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Abstract

To simultaneously overcome the challenges imposed by the nature of optical imaging 

characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered 

light, and non-uniform illumination, we developed a novel method that segments the 3-D 

vasculature directly from original fluorescence microscopy images eliminating the need for 

employing pre- and post-processing steps such as noise removal and segmentation refinement as 

used with the majority of segmentation techniques. Our method comprises two initialization and 

constrained recovery and enhancement stages. The initialization approach is fully automated using 

features derived from bi-scale statistical measures and produces seed points robust to non-uniform 

illumination, low SNR, and local structural variations. This algorithm achieves the goal of 

segmentation via design of an iterative approach that extracts the structure through voting of 

feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and 

quantitative analysis of the experimental results obtained from synthetic and real data prove the 

effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The 

algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and 

structural definition gives this algorithm a wide potential range of applications where i.e. structural 

complexity significantly complicates the segmentation problem.
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1. Introduction

Tubular networks are one of the fundamental structures in biological and medical studies. 

They are found in the skeletal structures, nerve fibers, systems for propagating gases 

(intrathoracic airway trees) and fluids (vascular and microvascular networks), and are 

subject of extended studies [1, 2, 3, 4]. When imaging, it is of crucial importance to devise 

effcient segmentation methods that deliver an accurate platform for further analysis such as 

bifurcation detection, centerline approximation, or shape matching operations. The work in 

this paper focuses on the volumetric extraction of interconnected tubular structures from 

various forms of biological imagery with specific application to vascular networks.

Common to vascular detection methods, an initial stage is necessary to denoise, enhance, 

and binarize the raw data [5, 6]. Segmentation of vasculature is of high importance for 

quantitative analysis and visualization purposes in diverse fields of study such as 

neuroscience [7] and tumor monitoring [8]. The segmented data set provides a means to 

extract crucial quantitative information about the vasculature such as surface areas, 

diameters, tortuosities, and branching patterns of vessels. It also can serve as a platform for 

performing further advanced processing [2].

Of particular interest to us is the case of cortical microvasculature determination in murine 

models from 3-D fluorescence microscopy data stacks that manifest vessels of low 

tortuosity. This data of interest indeed calls for pre-processing as accurate and fast 

segmentation and volumetric reconstruction of the complex microvasculature networks from 

fluorescence microscopy images faces challenges owing to the existence of numerous 

imaging artifacts shown in Figure 1: uneven illumination, non-homogenous intensity 

distribution inside the vessels, low SNR regions, high spatial density or closeness of vessels, 

reduced contrast at edges, broken or faint vessels, and low frequency background variations 

caused by scattered light [5, 9]. The noise stems from several sources such as stochastic 

photon counting, thermal and electrical fluctuation in the imaging device, biological 

background, and non-uniform fluorophore distribution [9, 10]. Many of these problems are 

related to the photon counting nature of the imaging system. For that matter, the image 

quality is directly determined by the number of detected photons that is in turn controlled by 

the exposure time which has to be limited to preserve the health of the specimen as excessive 

fluorophore excitation causes cell phototoxicity and photobleaching [11]. Thus, lower 

number of detected photons results in an SNR reduction in the obtained images. Also, 

images of poorly stained samples are likely to show structural irregularities such as vessel 

breakage [12].

These issues result in two challenges: (1) identifying the smaller structures along with their 

connectivity (breakages are prevalent for these cases) and (2) the recovery of larger vessels 

that tend to be surrounded by heavy imaging artifacts making the boundaries more diffcult to 

perceive (over segmentation is an issue). Therefore, developing segmentation algorithms that 

can overcome imaging artifacts, are robust to the imaging artifacts and structural variations 

is of great importance.
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Several studies have been done on the subject of vascular or in general term tubular 

structures segmentation for different imaging modalities [2, 13, 14]. They include methods 

such as active contours [16, 17], geometric model-based techniques [18, 19], or region 

growing approaches [20], tracking [21], and template-based methods [22]. Tracing-based 

algorithms work by following vascular segments starting from some initial seed points. 

These methods fail at recovering broken vessels and are highly dependent on the seed point 

selection. Matched filtering based approaches model the vessel structure as the intensity-

ridges of a multiscale vesselness function [23]. These algorithms are susceptible to outliers 

and are not robust to noise [24]. Active contour approaches are flexible in terms of finding 

the intricate vessel shapes. However, they are prone to leakage into the background where 

edges have low contrast. This property can drastically undermine the performance of active 

contours where the segmented structure is dense and leakage will lead to merging of 

separate vessels. A popular region accumulation approach is the watershed transform, but 

this approach can result in over segmentation and requires further processing [25]. The 

method proposed in [26] that uses a combination of clustering and classification techniques 

to segment vasculature segments vasculature suffers from broken vasculature and requires a 

linking post processing. Also, its parameters are selected regardless of the structures size and 

undermine the performance of segmentation in networks of varying size vasculature. Finally, 

model-based methods require a prior information on the vascular structures [2]. Therefore, 

developing an effcient algorithm that can jointly retrieve microvascular volume and remove 

noise from data is necessary.

We have developed a new iterative region growing algorithm that is able to provide precise 

segmentation directly from the raw data without the pre-processing requirement of denoising 

or other image enhancing operations. The iteration starts with a robust initialization scheme 

that is unbiased to the non-uniform illumination or lower SNR conditions and is based on 

local statistical analysis of image intensities. A full segmentation is achieved by iteratively 

augmenting the seed points through classifying/voting of feature vectors formed by voxels 

location, local intensity gradient, and non-linear statistical measures information such as 

median level.

We perform vessel segmentation with the following contributions. First, we remove a priori 
probabilistic noise model and geometrical (such as curvature or branching pattern about the 

vessels except for the local diameter) assumptions. Then, a set of features derived from bi-

scale statistical measures are defined and used to robustly (invariant to non-uniform 

illumination, low SNR, and local structural variations) and automatically derive the seed 

points. Finally, the segmentation algorithm is designed to directly restore the vasculature and 

simultaneously reject the imaging artifacts for enhancement. This method is automatic and 

does not require manual interaction. Collection of these features allows us to obtain an 

accurate segmentation from the 3-D fluorescence microscopy data. Experimental results 

obtained from synthetic and real datasets confirm that the proposed algorithm greatly 

improves upon the previous segmentation methods performed on vasculature data.

The remainder of this paper is organized as follows. In Section 2, we present the proposed 

segmentation technique in two parts of initialization and vessel recovery method. Section 3 

presents the segmentation evaluation results obtained from synthetic (quantitative in terms of 
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sensitivity and specificity) and real data (qualitative). The segmentation performance is 

compared to state-of-art methods using real fluoroscopic data in this section. Finally, Section 

4 concludes the paper and indicates the possible future paths for continuing this study.

2. Methodology

This section explains the basics of vessel extraction process given in the Algorithm 1 and 

termed as Constrained Region Evolutionary Vessel Enhancement and Recovery (CREVER). 

There are two primary components to this process: initialization and vessel recovery. The 

basis of the extracted structure is founded in the initialization stage. Then, the full 

vasculature is built recursively in the vessel recovery part. The details of each of these parts 

are provided in the following subsections.

2.1. Notation

The notations in Table 2 will be used for the rest of paper:

2.2. Initialization

As shown in the pipeline of Figure 2 and Algorithm 1, we propose a two scale kernel-based 

method to determine a set of seed points. The initialization is based on comparing patch-

based statistical measures that have been proved to outperform the higher level features in 

structural classification of images [28]. This approach is similar to the ideas in [27] where 

signals are detected by thresholding mean-to-mean ratio of different kernels. However, the 

complex nature of artifacts in the data of interest calls for a more effective measure. Rank-

ordered statistical filters are an effcient choice here for their robustness (effectiveness in 

suppressing Poisson and shot noise [29]) and low computational cost. The most well-known 

of this group is the median filter that is resilient measure of central tendency to outliers. This 

property allows them to be used directly on the original data as a means for finding the local 

dominant intensity. Advantageously, median filters balance noise reduction and over 

smoothing which is an inevitable by-product of majority of the denoising methods esp. 

linear filters that causes blurred edges and lowered contrast [30]. We have observed that 

median values of concentric kernels (cubes) of two different scales (side length) differ 

markedly if the center point is located on the microvasculatures. Microvasculature is of a 

spatially sparse structure, thus the median value of the smaller kernel ms even if the 

vesselsare faint in intensity will be significantly higher than the median value of the larger 

kernel ml in which lower intensity background voxels will dominate. Therefore, this feature 

is robust to non-uniform illumination where median of kernels are analyzed locally.

Four cases of bright vessel (A), noisy background (B), faint vessel (C), and dark background 

(D) are specified on maximum intensity projection (MIP) of a 3-D image in Figure 3 to 

illustrate this intuition. Histograms for the intensity distribution of the points located in the 

kernels of scales s (small) and l (large), s < l, are shown on the right side of the figure where 

median values are marked by blue and red diamond topped bars for small and large scale 

kernels. For background points, these values either do not differ considerably or the median 

in the larger neighborhood exceeds the smaller neighborhood in the proximity of other 

microvasculature. Therefore, the ratio obtained from the median filtered images using 
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kernels of s × s × s and l × l × l size, centered on voxels (x, y, z) ∈ I, where ml ( x, y, z) ≠ 0 

delivers a well-separable set of feature points by clustering of which one can obtain robust 

seed points Γ0 regardless of the mixed-noise, non-uniform illumination, and other imaging 

artifacts. One example of this ratio that is calculated for 2-D slice of the image in Figure 3 is 

shown in Figure 4. According to this figure, dimmer vessels especially in the lower and 

upper left corners have received larger  levels (visualized by larger intensity values). Non-

uniformity of vessel sizes and noise variance over the data gives a range of values to the 

ratio. However, a good selection of s and l ensures the least overlap between the 

clusters. Here, s and l are selected based on the vessel radius measurements obtained from 

the image I. The s is set as the smallest vessel radius, ρ1, to ensure the preservation of small 

structures. In order to balance locality and inclusiveness, l is chosen as twice the largest 

vessel diameter, 4ρ2. This amount allows for the incorporation of enough background and 

vasculature in the larger box. The radius at each foreground point in I is estimated by means 

of the method used in [31]. We first compute the ratio for all points, run k-means (k = 2) 

clustering [32], then set the Γ0 as the voxels in of the larger centroid cluster. Finally, to 

guarantee the structural enhancement besides recovery of faint vessels, Γ0 is augmented by 

inclusion of the points that are located in the brightest regions as they may not pass the 2-

means thresholding in the highly noisy regions (where ml is also large):

(1)

2.3. Region growing structure retrieval

Given the detected seed points, we extract the entire volume through a region-growing 

method that simultaneously rejects imaging imperfections. This method recursively extracts 

the structure from raw data and eliminates the need for pre-processing operations such as 

enhancement or denoising. This method is based on the observation that local median 

intensity in cubic kernels typically decreases as kernel moves away from the vasculature’s 

centerline. Figure 5 illustrates this claim on the mesh plot of a 2-D grayscale image slice of 

microvasculature. The structured ridges marked by the brightest shades belong to the 

microvasculature. The brightness decreases smoothly by moving radially from the vessels 

centerlines. The intensity drops abruptly at the blood vessels boundaries where the desirable 

segmentation stops proceeding. Thus, the method as described in Algorithm 1, directs the 

segmentation along the areas with smoothest decreasing local intensity median value until 

reaching a sharp intensity drop that is detectable by the gradient feature. This is performed 

via voting for the voxels in the immediate 3-D neighborhood (maximum of 1-voxel distance 

in every direction) of the retrieved region that show similar statistical properties in terms of 

median value in their cubic vicinity, at each iteration.

More formally, with ms the median image value in all s × s × s kernels, we first form a 

sequence with monotonically decreasing order from max(ms) to min(ms) with unit step size. 

This sequence is shown with δ1 = max(ms), δ2, … , δn = δn−1 – 1, … , δN = min(ms) in the 

CREVER pseudocode at line 5. The number of iterations, N, is determined by the largest 
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and smallest values of ms in the given image such that N = max(ms) − min(ms) + 1. The 

CREVER starts segmentation at iteration 0 from the seed points, Γ0, obtained from the 

grayscale image I, and refines Γn until reaching the Nth iteration. At the nth iteration, new 

voxels are classified/voted as part of the structure when their attributes satisfy three 

constraints: adjacency to the retrieved regions, having median intensity of equal or greater 

than the one determined by the iteration number (ms ≥ δn), and having a low normalized 

absolute gradient value  (line 10) where

(2)

The last criterion prevents leakage across vessel boundaries. Finally, to avoid missed 

detections caused by imaging artifacts in the microvasculature, retrieved regions are 

morphologically closed at each step using a spherical structuring element of radius one, 

sph1, (line 11). Finally, the segmented image, IB, is obtained by thresholding the retrieved 

region at the last iteration, ΓN−1, with 0. Selection of τ has an important role in the method’s 

overall performance. For a small τ, region growing will be halted prematurely, and some 

regions will be missed. On the other hand, for a τ that is too large, many of the noisy 

background voxels will be included in the retrieved vasculature. This parameter is set as the 

mean of two clusters centroids found by the 2-means clustering of Ig to avoid either of these 

deficiencies.

Algorithm 1

CREVER

 Inputs: Grayscale image I, ρ1, and ρ2

  Initialization:

1: ms ← Median of I in s × s × s kernels

2: ml ← Median of I in l × l × l kernels

3:
Γ0 ← 2 – means clustered

ms
ml

, ml ≠ 0

4: Γ0 ← Γ0 ∪ {(x, y, z)|ms(x, y, z) = max(ms)}

5: Sequence: δ1 = max(ms), δ2, …, δi = δi−1 – 1, …, δN = min(ms)

6: n ← 1

7:
Ig =

∇ms
∣ ∣ ∇ms ∣ ∣

8: while n < N do

9: Γn ← Γn−1 ∪ {(x, y, z)|ms(x, y, z) ≥ δn+1, ||Γn−1, (x, y, z)|| ≤ 3, |Ig (x, y, z)| < τ}

10:Γn ← (Γn ⊕ sph1) ⊖ sph1

11:n ← n + 1

12:end
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13:IB ← ΓN-1 > 0

 Output: Binary Image IB

Figure 6 shows an example of the microvasculature segmentation via the CREVER method 

for a 2-D slice of a three dimensional fluorescence microscopy image from iteration 0 (seed 

points) to the last iteration. The final image demonstrates the accurate recovery of structures 

from noisy, artifacted, and low contrasted areas. To be specific, the results obtained for the 

lower left part of the image supports this claim. Inhomogeneous illumination greatly lowers 

the visibility of the vasculature in this part that is the reason of being missed by other 

denoising-segmenting methods as it will be shown in Section 3.2. Since the computations 

are done in cubic kernels, some of the structural content from the above and below slices of 

the current one are included in the enhancement process, which is the reason for having a 

slightly more complete structure than the original image in the final result. Processing in the 

cubic regions is the key feature of CREVER in reducing vessel breakages and improving the 

accuracy.

3. Experiments

In this section, effciency of the proposed method is assessed first by using the quantitative 

performance measures. Next, the vessel enhancement power is qualitatively shown and 

compared with those of other combination of methods using 3-D fluorescence microscopy 

images of murine samples. Finally, we investigate the effect of parameter selection on the 

proposed method’s per-formance.

3.1. Quantitative analysis

To conduct the quantitative evaluations, a set of synthetic images are generated by 

corrupting a single structure with varying amounts of noise to simulate different PSNRs. In 

detail, a synthetic image is formed by developing an interconnected tubular network from a 

specific ground truth graph similar to the approaches discussed in [33] using the same 

parameter values. This structure is shown on left side of Figure 7. The volume obtained from 

CREVER is provided on right side of the Figure 7. Different shades present in this 

demonstration of the binary data are resultant of the 3-D rendering approach. To achieve a 

target PSNR (peak signal-to-noise ratio), a common approach in Poisson noise assessment 

literature [10, 34] is used that is based on scaling the maximum intensity of image defined as

(3)

with MSE being the mean square error between the noisy and noise-free versions. For the 

following experiments, PSNR levels are changed from 2 to 15 dB in ten steps. For each 

PSNR, experiments are repeated ten times and the average is reported as final result.

Almasi et al. Page 7

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The performance of the CREVER is evaluated and compared with three state-of-the-art EM-

based (expectation maximization) [35], graph-cut [36], and level-set [16] segmentation 

methods. These methods are tuned via exhaustive searching of optimal parameters to deliver 

their best performance for the given data sets.

As performance measures, true positive rate (TPR) or sensitivity and false positive rate 

(FPR) or (1-specificity) calculated as below

(4)

are used to draw the receiver operating characteristic (ROC) curves of these methods, shown 

in Figure 8, applied to the synthetic data. Results suggest that CREVER is superior in 

performance having the largest area under curve (AUC). Besides a high level of TPR, this 

method performs very well in rejecting background artifacts as measured by low false 

positive rates. Level-set method provides the next best performance behind CREVER. The 

EM-based and graph-cut segmentations perform inferior to the CREVER.

To further emphasize the power of the CREVER method, accuracy of the retrieved vascular 

networks edges has been measured in terms of average displacement. Varying PSNR level 

over the structure in Figure 7 forms the synthetic datasets. The obtained edge points are 

determined as the foreground voxels with at least one background voxel in their 8-

neighborhood. Then, they are matched to ground truth edge points via the Hungarian 

bipartite matching algorithm with Euclidean distance-based cost matrix. The average 

displacement is calculated as the average distance between all the pairs of corresponded 

points in voxel scale and provided in Table 2 for four datasets. The results start from a 

satisfactory level of 1.63 voxel for PSNR = 2 and increase as the noise level rises. Given the 

radius range in testing data (10-20 voxels), the results prove the accuracy of the 

segmentation boundaries and stability of the method against the noise.

3.2. Comparative qualitative analysis

Qualitative validation of the proposed algorithm has been completed by applying it to three 

sets of 3-D vascular images from murine nervous tissue. Testing datasets were selected such 

that they show a range of structural and noise properties. To generate these data, 

heterozygous Plexin-D1-fGFP transgenic mice were used to visualize GFP-expressing 

developing blood vessels in the embryonic thalamus. All animals were maintained and 

treated with approved Institutional Review Board protocol according to the National 

Institutes of Health guidelines and approved by the Institutional Animal Care and Use 

Committee at Harvard Medical School. Three dimensional vascular images (z-stacks) were 

acquired using a Leica LSM 510 META confocal microscope in embryonic thalamus. The 

SNR of images ranges from 3 to 7 dB roughly.

The first image, of size 200 × 450 × 50 voxels, is shown in Figure 9(a) with MIP where the 

MIP of its segmentation obtained by the CREVER method is also shown in Figure 9(b). The 

next data is obtained from a more homogenous (in vessel shape and size senses) 
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microvascular network. However, the noise distribution differs markedly throughout the 

image as apparent from Figure 9(c). This image is of size 500 × 500 × 45 voxels. The 

segmented image is shown in Figure 9(d). This image has been collected from a thinly cut 

layer of tissue, thus isolated points are formed from recovery of those partial structures. The 

last dataset that is of size 400 × 400 × 50 voxels incorporates a spatially dense microvascular 

network with high noise content apparent in the original image shown in Figure 9(e). 

However, the segmentation presented in Figure 9(f) proves stability of the CREVER in 

presence of strong noise and artifact elements. The CREVER method has recovered the 

vasculature regardless of its local statistical variations, noise level, and structural properties 

such as vessel radius measure. Considering all cases, it is obvious that the proposed method 

produces an overall high quality segmentations of microvasculature from 3-D fluorescence 

microscopy images. It well preserves the structural specifications such as continuity and 

smoothness of the vessel boundaries while noticeably removing imaging artifacts and noise.

Carrying on to the qualitative evaluation of CREVER, it is compared with the three 

segmentation algorithms of EM-based (expectation maximization), graph-cut, and level-set 

methods applied to the back-ground subtracted version of the image shown in Figure 6(a). 

Background subtraction is performed through the temporal median filtering [37] of the 

image stacks at the scale of the largest vessel in each dataset. The results presented in Figure 

10 suggest the superiority of the CREVER method especially for small or low-resolution 

structures such as those in the left and lower left parts of the images marked by a red dashed 

circle. CREVER recovers the vasculature in a more non-selective manner regarding 

illumination uniformity, contrast level, and vascular size and is more robust to image 

artifacts. It also outperforms the other methods in retrieving the vasculature of low PSNR 
parts such as those located in the center of the image. The level-set method performs well in 

this region; however, it shows higher false negative rates for smaller branches. The EM-

based method retrieves more structure compared to the graph-cut method where the graph-

cut method performs with higher accuracy in terms of false positive rate

The computational complexity of the CREVER method is dominated by the median 

filtering’s cost that is in turn dependent on the larger kernel size, . Since l is dependent 

on the largest vessel radius in the given data, computational complexity is consequently 

relative to the imaged tissue’s vasculature measure. The iterations count in the CREVER 

part however, is data independent and is bounded by the maximum voxel intensity of the 

data. Finally, this method scales to data of arbitrary size as all the operations are 

parallelizable for disjoint partitions from an image.

3.3. Parameter analysis

In section 2.2, it was shown that parameters s and l are set by approximations of the smallest 

and largest vessel radii. Here, we show that these assignments are optimal and show that 

deviation from these values deterio-rates the performance. Figure 11 shows the mesh plot of 

the segmentation accuracy (ACC) metric defined as
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(5)

where TNR and FNR are true and false negative rates. The ACC is measured over the 

segmentations obtained from the synthetic image in Figure 7(a) vs. varying s and l values 

where vessel radius ranges from 1(= ρ1) to 4(= ρ2) in the synthetic image. This plot shows 

that the best ACC is achieved when the parameters are around the same ratio of the vessel 

radii as discussed in Section 2.2, s = 1(= ρ1) and l = 15(≈ 4 × ρ2).

4. Conclusion

This paper addresses the segmentation problem of 3-D vascular networks. Acquiring high 

quality segmentation of these structures is essential for post-processing operations like 

centerline extraction and quantitative shape analysis. A novel iterative algorithm is proposed 

that is based on a bi-scale filtering scheme. The proposed method is tested on the 

fluorescence microscopy images of the murine cranial microvasculature. These images 

manifest miscellaneous types of noise, varying SNRs, uneven contrast, and structural 

complexity that prove to be challenging for existing segmentation methods even when they 

process denoised and pre-processed data. Our method iteratively retrieves the vasculature 

and robustly builds the structural pattern of interest while rejecting the imaging artifacts. The 

search algorithm uses a greedy approach which selects the locally optimal voxels that are in 

compliance with the structure at each iteration. These voxels are the points for which the 

radial distance and standard intensity deviation are in the acceptable range from the given 

retrieved region. Evaluations on real fluorescence microscopy and synthetic data show that 

the presented method has high specificity and sensitivity while it outperforms state-of-the-art 

methods. Without loss of generality, this method is applicable to images of two dimension 

and with less computational complexity. Also, the algorithm can be adapted for different 

imaging modalities with different probabilistic models of noise. The segmentation method 

can generalized to images of other tubular shapes including neurons and retina’s vasculature 

with some modifications such as intensity scaling.
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Figure 1. 
In this maximum intensity projection of 3-D fluorescence microscopy image of murine 

cranial tissue, miscellaneous imaging artifacts are visible: uneven illumination (upper vs. 

lower parts), non-homogenous intensity distribution inside the vessels (visible in the larger 

vessels located at top right corner), low SNR regions (lower areas), high spatial density or 

closeness of vessels (majorly in the center-upper parts), reduced contrast at edges (visible as 

blurs mostly for the central vessels), broken or faint vessels (lower vessels), and low 

frequency background variations caused by scattered light (at higher density regions).
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Figure 2. 
The pipeline of initialization stage.
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Figure 3. 
Four different classes of voxels observed in the original data are indicated here: Bright 

vessel (A), noisy background (B), faint vessel (C), and dark background (D). Histograms for 

the intensity distribution and the median value of the points located in the s and l-scale 

kernels are shown on the right side. For these histograms, dark values correspond to the left 

edge of the abscissa and light values for the right edge. Diamond topped bars mark median 

values on the histograms. Distinguishable comparative situation of median values is used as 

the basis for detecting relevant structures.
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Figure 4. 

The  ratio obtained from the median filtered images using kernels of s × s × s and l × l × l 
size for pixels with ml ≠ 0.
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Figure 5. 
Mesh plot of a 2-D slice of a locally median filtered fluorescence microscopy image. 

Structured ridges marked by the brightest shades belong to the microvasculature.
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Figure 6. 
A slice of an original 3-D fluorescence microscopy image, seed points, recovered 

microvasculature at 25, 50, 75, and 100% of the CREVER method’s development.
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Figure 7. 
Left: MIP of synthetic image with PSNR= 5 dB. Right: the segmentation obtained by the 

CREVER method.
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Figure 8. 
The ROC curves obtained using CREVER (the proposed method), level-set, EM-based, and 

graph-cut segmentation methods using synthetic images with PSNRs in the range of 2 to 15 

dBs.
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Figure 9. 
Left side: The MIPs of real data sets. Right side: the segmentations obtained via the 

CREVER method.
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Figure 10. 
Segmentation of Figure 6 obtained via the (a) CREVER applied to the raw data and (b) EM 

segmentation, (c) graph-cut, and (d) level-set methods initialized on the background 

subtracted image.
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Figure 11. 
Mesh plot of the ACC obtained from segmentations of the synthetic image in Figure 7(a) vs. 

s and l.
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Table 1

Notations used for the vessel recovery process.

I Grayscale image

ρ 1 Smallest radius of all the vessels

ρ 2 Largest radius of all the vessels

ms Median filtered I by small scale kernels

ml Median filtered I by large scale kernels

∇ First order finite difference approximation to gradient operator

||·|| Euclidean distance

⊕ Morphological dilation

⊖ Morphological erosion

sph 1 Spherical structural element of radius 1
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Table 2

Accuracy measure for detected edge points

Dataset 1 2 3 4

PSNR (dB) 8 6 4 2

Average displacement (voxel) 1.63 1.97 3.74 5.31
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