Skip to main content
. Author manuscript; available in PMC: 2018 Mar 1.
Published in final edited form as: Pattern Recognit. 2016 Sep 22;63:710–718. doi: 10.1016/j.patcog.2016.09.031

Algorithm 1.

CREVER

Inputs: Grayscale image I, ρ1, and ρ2
Initialization:
  • 1:

    ms ← Median of I in s × s × s kernels

  • 2:

    ml ← Median of I in l × l × l kernels

  • 3:

    Γ0 ← 2 – means clustered(msml), ml ≠ 0

  • 4:

    Γ0 ← Γ0 ∪ {(x, y, z)|ms(x, y, z) = max(ms)}

  • 5:

    Sequence: δ1 = max(ms), δ2, …, δi = δi−1 – 1, …, δN = min(ms)

  • 6:

    n ← 1

  • 7:

    Ig=msms

  • 8:

    while n < N do

  • 9:

    Γn ← Γn−1 ∪ {(x, y, z)|ms(x, y, z) ≥ δn+1, ||Γn−1, (x, y, z)|| ≤ 3, |Ig (x, y, z)| < τ}

  • 10:

    Γn ← (Γnsph1) ⊖ sph1

  • 11:

    nn + 1

  • 12:

    end

  • 13:

    IB ← ΓN-1 > 0

Output: Binary Image IB