, t(20) = 3.03, p < .

01).

Distance-to-bound results—According to our alternative labeling scheme based on 

distance-to-bound, we observed a similar accuracy difference to that just described. “Near” 

accuracy = 83.4%, “far” accuracy = 93.6%; this difference is significant, t(20) = 11.48 (p < .

001).

3.2. fMRI Results

3.2.1. GLM Results—The results of our GLM analysis are presented in Figures 3–4 and 

Table 2. The regions associated with greater activity on II stay trials relative to II switch 

trials include L cerebellum (principally Crus I), L inferotemporal cortex, bilateral BA10 

(spanning the anteriormost aspects of middle and superior frontal gyri), and R BA44/BA9 

(spanning inferior frontal gyrus pars opercularis and pars triangularis, and middle frontal 

gyrus). Conversely, RB switch trials were associated with greater activity than RB stay trials 

in L cerebellum, L inferotemporal cortex, and R lateral posterior parietal areas (including 

midline superior lateral occipital cortex/precuneus, superior parietal lobule, and 
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supramarginal gyrus). There were no significant clusters in either of the complementary 

contrasts (i.e., II|RB>II|II or RB|RB>RB|II).

In an effort to identify regions whose activity is modulated on switch trials across both tasks, 

we carried out an additional conjunction analysis (Nichols et al., 2005) across the maps 

shown in Figures 3–4. The results are shown in Figure 5, and reveal a single cluster in left 

Crus I of the cerebellum. Examining the event-specific parameter estimates within the 

resulting ROI (taking a weighted average across all voxels in the ROI based on the 

conjunction statistic map) reveals a straightforward pattern of event-specific activity, as 

shown in Figure 6. As expected (based on the way in which this cluster was defined), the 

weighted average activity within this cluster is significantly lower on II|RB trials than on II|

II trials [t(20) = −4.77, p < .001], and significantly higher on RB|II trials than on RB|RB 

trials [t(20) = 3.70, p < .01]. Comparing across systems, we see that average activity on RB|

II trials is significantly greater than on II|RB trials [t(20) = 3.68, p < .01], while activity on 

II|II trials is significantly greater than on RB|RB trials [t(20) = 2.76, p < .05]. Finally, 

activity on RB|RB trials is significantly greater than on II|RB trials [t(20) = 2.09, p < .05], 

while activity does not differ significantly between II|II and RB|II trials [t(20) = 1.23, p > .

2].

These post-hoc tests are important in understanding the role this region plays during 

different events. In particular, the observed pattern of results suggests that this region is 

moderately active on II|II and RB|RB trials (though significantly more active on the former), 

and that this activity increases on RB|II trials and decreases on II|RB trials.

Distance-to-bound results: The analogous result to Figure 6 from the difficulty control 

analysis is described here. Recall that according to the difficulty hypothesis, “II” ≡ “near” 

because both are difficult, and likewise “RB” ≡ “far” because both are easy. With that in 

mind, here are the means (standard errors) in our Crus I ROI from this analysis: far|near= 

−13.72(11.07); near|near= 3.95(6.06); far|far= −1.38(7.12); near|far= 24.69(7.72). Of the 

planned post hoc comparisons, three were significant (two-tailed, uncorrected for multiple 

comparisons)—near|far was greater than each of the other three: far|near [t(20) = 2.68, p < .

05]; near|near [t(20) = 2.89, p < .01]; and far|far [t(20) = 2.85, p < .01].

3.2.2. Connectivity Results—Having identified a region whose pattern of activity 

matches the signature of a bidirectionally modulated systemswitching region, we next 

sought to identify what networks this region was associated with during different event 

types. In particular, the maps presented in Figures 7–8 and Table 3 show how whole-brain 

connectivity with our cerebellar ROI differed between II|RB and II|II trials, and between RB|

II and RB|RB trials.

Regions with greater connectivity with our cerebellar ROI during II|II trials compared to II|

RB trials include right ventrolateral PFC and right posterior parietal areas spanning 

supramarginal and angular gyri. Likewise, we see greater connectivity in left cerebellum, left 

insula, and left precentral gyrus during RB|RB trials compared to RB|II trials.
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Consistent with this region’s proposed central role in switching, more extensive networks 

are revealed when looking at the converses of those two contrasts: for II|RB>II|II, we 

observe clusters in medial prefrontal (mPFC), posterior cingulate (PCC), left temporal pole, 

left lateral prefrontal and posterior parietal, and right cerebellar areas. For RB|II>RB|RB, we 

again observe clusters in medial prefrontal and posterior cingulate areas, along with left 

occipitoparietal, ventral midline occipital, and bilateral somatomotor areas.

Of particular interest is the obvious overlap between these latter two contrasts: posterior 

cingulate and medial prefrontal cortex are canonical regions in the default mode network 

(DMN). In order to investigate this phenomenon further, we used an a priori DMN mask 

(Laird et al., 2009) to isolate the intersection of the positive clusters in Figures 7 and 8 that 

fell within the DMN, and examined the weighted average connectivity in the resulting 

clusters across trial types. The results of this follow-up testing reveal that connectivity 

between both of these DMN regions and left Crus I is higher during switch trials (PCC: II|

RB r = 0.306, RB|II r = 0.284; mPFC: II|RB r = 0.275, RB|II r = 0.262), and lower during 

stay trials (PCC: II|II r = 0.231, RB|RB r = 0.229; mPFC: II|II r = 0.199, RB|RB r = 0.199).

4. Discussion

We performed fMRI during a categorization task in which participants switched on a trial-

by-trial basis between category structures that have been shown previously to recruit either 

procedural or declarative memory systems. We identified a key region of the cerebellum 

known to be interconnected with the PFC (left Crus I) that was maximally activated when 

switching to the declarative system, was deactivated when switching to the procedural 

system, and was intermediately activated when no system switch was required. This result 

represents the first reported evidence of cerebellar involvement in category learning, and ties 

our work to a literature refining our understanding of the cerebellum in non-motor cognition. 

By examining task-modulated connectivity with this region, we also identified several 

regions traditionally associated with the DMN that are selectively more strongly connected 

with this cerebellar ROI during system switching, along with several other regions that are 

connected in a more ad hoc fashion.

4.1. Task Difficulty Effects

To address the possibility that our results were driven by changes in task difficulty, rather 

than by system switching, we conducted a follow-up analysis using an alternative labeling 

scheme in which ‘difficult’ and ‘easy’ trials were defined according to whether the 

categorization stimulus was near or far from the optimal categorization boundary. This 

bifurcation of the data produced a similar behavioral difficulty difference as dividing the 

data according to whether the stimulus was from the RB or II categories. When difficulty is 

defined by distance-to-bound, then ‘difficult’ and ‘easy’ trials each include equal numbers of 

RB and II trials, so this alternative labeling scheme is orthogonal to the labeling scheme 

used in our system-switching analysis.

The distance-to-bound difficulty-based GLM analysis produced a pattern of Crus I activity 

that was almost exactly the opposite to the result from our original analysis. In particular, in 

our original analysis, Crus I activity followed the pattern (substituting ‘difficult’ for ‘II’ and 
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‘easy’ for ‘RB’ to ease cross-analysis comparisons): easy|difficult > difficult|difficult > easy|

easy > difficult|easy. In the distance-to-bound analysis, the pattern was instead: easy|difficult 

< difficult|difficult > easy|easy < difficult|easy. Moreover, this numerical near-reversal was 

borne out in the statistical comparisons of the two end points of each pattern: RB|II > II|RB, 

t(20) = 3.68, p < .01, while far|near < near|far, t(20) = 2.68, p < .05. Because our near/far 

distinction produced an almost identical accuracy difference to the II/RB distinction, this 

pattern reversal strongly contradicts a difficulty-based account of our primary GLM results.

There are also other reasons to suspect that difficulty is not driving our results. First, we 

found no significant correlation between the between-task differences in individual 

participants’ accuracies (a plausible index of subjective difficulty) and the magnitude of the 

differential BOLD response between tasks in the cerebellar region that we identified. 

Second, the pattern of BOLD responses on the various trial types obeyed the ordinal 

relationship RB|II > II|II > RB|RB > II|RB, a pattern that is inconsistent with task difficulty 

(ordering trial types by difficulty should produce II|RB > II|II > RB|II > RB|RB). Third, the 

hypothesis that RB versus II behavioral differences are driven by task difficulty has been 

tested and rejected many times before (e.g., Ashby & Maddox, 2005, 2010). Nevertheless, 

despite all this indirect evidence that task difficulty was not driving our results, our 

experiment was not designed to compare task difficulty and system switching directly, and 

as a result, more research is needed to understand fully the role that task difficulty might be 

playing in our overall results.

4.2. Role of the Cerebellum

Our finding that the associative cerebellum facilitates system switching is in line with 

previous work seeking to understand the role of the cerebellum in non-motor cognition (for 

excellent reviews, see Koziol et al., 2014; Baumann et al., 2015). Though many theories of 

cerebellar function have been proposed, no singular grand unifying theory of the cerebellum 

has yet been embraced. Of the proposed theories, three seem applicable to the current 

findings:

Contextual tuning of sensory acquisition (Bower, 1997). This view roughly holds that 

the activation of the cerebellum will reflect the need for sensory vigilance, and 

consequently, predicts that cerebellar activation may be modulated by task difficulty 

(e.g., because more difficult tasks will typically require more sensory vigilance). This 

idea is appealing given our current data, since it is intuitive to suppose that more 

sensory vigilance is required for the II categories (which require attention to two 

stimulus dimensions), than for the RB categories (which require attention only to one 

stimulus dimension). Moreover, Figure 5 does show a task difficulty effect in that II|II 

trials evoked a greater cerebellar response than RB|RB trials. However, as noted in 

the previous section, task difficulty does a poor job of accounting for our results, and 

it is unclear how this theory would account for the observed bidirectional modulation 

on switch trials, especially since RB|II trials evoked the greatest cerebellar response 

(i.e., and RB trials should require the least sensory vigilance).

Bayesian state estimation (Paulin, 2005). This theory posits that the cerebellum 

evolved to approximate Bayesian posterior distributions of prey locations and that 
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these origins endow the cerebellum with general Bayesian state estimation abilities. 

This is a very general theory that could be applied to almost any domain, depending 

on how one defines ‘state’. In the context of our current data, the states being 

estimated could be the attentional demands of the stimuli (bar thickness for the RB 

categories, and both bar thickness and bar angle for II categories). As with the 

contextual-tuning-of-sensory-acquisition hypothesis, this theory also struggles to 

account for the bidirectional profile we observed on switch trials.

Transitions from controlled to automatic behavior (Balsters & Ramnani, 2011). This 

idea is that the cerebellum is critical for transitions from ‘controlled’ to ‘automatic’ 

responding. This hypothesis is consistent with our current results, but only if one 

assumes that declarative- and procedural-mediated behaviors can be classified as 

controlled and automatic, respectively. Declarative-mediated behaviors meet standard 

controlled criteria, but procedural-mediated behaviors meet only some of the standard 

automaticity criteria (Ashby & Crossley, 2012; Ashby et al., 2010). For example, 

unlike automatic behaviors, initial II performance depends strongly on the presence 

of immediate feedback. Thus, one interpretation is that our results generalize the 

theory that the cerebellum facilitates the transition from controlled to automatic 

responding by suggesting that it also facilitates the transition from declarative- to 

procedural-mediated behaviors.

In summary, none of these theories capture the entire pattern of results. Moreover, it is 

obvious that they are themselves in disagreement. Considering all the results we reported—

the system switching-related activity, along with the system-nonspecific connectivity 

between Crus I and canonical DMN regions, and the distance-to-bound results showing the 

highest activity for near|far trials and the lowest for far|near trials—we can speculatively put 

forth an alternative theory of Crus I function. In this view, Crus I plays a key role in boosting 

or suppressing prefrontal, cognitive control-supporting regions. Because these regions 

overlap, or are interconnected with, the regions that underlie declarative categorization, Crus 

I activity tracks the exertion (on RB switch trials) or release (on II switch trials) of prefrontal 

control over categorization performance. Similarly, difficult (i.e., near-to-bound) trials might 

require greater cognitive effort, in the form of increased activity in these prefrontal areas, 

whereas easy (i.e., far-from-bound) trials allow for a relaxing of that effort. This hypothesis 

appears to bridge several existing theories, and also accounts for all of the patterns of 

activity we observed in Crus I in the present study. It also may begin to explain some of the 

other activity and connectivity results we observed—for example, the deactivation and 

simultaneous increased Crus I connectivity of a region that has been previously implicated in 

cognitive control, BA10 (Roca et al., 2011). Of course, much more work is required to test 

the validity of this hypothesis.

Within the category-learning literature, the cerebellum has not featured prominently, though 

a few investigations have asked whether or not patients with cerebellar damage or 

degeneration are impaired in category-learning tasks (Ell & Ivry, 2008; Maddox et al., 2005; 

Witt et al., 2002). These studies all reported essentially normal performance in cerebellar 

patients, although it is important to note that none of the tasks used in these studies placed 

heavy demands on system switching—at most, an ideal participant in an II task is 
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hypothesized to make a single switch, from an initial suboptimal declarative strategy to the 

moreoptimal procedural strategy. Cerebellar activation has also been reported in a few 

neuroimaging studies of category learning (Seger & Miller, 2010; Seger et al., 2011). Even 

so, the cerebellar area identified in those studies was in the anterior lobe (the regions 

connected with motor cortex), not the posterior lobe (Crus I and II; regions connected with 

the PFC) as found here. Furthermore, none of these studies attempted to assign any 

functional role to the cerebellum during category learning or categorization performance. 

Note, however, that many studies using standard field of view parameters may not have 

included the full cerebellum, so earlier null results, particularly in the more posterior aspects 

of the cerebellum, may be due to its not having been scanned at all.

The cerebellum has long been associated with various forms of procedural learning (Gomez-

Beldarrain et al., 1998; Shin & Ivry, 2003; Torriero et al., 2004), and also with motor control 

(Kawato & Wolpert, 1998; Wolpert & Kawato, 1998; Wolpert et al., 1998). Because of this 

latter association, the failure of previous studies to find a role for the cerebellum in category 

learning might be expected (i.e., because motor learning demands are typically minimal in 

category-learning tasks). Even so, the cerebellum is interconnected with all major cortical 

nodes associated with successful II and RB learning. For example, evidence suggests that the 

critical cortical node for RB learning is within the PFC, and the critical cortical node for II 

learning is in supplementary motor area (or dorsal premotor cortex). Both of these are 

interconnected with the cerebellum. The cerebellum is organized into functionally 

segregated multi-synaptic loops between the cerebellar and cerebral cortices, with the 

anterior lobes of the cerebellum interconnected with the motor cortex, and the posterior 

lobes interconnected with the PFC (Barbas et al., 1991; Goldman-Rakic & Porrino, 1985; 

Kelly & Strick, 2003; Middleton & Strick, 2000, 2001). Thus the cerebellum is well situated 

to interact with the cortical substrates of both procedural and declarative learning.

A similar story holds true at the subcortical level. Procedural learning in II tasks is thought 

to be implemented via dopamine-dependent reinforcement learning at synapses between 

cortex and dorsal-lateral striatal medium-spiny neurons. Declarative learning, on the other 

hand, is thought to depend on interactions between PFC and dorsal-medial striatum (e.g., 

head of caudate nucleus) for rule selection and switching. The output from cerebellar deep 

nuclei is disynaptically relayed to the striatum via the intralaminar nuclei of the thalamus, 

that is, the centromedian-parafascicular nuclei (CM-Pf; Hoshi et al., 2005). Thus, the 

cerebellum is also well situated to interact with the subcortical substrates of both procedural 

and declarative learning.

In light of the widespread anatomical connectivity between cerebellum and regions 

associated with categorization, there are at least two plausible (and novel) explanations for 

the role that Crus I could play in passing control between the procedural and declarative 

systems: the first involves the thalamic pathway from cerebellum, while the second focuses 

on cerebellum’s connections with subthalamus. We discuss each of these in turn below.

The subcortical path from cerebellum to thalamus presents one possible mechanism by 

which cerebellum may be influencing the passing of control between systems, given that the 

regions of the thalamus most innervated by cerebellum afferents are the intralaminar nuclei 
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including CM-Pf (Hoshi et al., 2005). These regions of the thalamus are known to project 

heavily to striatal cholinergic interneurons (called Tonically Active Neurons or TANs). 

There are essentially two current theories of CM-Pf-TAN projections. One assigns this 

pathway a foundational role in attention and arousal regulation (Kimura et al., 2004). 

Another suggests a much finer-grained role in context recognition and behavioral switching 

among contexts (Ashby & Crossley, 2011; Bradfield et al., 2013; Crossley et al., 2014). This 

latter view resonates well with our current behavioral paradigm, as well as with a body of 

evidence demonstrating the sensitivity of TANs to contextual features (Apicella, 2007; 

Shimo & Hikosaka, 2001; Yamada et al., 2004). Furthermore, the current literature 

suggesting such a contextual role for the CM-Pf-TAN pathway is dominated by tasks 

focusing on behavioral flexibility (place learning, n-arm maze navigation, etc.). These tasks 

are mediated by largely the same cortical and subcortical associative territories that are 

interconnected via the cerebellar ROI (Crus I) found here.

A second possible mechanism via which cerebellum may guide or facilitate system 

transitions involves the subthalamic nucleus. We have previously speculated that system 

switching may be mediated via the hyperdirect pathway of the basal ganglia (Ashby & 

Crossley, 2010; Crossley & Ashby, 2015; Crossley et al., in press). The hyperdirect pathway 

begins with direct excitatory glutamate projections from frontal cortex to the subthalamic 

nucleus. The subthalamic nucleus then sends excitatory glutamate projections directly to the 

internal segment of the globus pallidus (Joel & Weiner, 1997; Parent & Hazrati, 1995a,b). 

This extra excitatory input to the globus pallidus tends to offset inhibitory input from the 

striatum, making it more difficult for striatal activity to affect cortex. Hence, the hyperdirect 

pathway is hypothesized to control whether striatal outputs influence cortex: when 

subthalamic activity is reduced, striatal output can pass through, whereas when subthalamic 

activity is increased, striatal output is prevented from influencing cortex.

Our imaging data did not provide direct evidence for hyperdirect pathway involvement, 

which is unsurprising given the well-documented difficulties involved in imaging the STN 

(de Hollander et al., 2015). In general, special imaging protocols are required to reliably 

observe STN activation (e.g., Aron & Poldrack, 2006). One interesting possibility, however, 

is that the cerebellar activation we report may reflect a driving influence of the STN, which 

recently has been found to project to the pontine nuclei, and from there onward to the 

cerebellar cortex (Bostan et al., 2010, 2013; Bostan & Strick, 2010; Hoshi et al., 2005). In 

other words, the activity we observed in Crus I may in effect be a distal indicator of STN 

activity, since it showed precisely the activity profile predicted by the hyperdirect pathway 

hypothesis.

4.3. Role of the Default Mode Network

Although left Crus I emerged as a critical region in our investigation, there were a number of 

other brain regions that showed either switching-related activity (although not 

bidirectionally, as in the cerebellum), or else were differentially connected with Crus I 

across trial types. The most interesting of these other regions were the PCC and mPFC, two 

areas strongly associated with the DMN. Our results show that these regions are more 

strongly connected with cerebellum on switch trials (regardless of direction of switch) than 
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on stay trials. There are at least two possibilities (which are not mutually exclusive) that 

explain this pattern. The first possibility is somewhat trivial: the DMN tends to be un- (or 

anti-) correlated with task-positive areas (though note that we observed positive correlations 

between cerebellum and these DMN regions across all trial types). This decreased 

correlation may be especially pronounced when participants are disengaged from the task, as 

they might be to a greater degree during the relatively less cognitively demanding stay trials.

However, recent work has suggested a second, far more intriguing possibility. The DMN has 

been suggested to have high controllability, such that it is well-situated to facilitate certain 

types of transitions between brain states (Gu et al., 2014). This complements research 

demonstrating that the DMN coordinates with parts of the cognitive control network (Leech 

et al., 2011), particularly during tasks that require complex cognition and divergent thinking 

(Beaty et al., 2015). It is therefore possible that the DMN regions identified in our analyses, 

in part, reflect or directly aid the disruption of the network that controlled behavior on the 

previous trial, and thereby facilitate the transfer of control from one system to the other.

4.4. System Switching versus Task Switching

There is a rich literature devoted to identifying the regions involved in task switching, with 

most researchers reporting frontal and parietal regions as important nodes (e.g., see Ruge et 

al., 2013, for a review). The precise anatomical location of these nodes varies considerably 

across studies, and seems to depend on a variety of factors, including: stimulus complexity 

(Witt & Stevens, 2013); the degree of abstractness of the response rule (Kim et al., 2011); 

and whether switching entails changes to the rules governing correct responding, changes to 

the effectors used to emit a response (Philipp et al., 2013; Stelzel et al., 2011), changes to 

spatial attention (Chiu & Yantis, 2009), or changes to perceptual demands (Ravizza & 

Carter, 2008; Nagahama et al., 2001).

At a glance, our results are consistent with this literature, in that we also identified frontal 

and parietal regions. However, our major novel result is the bidirectional pattern of activity 

in Crus I of the cerebellum, and its connectivity with the DMN. Few of these studies 

reported cerebellar activity, and no study (to our knowledge) emphasized a cerebellar result. 

We propose that this may be because nearly all of this earlier work examined switching 

between two tasks that both relied on declarative memory systems2. These previous studies 

are therefore largely studies of ‘within-system’ task switching, in contrast to our experiment, 

which examined switching between memory systems.

4.5. Caveats and Limitations

Another alternative to a system-switching account is that our results reflect switching 

between tasks that require attention to different stimulus dimensions. The RB task only 

requires attention to spatial frequency, whereas the II task requires attention to both spatial 

frequency and orientation. In line with this possibility, Le et al. (1998) reported bilateral 

cerebellar activation similar to our own in a task-switching paradigm that required 

2However, see Jimura et al. (2014) for one counterexample, in that case switching between a novel skill and a highly overtrained one, 
which has previously been proposed to engage distinct systems (Ashby et al., 2010).
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participants to switch attention between stimulus shape and color dimensions. However, 

their cerebellar activation was ipsilateral to the finger used to make a response, raising the 

possibility that it was linked to motor preparation. Furthermore, they collapsed across switch 

types, and therefore the region they identified was uniformly more active during attentional 

switches, while we observed bidirectional modulation of activation. For these reasons, it 

seems unlikely that the cerebellar activation we observed was driven by attentional 

switching.

A second concern has to do with the possibility that our results reflect the development of 

automaticity. Prior work from our lab has shown that although performance early in training 

is controlled by the expected networks for II and RB tasks, control gradually migrates to a 

common cortical circuit in both tasks (Helie et al., 2010a,b; Soto et al., 2013). This earlier 

work gave an approximate time-course for the amount of training required before this 

cortical circuit took over, which was roughly after 13 training sessions of approximately 600 

trials each, or in other words after approximately 7,800 training trials (Helie et al., 2010b). 

In the present experiment, each participant completed a total of 525 RB trials and 775 II 

trials. So each participant received less than 10% of the training that previous work showed 

was required for automaticity to develop in our RB and II tasks. As a result, it seems highly 

unlikely that any of our results reflect automatic responding.

One final caveat relates to our prescreening procedure. Logically, we needed to select 

participants able to perform the task in order to study task performance. We expect that our 

results implicating Crus I in system switching would generalize to other system-switching 

contexts, even in those participants who failed to meet our prescreening criteria. For 

instance, an individual who is carrying on a conversation while driving might be switching 

between explicit (engaging in conversation) and procedural (driving) processes. Even if this 

person would be unable to perform our difficult task, the cerebellum may nonetheless be 

responsible for such switching. However, because our design precludes scanning such 

individuals, it is an unanswered question whether the switching mechanisms identified here 

are universal.

4.6. Conclusion

Categorization is among the most important cognitive skills that humans possess. It allows 

us to navigate in a dangerous world, and to find food, shelter, and friends. There is now 

substantial evidence that humans have multiple category-learning systems, which are largely 

neuroanatomically separate, learn by qualitatively different rules, and have adapted to 

learning different types of category structures. This article describes the results of one of the 

first studies to examine the natural next question of how these various systems interact. This 

is an important problem because during daily life we must often switch between different 

categorization systems (e.g., declarative and procedural). For example, many components of 

driving are procedural, but at the same time some explicit decisions are required. Following 

an explicit decision, a failure to quickly switch back to a procedural strategy could greatly 

increase the risk of an accident. Toward this end, we identified a key region of the 

cerebellum (left Crus I) that, within our sample of task-proficient participants, was 

maximally activated when switching to the declarative system, was minimally activated 
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when switching to the procedural system, and was intermediately activated when no system 

switch was required. We propose that this region, perhaps in conjunction with the DMN, 

facilitates the successful transfer of control between procedural and declarative systems.
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Figure 1. 
A: Example II categories. B: Example RB categories. C: Stimuli and categories used in the 

present experiment. Finger colors correspond to category label.
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Figure 2. 
Possible trial types during scanning. Time between trial events in the scanner was always 1 

TR (i.e., 2 s). Time between trial events during pre-screening is described in the text. A: 

Example RB trial in which the cue, stimulus, and feedback are all presented. B: Example II 

trial in which the pre-cue is omitted. C: Example II trial in which feedback is omitted. D: 

Example RB trial in which pre-cue and feedback are omitted.
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Figure 3. 
GLM results for II|RB>II|II contrast. Throughout the manuscript, coordinates are in MNI 

space, images are displayed according to radiologic convention, and warm colors denote 

positive z values while cool colors denote negative z values. Unless otherwise noted, z-axis 

slice coordinates correspond to {−34, −12, 8, 28, 40, 52} from top-left to bottom-right. 

Color scale peak at z =±3.5.
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Figure 4. 
GLM results for RB|II>RB|RB Color scale peak at z =±3.5.
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Figure 5. 
Results from conjunction analysis of Figures 3–4. z-axis slices at {−38, −34, −30}. Color 

scale peak at z = ±3.3.
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Figure 6. 
Trial-type-specific beta values from the cluster shown in Figure 5. Error bars show ±1 

standard error of the mean.
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Figure 7. 
Results of connectivity analysis with ROI shown in Figure 5, showing regions of greater 

connectivity for II|RB than II|II (warm) and vice versa (cool). Color scale peak at z =±3.5.
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Figure 8. 
As in Figure 7, for contrast RB|II>RB|RB. Color scale peak = at z =±3.5.
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