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Abstract

The goal of association mapping is to identify genetic variants that predict disease, and as the field 

of human genetics matures, the number of successful association studies is increasing. Many such 

studies have shown that for many diseases, risk is explained by a reasonably large number of 

variants that each explains a very small amount of disease risk. This is prompting the use of 

genetic risk scores in building predictive models, where information across several variants is 

combined for predictive modeling. In the current study, we compare the performance of four 

previously proposed genetic risk score methods and present a new method for constructing genetic 

risk score that incorporates explained variance information. The methods compared include: a 

simple count Genetic Risk Score, an odds ratio weighted Genetic Risk Score, a direct logistic 

regression Genetic Risk Score, a polygenic Genetic Risk Score, and the new explained variance 

weighted Genetic Risk Score. We compare the methods using a wide range of simulations in two 

steps, with a range of the number of deleterious single nucleotide polymorphisms (SNPs) 

explaining disease risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and 

minor allele frequencies (MAF). Several measures of model performance were compared 

including overall power, C-statistic and Akaike’s Information Criterion. Our results show the 

relative performance of methods differs significantly, with the new explained variance weighted 

GRS (EV-GRS) generally performing favorably to the other methods.
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1 INTRODUCTION

An important priority in the area of genetic epidemiology is the identification of susceptible 

variants for the common disease. These genetic variants could further be incorporated in a 

feasible model to predict the disease risk, so that the environmental or therapeutic 

interventions could be introduced earlier to prevent the diseases or improve personalized 

treatment. In recent years, Genome-Wide Association Studies (GWAS) and candidate 

polymorphism investigations have identified a large number of variants that are consistently 

associated with the risk of complex diseases (Manolio 2010). However, most of the currently 
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identified genetic variants convey a relatively modest effect, and the predictive value is 

limited. Anticipating the discovery of a large number of novel genetic variants in the near 

future, we need to prepare an appropriate framework to translate the emerging genomic 

knowledge into clinical utility, including the construction of genetic risk scores, the 

measurement of the predictive value, and the validation of the prediction models (Janssens 

and van Duijn 2009).

To address these issues, many analytical methods and models have been developed to better 

predict the disease risk using these low-effect risk variants. Recent studies have suggested 

possible risk models incorporating previously consistent genetic and conventional (clinical, 

demographic, etc.) risk factors (Meigs, et al. 2008; Talmud, et al. 2010). These genetic 

variants are included on the basis of consistent GWAS signals or meta-analysis results of 

association studies (De Jager, et al. 2009; Talmud, et al. 2010; Taylor, et al. 2011). Such 

improvements have had mixed results in predicting the risk of several common diseases, 

such as Type II diabetes (Meigs, et al. 2008; Talmud, et al. 2010), multiple sclerosis (De 

Jager, et al. 2009), systemic lupus erythematosus (Taylor, et al. 2011), breast cancer (Zheng, 

et al. 2010), lung cancer (Young, et al. 2009) and cardiovascular diseases (Paynter, et al. 

2010), etc. Among these models, unweighted and weighted genetic risk score functions were 

used to construct genetic risk score profiles (De Jager, et al. 2009; Karlson, et al. 2010; Lin, 

et al. 2009; Meigs, et al. 2008; Paynter, et al. 2010; Seddon, et al. 2009; Talmud, et al. 2010; 

Taylor, et al. 2011; Young, et al. 2009; Zheng, et al. 2010). While these approaches have 

shown anecdotal success in real data analyses, these risk score functions have not been 

rigorously evaluated and compared. The assessment and comparison of the statistical 

properties of these functions in a range of scenarios is crucial for the proper application and 

interpretation of these methods.

In the current study, we try to compare the performance of four previously proposed 

methods: a simple count Genetic Risk Score (SC-GRS) (Talmud, et al. 2010), an odds ratio 

weighted Genetic Risk Score (OR-GRS) (De Jager, et al. 2009; Karlson, et al. 2010; Talmud, 

et al. 2010), a direct logistic regression Genetic Risk Score (DL-GRS) (Carayol, et al. 2010) 

and a polygenic Genetic Risk Score (PG-GRS) (Carayol, et al. 2010), and present a new 

method using an explained variance weighted Genetic Risk Score (EV-GRS). In a two-step 

simulation study, we used a wide range of simulated genetic models with a range of the 

number of deleterious single nucleotide polymorphisms (SNPs) in the etiology of disease 

risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and minor allele 

frequencies (MAF) of the SNPs. We applied the risk score methods to the simulated data, 

and compared their performance based on power, C-statistic and Akaike’s Information 

Criteria (AIC) metrics.

2 METHODS

2.1 EXISTING GENETIC RISK SCORE MODELS

To simplify the analysis, we assume that one SNP per susceptibility gene has been selected, 

assuming these SNPs are uncorrelated and in turn contribute to the disease in an additive 

way. As described above, a very simple model is assumed. Let D denote the disease status 

where D = 1 if the subject has the disease (case) and D = 0 if healthy (control). Let G denote 
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a vector of all genotype combinations and Gi denote the number of risk alleles of the subject 

at i-th SNP. We assume all genotypes are available for all SNPs and individuals and 

therefore no data is missing. All parameters are estimated by fitting the logistic regression 

model (Carayol, et al. 2010; Cordell and Clayton 2002).

2.1.1 Simple count GRS (SC-GRS)

(1)

(2)

This simple count model involves only two parameters. The risk score profile utilized the 

sum of all risk alleles for all SNPs. No prior information about the effect size of associated 

SNP is required. It is relatively simple and thus has a wide application for current research, 

especially when current literature is insufficient to provide stable estimates for each SNP’s 

effect (Paynter, et al. 2010). However, the presumed assumption of equal contributions of all 

SNPs may not be plausible.

2.1.2 Odds ratio weighted GRS (OR-GRS)

(3)

(4)

(5)

(6)

This model also needs two parameters. Here, the unequal effect size of SNPs is taken into 

account. The risk score is constructed as the weighted sum of all SNPs. The wOR is a pre-
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determined fixed weight. Practically, it is usually the log per-allele OR from meta-analysis 

for this SNP (Talmud, et al. 2010). It is easy to derive that SNP(s) with larger OR tends to 

contribute more to disease risk. This method requires external determinants, but in some 

cases they are unavailable if no studies were done before or inaccurate prior determinants 

were provided. This requirement makes this type of risk score unavailable for some studies, 

where previous estimates are not available. To make the weighted genetic risk score more 

directly comparable to the simple count genetic risk score, we used the rescaled version of 

the OR-GRS by multiplying by the rescaling factor .

2.1.3 Direct logistic regression GRS (DL-GRS)

(7)

(8)

This alternative weighted method directly fits a logistic regression model. The risk 

coefficient is the log(OR) for SNP i using the original dataset. The number of risk alleles is 

counted and multiplied by the risk coefficient to derive the risk score. No external 

information (i.e. an effect estimate from previous studies) is needed but I+1 parameters are 

estimated (Carayol, et al. 2010). Because this score is developed from the data at hand, the 

question of external validation inevitably arises. It can be assumed that if this score is 

applied in independent data, its fit will be substantially worse than the fit when applied in the 

first data in which it was built. The underlying goal of this risk score is essentially the same 

as with the OR-GRS, except that it is applied when external estimates of effect size are not 

available.

2.1.4 Polygenic GRS (PG-GRS)

(9)

(10)

For the PG model, two dummy variables are considered per SNP. Let xi1 be an indicator 

function of homozygous status and xi2 be an indicator of homozygous for risk allele at SNP 
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i. Suppose a is the risk allele. Then, genotype AA is coded as 00, Aa as 10 and aa as 01. If 

we set AA as the baseline genotype, β1 is the risk coefficient for Aa and β2 is the risk 

coefficient for aa. In this aspect, the PG model is more flexible if the underlying genetic 

mode is unknown. The other methods discussed above make an additive genetic model 

assumption in adding the number of risk alleles. This assumption of additivity will decrease 

performance if there is dominance deviation in the actual underlying risk etiologies. While 

the ability to not be limited to genetic assumptions is appealing, the clear drawback is that 

the number of parameters 2I+1 is dramatically increasing as usually many SNPs were 

involved in reality (Carayol, et al. 2010). Additionally, as with the DL-GRS, this GRS relied 

exclusively on information derived from the original dataset, so the same concerns about 

external validation hold here.

2.2 NEW GENETIC RISK SCORE MODEL

2.2.1 Explained variance weighted GRS (EV-GRS)

(11)

(12)

(13)

(14)

Motivated by the effect size definition by Park and colleagues (Park, et al. 2010), we 

propose a new weighted method incorporating both OR and minor allele frequency (MAF) 

for SNP i, where the MAF estimate could be obtained from http://www.ncbi.nlm.nih.gov/

projects/SNP/ or from published data, and OR estimate comes from the log per-allele odds 

ratio from external meta-analysis results. For individual SNP, we believe both OR and MAF 

are reasonable factors to define the explained variance and in turn to construct the prior 

contribution to the disease risk. It is expected that within the same OR, the disease risk will 

increase with increases of the MAF. This motivation is linked to the idea of Bayesian 

methods that we have already obtained priori knowledge of these variants and we could 

make use of the knowledge to improve our prediction. Similarly, the rescaled version of EV-

GRS was used to make the genetic risk score more comparable to SC- and OR-GRS.
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2.3 TWO-STEP SIMULATION DESIGN

We evaluated and tested the GRS methods in a two-step simulation study. In Step one, 

methods were compared for general performance in a range of simulations with similar 

minor allele frequencies and relative risks (in which case our EV-GRS method is equivalent 

to previous methods), and the relative performance of each approach was demonstrated. In 

Step two, methods that performed well in the first step of analysis and that have comparable 

numbers of parameters, and our new EV-GRS method are compared in a range of 

simulations where minor allele frequencies vary.

2.3.1 Step one simulation—Our primary goal in the Step 1 simulation was to detect 

general differences in performance among the four current genetic risk score models in a 

range of genetic models.

Factors of interest in the simulations included: the number of deleterious single nucleotide 

polymorphisms (SNP) that convey disease risk, the minor allele frequencies (MAF) of those 

SNPs, the relative risks (RR) of the associations, the underlying genetic modes, and the 

sample sizes of the datasets. We consider true disease risk models involving 2 and 6 

deleterious SNPs, assuming Hardy-Weinberg Equilibrium (HWE). To simplify, we assume 

these SNPs contribute to the disease in an additive way with no interaction, and assume no 

linkage disequilibrium between them. We understand that these simplifications limit 

dissection of how these models perform in some cases, but do make the simulations 

manageable within the scope of the current study. Minor allele frequencies (MAF) for the 

SNPs were set to either 0.25 or 0.5 to represent common variants. Relative risks (RR) 

considered for our model were 1.5, 2 and 3 for 2 SNPs combination and 1.25, 1.5 and 1.75 

for 6 SNPs combination (Figure 1). This range varies since high relative risks could lead to 

disease prevalence out of bounds for the large number of SNPs. This scenario represented 

realistic situations that the small number of causal variants with larger effect may lead to 

susceptibility to common diseases, while large number of variants influencing diseases 

usually may convey minor effects. The baseline penetrance was fixed at 0.1 to ensure a 

realistic population prevalence rate for common, complex diseases.

Simulated models are represented as penetrance functions. Penetrance functions define the 

probability of disease given a particular genotype combination at the disease risk locus. 

Penetrance functions under three genetic modes (recessive, additive and dominant modes) 

were explicitly determined, and the summary measures of effect size were calculated as 

described previously (Culverhouse, et al. 2002). Table 1 illustrates the two-locus penetrance 

patterns used in the current study as an example, where k was the baseline penetrance and θ 
was defined as the specified relative risk of having a disease between different genotypes for 

each SNP. Using a similar strategy, 6 SNP combinations models were also generated (details 

not shown). Balanced (equal allocation) case-control data was simulated with a total sample 

size of 250 and 500.

All combinations of MAF, RR, genetic modes, and sample sizes were generated, resulting in 

a total of 102 models in Step 1 simulation study (detailed in Appendix Table 1). For each 

model, 100 replicate datasets were simulated. Since only models 7–9 represent different 
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MAF and models 16–17 represent different RR settings, the new EV-GRS method was not 

applied here.

2.3.2 Step two simulation—After analyzing the results from Step 1, we decided to 

choose SC- and OR-GRS (which perform better than the other approaches, as discussed in 

the results) and compared them to our new explained variance weighted GRS. These three 

methods include only 2 parameters in the statistical model and it is fair to compare them in 

respect of same number of parameters (and degrees of freedom). In this step, the impacts of 

RR and MAF were our primary interests, and the specific values chosen are detailed in 

Appendix Table 2. Three scenarios of interest are considered, including scenario 1 with 

different RR and same MAF, scenario 2 with same RR and different MAF, and scenario 3 

with different RR and different MAF. The scenario with both the same RR and same MAF 

was considered in Step 1 of the simulations study and thus not included in Step 2.

A total of six risk SNPs were simulated to allow for a wide range for both RR and MAF to 

be varied across the simulated models. A range of MAF for the risk models was simulated, 

including 0.01, 0.05 and 0.25, while RR ranges from 1.1, 1.5 to 2 (Figure 1). The impact of 

varying sample size was extensively investigated, and datasets were simulated with a wide 

range of sample sizes, ranging from small (100, 200 and 300) to large (400, 500 and 600). 

Additionally, sample sizes of 250, 700, 800, 900 and 1000 were evaluated, and the results 

and conclusions were similar to those discussed below (details not included). The baseline 

penetrance was also varied (0.01 and 0.1). Since the PG-GRS method was not applied to the 

Step 2 simulations, only additive genetic modes are considered. All combinations of these 

factors were simulated, resulting in 144 models for Step two simulations. For each model, 

100 replicate datasets were simulated.

For both steps of the simulation, datasets were generated using R software (www.r-

project.org). A summary of the models simulated in Steps 1 and 2 is shown in Figure 1.

2.4 PERFORMANCE MEASUREMENT

The performance of the genetic risk score methods was measured through power, C-statistic 

(area under curves) and AIC.

2.4.1 Power—The main focus of our analysis is to find the best method to predict disease 

status. Since we generated the datasets using pre-defined settings, the “true” model was 

known. For this simulation study, power was defined as the number of times the model was 

statistically significant at P-value<0.05 across the 100 replicates (Motsinger-Reif, et al. 

2008). We used the likelihood ratio test as global measures of model fit. Higher power value 

indicates better overall performance of the method to detect the risk models using disease-

predicting SNPs.

2.4.2 C-statistic (Area under the curve)—Receiver Operating Characteristic (ROC) 

analysis was performed such that the true positive rate (sensitivity) is plotted in function of 

the false positive rate (1-specificity) for different cut-off points. The C-statistic, that is area 

under ROC curves (AUC), was used to estimate the discriminatory capability of each model 

to distinguish case subjects from control subjects. This statistic is commonly used for model 
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comparison from the perspective of predictive performance, and we compared the 

performance of each of the methods using this summary. The larger the C-statistic, the 

higher the overall accuracy of the model (Janssens and van Duijn 2009).

2.4.3 Akaike information criterion (AIC)—The Akaike information criterion is a 

measure of the goodness of fit of a statistical model with fewest free parameters. It provides 

a tool for comparison among different models where the model with minimum AIC value is 

preferred.

(15)

Where L is maximized likelihood function for the estimated model and I is the number of 

independently adjusted parameters in the model.

2.5 DATA ANALYSIS

All 100 replicates for all models were analyzed by the current four methods: SC-GRS, OR-

GRS, DL-GRS and PG-GRS in Step 1, and SC-GRS, OR-GRS, EV-GRS in Step 2. For SC-

GRS, we construct individual risk score profile by counting the number of risk alleles 

associated with disease. For OR-GRS, to mimic the process of using an estimate from 

previous meta-analyses, we combine 100 datasets for each model and average the log OR for 

i-th SNP to generate the weight used in the OR-GRS. For DL-GRS, we use internal weights 

(from the dataset being analyzed) for each individual SNP. For the PG-GRS, we use two 

dummy variables for each SNP to indicate the three possible genotypes. For the EV-GRS, 

we use the same log OR as used in the OR-GRS. Similarly, we combine 100 datasets for 

each model and estimate the risk allele frequency for i-th SNP as our estimate of the MAF. 

In practice, the MAF estimate could alternatively refer to external sources such as http://

www.ncbi.nlm.nih.gov/projects/SNP/, or http://hapmap.ncbi.nlm.nih.gov/.

Because several of these genetic risk scores incorporate external estimates of the effect sizes 

of risk SNPs, we incorporated errors in these estimates into the analysis of the Step 2 

simulations. While ideally external weight would be well-estimated, we recognize that this 

may not always be the case, and we did not want to be over-optimistic about the 

performance of the methods that use these external weights by only assuming accurate 

estimates. In this analysis, we considered three types of misspecification for the external 

estimates used to construct the weights: random, overestimated and underestimated. In the 

random misspecifications, for SNP i, a random error ei was generated using a uniform 

distribution ranging from −0.2 to 0.2. The weight with random error for SNP i was 

calculated as wi(1+ei), where wi is the correct weight. The overestimate and underestimate 

weights were calculated as wi ± 0.5 SD(wi), where the variance of the weight estimate was 

taken into account here. To make the weighted genetic risk score more comparable to 

unweighted risk score, the rescaled versions were used for all OR- and EV-GRS.

Logistic regression modeling was used to fit these data sets using each of the GRS methods, 

and C statistics, AIC and P-value for likelihood ratio test were recorded. For each model, C 
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statistics and AIC were averaged across the 100 replicates and power was calculated as the 

times a true model was identified (P-value less than 0.05) across 100 replicates. All the 

results were statistically evaluated for differences in performance under a general linear 

mixed model and pair-wise contrasts between methods, similarly to the approach described 

previously (Winham, et al. 2010). Each model was treated as an observation, while the final 

results for power, C and AIC as response variables separately. In Step 1, RR, MAF, genetic 

modes, sample sizes and four methods were treated as fixed explanatory variables. In Step 2, 

RR, MAF, baseline penetrance, sample sizes and three methods were treated as fixed 

explanatory variables. For a given model, all methods were performed on the same dataset 

replicates, and therefore methods could be treated as repeated measurements on the same 

model. A random effect for model was included to account for this dependence. Analysis 

was performed separately for each scenario in Step 1 and Step 2. Tukey’s method was used 

to make all pairwise comparisons between methods. It is suitable for multiple comparisons 

since it controls for the experiment-wise error rate (Hsu 1996). These results allow us to 

identify which factors contribute to the response significantly and further whether or not 

these methods differ.

All data analyses were performed using SAS v9.2 software.

3 RESULTS

3.1 STEP ONE SIMULATION RESULTS

Appendix Tables 3 and 4 describe the details of the linear mixed model analysis of the 

analysis results for Step 1 of the simulation. All the simulation factors except the number of 

SNPs were incorporated into the mixed model. The results of the 2-SNP and 6-SNP models 

were analyzed separately. Because the trends are clear, details of the results can be found in 

the Appendix, and the results are summarized here.

First the significance of the simulation factors on the overall results was considered. Details 

of the analyses can be found in Appendix Tables 3 and 4 and Appendix Figures 1 through 6. 

The results show that genetic mode and MAF were not statistically significant factors for all 

three performance metrics (power, C and AIC). As expected, the sample size was a 

significant factor for each simulation scenario and performance metric except for the C-

statistic in the 2 SNPs simulation scenarios. As expected, after accounting for other factors, 

the fixed effect of RR was statistically significant for all three performance metrics. For the 

models with the same MAF and RR, genetic mode was also a significant factor. As 

expected, the power, C and AIC continue to improve as relative risk increases across all 

simulations and methods.

Most importantly, to compare the results of the four GRS methods, pairwise comparisons 

were performed, for a total of six comparisons. Separating by the number of deleterious 

SNPs, SC- and OR-GRS do not differ significantly after adjusting for other simulation 

factors by all performance metrics, as shown in Appendix Table 5. DL- and PG-GRS differ 

significantly in terms of C and AIC but not in terms of power. In terms of C, PG-GRS is 

dramatically larger than DL-GRS and SC- and OR-GRS are smaller. In terms of AIC, these 

methods differ significantly in 6 SNPs scenarios (P-value<0.0001) but not in 2 SNPs 
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scenarios. In addition, as presented in the simulation design Figure 1 a–b, two SNPs have 

different MAF settings (0.25 and 0.5) in models 7–9, while SNPs have different RR settings 

(1.25, 1.5 and 1.75) in models 16–17. Therefore the major difference between SC- and OR-

GRS methods could be attributed to these models 7–9 (Appendix Figure 3) and models 16–

17 (Appendix Figure 6). It is clear that OR-outperforms SC-GRS by all performance 

metrics, but the difference is significant only for C (P-value=0.0027) in models 7–9 

(Appendix Table 6). Also, we compare SC- and OR-GRS by genetic modes. In models 7–9 

with different MAF (Appendix Figure 3 a and d recessive modes), OR-GRS shows superior 

performance compared to SC-GRS in all performance metrics (larger power and C and 

smaller AIC). For dominant modes, C is higher for OR- than SC-GRS. No difference was 

detected between these two methods otherwise. In models 16–17 (different RR), 6 SNPs 

have different relative risk combinations varying from 1.25, 1.5 to 1.75. The performance of 

OR-GRS become more comparable to SC-GRS by all three performance metrics across all 

sample size and genetic modes (Appendix Figure 6), but the difference is not statistically 

significant (Appendix Table 6). In regards to the impact of MAF, the performance improves 

for recessive modes but decreases for dominant modes when MAF increases from 0.25 to 

0.5 (Appendix Figure 6).

3.2 STEP TWO SIMULATION RESULTS

In Step 2, the results of the mixed model analysis indicated several important trends, and the 

most important results are summarized in Table 2. In this table, the results of pair-wise 

contrasts for each of the methods are shown, with significant differences indicated by the 

inclusion of the “best” method listed in the body of the table. The method with the 

significantly better performance for a particular performance metric is listed in the body of 

the table (P-value<0.05 for the difference). If no method is indicated, there is no significant 

difference. The details of the mixed model analysis, including results for the simulation 

factors themselves, are detailed in Appendix Table 7. The important trends from these 

analyses are discussed below. The mean performance metrics and the associated Tukey 

adjusted P-values were given in Appendix Tables 8 and 9 respectively.

These results demonstrate that both RR and MAF were significant simulation factors for all 

three performance measurement metrics (P-value<0.0001). The baseline penetrance of the 

simulated model was a significant factor for all performance metrics in both scenarios 1 and 

3, and for the C metric in scenario 2 with small sample sizes, while it is important overall in 

the large sample sizes. Sample size was a significant factor for power and AIC, but not 

significant for C in most cases. Methods were significantly different in scenarios 1 and 3, 

and scenario 2 with small sample, but not for power and C in scenario 2 when the sample 

size was large.

The results for each of the methods for the simulation scenario 1 (different relative risks and 

same minor allele frequencies, baseline penetrance=0.1) for the sample size of 200 are 

shown in Figure 2. The trends for other sample sizes are similar, as detailed in Appendix 

Table 10. The results of the analyses for simulation scenario 2 for the sample size of 200 are 

shown in Figure 3, and the results from scenario 2 for the sample size of 500 are shown in 

Figure 4. The details of the results across all sample sizes are listed in Appendix Table 11. 
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Similarly, the results of the analyses for simulation scenario 3 for the sample size of 200 are 

shown in Figure 5. Additionally, the results from scenario 3 for larger sample size of 500 are 

shown in Figure 6. The details of the results across all sample sizes are listed in Appendix 

Table 12. For each of these scenarios, the analysis was repeated with no error in the external 

weight estimate, random error in the weight estimate, and systematic over- or under-

estimates in the external weight estimates, and the results are shown across these different 

conditions in each of the figures. Details of the results across all sample sizes and scenarios 

are listed in Appendix Tables 10–12.

In scenario 1, the 6 disease risk SNPs have different RR but the same MAF combination. In 

this case, with the same allele frequencies for each SNP, only OR matters in the weight, and 

hence OR- and EV-GRS are equivalent. In Figure 2 (scenario 1 with baseline penetrance=0.1 

and sample size n=200), we observe that the weighted methods outperform the simple count 

method, but no difference is detected between OR- and EV-GRS (Table 2). This is true for 

the correct weight estimate case, as well as when weights had random or overestimated 

error. When the underestimated weight construction was used, there was no significant 

difference among all three methods by all performance metrics. In the case of different RR 

combinations among SNPs, weighted methods using OR significantly outperform the 

methods that do not use a weighted measure. As expected, with MAF or sample size 

increasing, the performance of all methods improves overall. In addition, it seems that the 

performance improves sharply when MAF changes from 0.01 to 0.05, while the 

improvement speed decreases from 0.05 to 0.25. This pattern was consistent for all baseline 

penetrance and sample size, and the detailed results were given in Appendix Table 10.

In scenario 2, the 6 disease-risk SNPs have the same RR but different MAF. When the 

sample size is relatively small (Figure 3), SC- and EV-GRS outperform OR-GRS 

significantly (Table 2), for correct, random and overestimated weights. No significant 

difference was detected between SC- and EV-GRS. If the underestimated weight was 

applied instead, SC-GRS is the best overall and EV-GRS is still preferable than OR-GRS.

However, with large sample size and correct or random weight (Figure 4), no significant 

differences were detected among weighted and simple summary methods, except that AIC 

of the EV-GRS method is larger (Table 2). If the weight was overestimated, SC- and EV-

GRS would be favorable (Table 2). If the weight was underestimated, SC-GRS would be the 

best choice and EV- is better than OR-GRS (Table 2). These results demonstrate that in the 

case of different MAF combinations among SNPs, a weighted method that incorporates 

allele frequency (EV-GRS) is consistently better than that only involves OR (OR-GRS). 

Also, the results show that the simple count method (SC-GRS) is preferable than OR-GRS.

Scenario 3 was meant to represent a more realistic complicated situation, where the SNPs 

involved have different RR and different MAF combinations. Our results show that in the 

case when the sample size is relatively small (Figure 5), our new weighted method (EV-

GRS) outperforms the other methods using all three performance assessment metrics (Table 

2). This is consistently true for correct, random and overestimated weights. For 

underestimated weights, SC-GRS is the best and EV- is better than OR-GRS.
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When the sample size is large (Figure 6), it is clear that the weighted methods (OR- and EV-

GRS) are significantly preferable than simple count method (SC-GRS) overall, but no 

significant difference was observed between two weighted methods (Table 2). This is true 

for correct, random and overestimated weights generally. For underestimated weight, SC- 

and EV-GRS are favorable.

4 DISCUSSION

In the current study, we evaluated the performance of four existing genetic risk score 

construction methods: a simple count Genetic Risk Score (SC-GRS), an odds ratio weighted 

Genetic Risk Score (OR-GRS), a direct logistic regression Genetic Risk Score (DL-GRS), a 

polygenic Genetic Risk Score (PG-GRS), and then introduced our new weighted method an 

explained variance weighted Genetic Risk Score (EV-GRS). Three performance metrics 

(power, C and AIC) were investigated in our data analysis. These risk score methods 

represent some commonly used approaches in the literature, but it is certainly not an 

exhaustive list of all genetic risk score models proposed. For instance, Lin et al. (2009) 

suggest a weighted genetic score using log lower bound odds ratio as weights, to penalize 

SNPs with less reliable OR estimates (Lin, et al. 2009), and future studies should consider a 

more comprehensive list of potential methods.

The results of the simulation experiments show several important trends. As expected, in 

general, sample size and relative risk are important simulation factors for all methods 

performance in our investigation. As sample size increases, the risk predication becomes 

more accurate. Similarly, as the relative risk becomes larger, the predication ability 

improves. However, in respect to the impacts of MAF and genetic mode as simulation 

factors, the trends are not so clear and straightforward, which merits further investigation. 

Step 2 results indicate the performance improves sharply when MAF increases for low effect 

sizes, and then the improvement speed decreases when MAF grows bigger. This pattern also 

corresponds to the assumption of explained variance (effect size) weight construction that 

MAF and odds ratio may dominate the overall direction of effect size. Further refinement of 

the effect estimate may be a promising future direction.

The primary interest of our study is to compare the relative performance of the GRS 

methods. Power (global model fit) is an important criterion for methods comparisons. In 

Step 1, SC- and OR-GRS have higher power than DL- and PG-GRS in most of cases, 

especially for 6 SNPs scenarios (though exceptions to this general trend do exist for some 

recessive modes). For instance, the power is nearly the same among SC-, OR- and PG-GRS 

(Appendix Figures 2–4). It is not surprising to observe PG-GRS has the highest C-statistic 

(discrimination) for all model types, since it has larger number of parameters and therefore 

better accuracy of discrimination. We also introduce AIC for further evaluation to penalize 

the large number of parameters. To illustrate the influence of the number of free parameters, 

2 SNPs and 6 SNP disease-risk scenarios were simulated and evaluated. For the 2 SNPs 

scenarios, both SC- and OR-GRS have 2 fixed parameters, while DL-GRS has 3(I + 1) and 

PG-GRS has 5(2I + 1) parameters. The difference among the number of parameters is large 

enough for the sample sizes generated (representing realistic sample sizes in genetic studies) 

to separate the performance for all model types. Therefore, PG-GRS has higher AIC (worse 
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performance) than other methods in many cases. For 6 SNPs scenarios, the number of 

parameters of SC- and OR-GRS remains constant at 2, but DL-GRS has 7 and PG-GRS has 

13 parameters. Consistently, the AIC of DL- and PG-GRS are larger than SC- and OR-GRS 

for all model types, since they were given more penalization. Therefore, for DL- and PG-

GRS methods, as the number of SNPs involved in the profile or the corresponding free 

parameters increases, the influence on the AIC increases dramatically and therefore the 

performance decreases. In contrast, SC- and OR-GRS methods are not influenced by the 

number of SNPs involved in terms of AIC. In real data analysis, the number of SNPs used 

for genetic risk profile is likely to be large, and even much larger than 6 SNPs in our 

example. From this perspective, SC- and OR-GRS are preferred than DL- and PG-GRS 

methods.

Since SC- and OR-GRS methods are clearly preferred in terms of power and AIC, we then 

compare these two methods under scenarios 1–3 (different MAF among SNPs) and 2–3 

(different RR). Our results indicate that the OR-GRS method outperforms the SC-GRS.

To further investigate these two methods of interest and the effect of MAF in the weight 

construction, we introduce explained variance weighted method and compare these three 

methods in Step 2 under scenarios with a wider range of RR and MAF settings. Results in 

scenario 1 with different RR indicate that the weighted methods are preferred to the simple 

count method when relative risks vary among SNPs. When MAF are the same, the odds ratio 

and explained variance weighted methods are equivalent. When the weight is 

underestimated, the three methods do not significantly differ (Table 2). Scenario 2 with 

different MAF is our primary interest to compare OR- and EV-GRS. In the case that all RR 

among SNPs are similar but the MAF vary greatly, the simple count and explained variance 

weighted methods significantly outperform the odds ratio weighted method (Table 2), when 

the sample size is relatively small with correct, random or overestimated weights (Figure 3). 

When the weights are underestimated, the SC-GRS is best. This is reasonable since in case 

of small sample sizes that estimates of the odds ratio may not be accurate and precise and it 

could introduce bias. Therefore, SC- or EV-GRS is preferred to the OR-GRS. When the 

sample size is large with correct or random weight, no significant differences were detected 

among three methods except that the AIC of the EV-GRS is large. In scenario 3, different 

RR and different MAF settings were simulated, and several trends were seen. When the 

sample size is small, the EV-GRS consistently yielded better performance than the OR-GRS. 

With large samples, the weighted methods significantly outperformed the simple count 

methods except in the case of underestimated weights.

In summary, the Step 2 results suggest that when MAF are similar but RR differ, OR- and 

EV-GRS are the best. When RR are similar but MAF vary, SC-and EV-GRS are preferred in 

case of small sample size. EV-GRS is unfavorable only in reference to the AIC in large 

sample sizes and no difference was observed among these three methods otherwise. When 

effect sizes (both MAF and RR) vary, OR- and EV-GRS are recommended in larger sample, 

and the EV-GRS is clearly the best in smaller sample size. This pattern is generally 

consistent if the weight is constructed correctly, or with error of small magnitude, or 

overestimated. However, if the weight is underestimated, SC-GRS is the best choice overall 

and EV-GRS is also a good alternative. Therefore, the performance of EV-GRS is fairly 
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good and robust across the majority of situations simulated and the performance of weight 

construction, particularly for the more complex situations with relatively small sample sizes.

In conclusion, this study represents the first empirical comparison of genetic risk score 

models that have been anecdotally used in the literature, and provides some guidance for 

researchers in selecting a genetic risk score model under a series of different scenarios. The 

main points are outlined below. First, if the number of available SNPs involved in disease-

risk is limited, and main goal of a study is discrimination ability between case and control 

status, the DL- or PG-GRS may be preferred. Second, when many SNPs were reported to 

contribute to the disease risk, and the importance of detecting and replicating risk models 

(power) is main focus, the SC- or the weighted GRS are preferred. Third, in real data 

analysis when the odds ratio estimates may not be available or may not be very reliable, the 

SC-GRS is an appropriate choice to avoid bias. The results from the SC-GRS in these 

situations may not differ drastically since many odds ratio estimates for SNPs are in small 

magnitude and may be similar across the disease-risk SNPs. Fourth, in another extreme, if 

previous study(s) provide decently reliable OR estimates and the estimates are very different 

across SNPs, the weighted GRS methods are preferable.

Lastly but most importantly, our study presents a new genetic risk score method, EV-GRS, 

that performs very well overall compared to previously introduced methods, both in extreme 

and general cases. The EV-GRS is highly recommended for several reasons. First, while 

there were a few situations where the EV-GRS was not clearly the best method, the EV-GRS 

was the most generally robust method. The EV-GRS should be applied as compared to the 

other methods so that AIC is not drastically lost when sample size is relatively large and 

power or discriminatory capability is maximized. It should also be noted that when we 

choose the odds ratio estimates from meta-analysis and combine the results across different 

studies, it is possible that different studies may have a wide range of sample and effect sizes. 

In this case, the OR- or SC-GRS methods may perform better slightly in some scenarios. 

Generally though, the EV-GRS is the best choice to be used across all scenarios. Second, 

with respect to the error of weight construction, we may not know whether the weight is 

correctly constructed or not in reality. The EV-GRS performs well when the weight is 

correct, or with some minor random error, or overestimated. Furthermore, its performance is 

still good compared with SC-GRS, even if the weight is underestimated. Without a priori 
knowledge of potential sample sizes and performance of weight construction, it is desirable 

to rely on a fairly robust method that tends to offer sufficient power and discriminatory 

capability for a variety of scenarios.

In considering the interpretation of the results of the simulation study, a few questions arose 

that we explored with smaller-scale simulation experiments, and include in the discussion 

here to frame the results of the current study. To test if the overall patterns were susceptible 

to the number of simulations used, we randomly picked one model and generated 500 

replicates. As we did for the other simulations, the three methods (SC-, OR- and EV-GRS) 

were compared in terms of power, C-statistics and AIC, with different sources of error in 

constructing the weight (results not shown). The results show that running more simulations 

would give a very similar pattern to smaller simulation replicates, and the relative 

performance among these methods is still the same. Hence, the simulation with 100 
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replicates, which has been extensively applied in the current study, is sufficient to support 

our conclusion.

Due to the importance of validation in the discovery, development and validation of such 

risk score modeling, we also incorporated an independent validation step to simulations to 

obtain the external weight, using the similar strategy as above. One model was randomly 

replicated, and two weighted methods (OR- and EV-GRS) were compared. The SC-GRS 

does not require any external weight, and so we did not include it in this comparison. 

Moreover, we did not include the DL- and PG-GRS in the with-validation simulation 

because they could only apply the internal datasets for constructing the weights. Rather than 

using the internal weights (without-validation), another 100 independent datasets were 

generated to calculate the external weights (with-validation), with different sources of error. 

Results show that there is no significant difference in the performance metrics between with- 

and without-validation weights (results not shown). Furthermore, the pattern of relative 

performance is similar that leads to the same conclusion. Therefore, the without-validation 

weights could be sufficient to demonstrate the relative performance of these methods.

Understanding that the current simulations included simple genetic model, we also wanted 

to consider the case where there is dependency between SNPs. We considered true risk 

models involving two disease-causing SNPs (SNP1 and SNP2). We assume SNP1 is under 

Hardy-Weinberg Equilibrium (HWE), and there is linkage disequilibrium (LD) between 

SNP2 and SNP3. Two models are considered: (1) a genetic risk score model with the true 

disease-causing SNPs: SNP1+SNP2, and (2) a genetic risk score model with the true SNPs 

plus the additional SNP in LD: SNP1+SNP2+SNP3. Data were simulated under different 

settings of genotype frequencies and relative risks among these SNPs. We then evaluated the 

relative performance of the SC-, OR- and EV-GRS methods using these two different risk 

score formulations, to see if the methods were robust to such dependence between SNPs 

(data not shown). Consistently, the results show that SC-GRS performs much better under 

the true model (with only the disease-causing SNPs) than the model that includes the true 

SNPs plus additional SNP in LD, by all performance metrics. However, there was no 

significant difference for OR- and EV-GRS under these two models (with or without the 

third SNP in LD). Also, both the OR- and EV-GRS outperform SC-GRS, and these results 

strengthen the recommendation to use one of the weighted approaches. It is clear that SC-

GRS may be sensitive to the true model. However, it is impractical to include the exact true 

causative SNPs in the risk model. More often, we may involve the potential “tagging” SNPs 

that may be in LD with the true disease-causing variants. It may be not of primary interest to 

dissect the “tagging” SNP from the true disease-causing SNPs for the purpose of prediction. 

In this case, weighted methods (OR- and EV-GRS) are more robust and preferable.

While the current extensive study shows the promise of the EV-GRS method, future studies 

should explore its performance in a broader range of realistic and complex scenarios, for 

example, with more true causal variants involved in the evaluation of the methods for both 

methodological comparisons and evaluations of the new EV-GRS model. In existing genetic 

risk models that have been built for human diseases, a wide range of the number of risk 

SNPs have been incorporated, such as 6 SNPs for age-related macular degeneration 

(Seddon, et al. 2009), 15 SNPs for Type 2 diabetes (Lin, et al. 2009), and 12 or 101 SNPs for 
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cardiovascular disease (Paynter, et al. 2010). It seems that the number of SNPs involved in 

the risk model may depend on the disease etiology. Given this broad range, it is expected 

that incorporating a large number of SNPs into genetic risk models could be one of the 

important future directions. Apart from the genetic factors, clinical information could also 

be included in the prediction model, as a summary “clinical risk score” or a set of covariates, 

to make the application more practical. In the future, as the unparalleled development of 

technologies, more precise and stable effect size estimates for susceptibility SNPs will be 

obtained. Appropriate analytical strategies, combined with environmental risk factors and 

clinical information, will be imperative to predict the disease risk and to translate 

associations to clinical utility. More suitable and comprehensive weight construction 

strategies may be one of the solutions.
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APPENDIX

Figure 1. 
Model comparisons in Step 1 Scenario 1-1 (SNP=2, MAF=0.25).
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Figure 2. 
Model comparisons in Step 1 Scenario 1-2 (SNP=2, MAF=0.5).
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Figure 3. 
Model comparisons in Step 1 Scenario 1-3 (SNP=2, MAF=0.25/0.5).
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Figure 4. 
Model comparisons in Step 1 Scenario 2-1 (SNP=6, MAF=0.25).
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Figure 5. 
Model comparisons in Step 1 Scenario 2-2 (SNP=6, MAF=0.5).
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Figure 6. 
Model comparisons in Step 1 Scenario 2-3 (SNP=6, RR=1.25/1.5/1.75).

Table 1

Relative Risk (RR) and Minor Allele Frequency (MAF) specifications in Step 1 simulation.

Scenario Model

RR MAF

Prevalence1/1–2a 2/3–4b 5–6 1/1–2a 2/3–4b 5–6

1 (2SNPs) 1-1 1 1.5 1.5 0.25 0.25 0.125

2 2 2 0.25 0.25 0.15

3 3 3 0.25 0.25 0.2

1-2 4 1.5 1.5 0.5 0.5 0.15

5 2 2 0.5 0.5 0.2

6 3 3 0.5 0.5 0.3

1-3 7 1.5 1.5 0.25 0.5 0.1375

8 2 2 0.25 0.5 0.175

9 3 3 0.25 0.5 0.25

2 (6 SNPs) 2-1 10 1.25 1.25 1.25 0.25 0.25 0.25 0.1375

11 1.5 1.5 1.5 0.25 0.25 0.25 0.175

12 1.75 1.75 1.75 0.25 0.25 0.25 0.2125

2-2 13 1.25 1.25 1.25 0.5 0.5 0.5 0.175

14 1.5 1.5 1.5 0.5 0.5 0.5 0.25
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Scenario Model

RR MAF

Prevalence1/1–2a 2/3–4b 5–6 1/1–2a 2/3–4b 5–6

15 1.75 1.75 1.75 0.5 0.5 0.5 0.325

2-3 16 1.25 1.5 1.75 0.25 0.25 0.25 0.175

17 1.25 1.5 1.75 0.5 0.5 0.5 0.25

a
1 denotes SNP1 for scenario 1 (2 disease-causing SNPs), and 1–2 denotes SNP1 and SNP2 for scenario 2 (6 disease-

causing SNPs).
b
2 denotes SNP2 for scenario 1 (2 disease-causing SNPs), and 3–4 denotes SNP3 and SNP4 for scenario 2 (6 disease-

causing SNPs).

Table 2

Relative Risk (RR) and Minor Allele Frequency (MAF) specifications in Step 2 simulation.

Scenario Model

RR MAF

Prevalenced1–2 3–4 5–6 1–2 3–4 5–6

1a 1 1.1 1.5 2 0.01 0.01 0.01 0.1032

2 1.1 1.5 2 0.05 0.05 0.05 0.116

3 1.1 1.5 2 0.25 0.25 0.25 0.18

2b 4 1.1 1.1 1.1 0.01 0.05 0.25 0.1062

5 1.5 1.5 1.5 0.01 0.05 0.25 0.131

6 2 2 2 0.01 0.05 0.25 0.162

3c 7 1.1 1.5 2 0.01 0.05 0.25 0.1552

8 1.1 1.5 2 0.01 0.25 0.05 0.1352

9 1.1 1.5 2 0.05 0.01 0.25 0.152

10 1.1 1.5 2 0.05 0.25 0.01 0.128

11 1.1 1.5 2 0.25 0.01 0.05 0.116

12 1.1 1.5 2 0.25 0.05 0.01 0.112

a
Scenario 1 is different RR and same MAF among 6 SNPs.

b
Scenario 2 is same RR and different MAF among 6 SNPs.

c
Scenario 3 is different RR and different MAF among 6 SNPs.

d
Prevalence is based on the baseline penetrance 0.1.

Table 3

P-values a of simulation factors on Power, C and AIC by 2 scenarios in Step 1 simulation.

Effect

Scenario 1 (2 SNPs) Scenario 2 (6 SNPs)

Power C AIC Power C AIC

RR <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

MAF 0.4030 0.6824 0.9948 0.7168 0.8848 0.6516

Genetic mode 0.1639 0.2344 0.3627 0.6138 0.5871 0.5286

Sample size <.0001 0.4931 <.0001 <.0001 0.0008 <.0001

Method <.0001 <.0001 0.0025 <.0001 <.0001 <.0001

a
P-values less than 0.05 are considered statistically significant.
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Table 4

P-values a of simulation factors on Power, C and AIC by each scenario in Step 1 simulation.

Scenario Effect

Scenario 1 (2 SNPs) Scenario 2 (6 SNPs)

Power C AIC Power C AIC

−1 RR/MAF b <.0001 <.0001 0.0004 <.0001 <.0001 <.0001

Genetic mode 0.0005 <.0001 0.0130 <.0001 <.0001 0.0015

Sample size 0.0305 0.3909 <.0001 0.0002 <.0001 <.0001

Method 0.0126 <.0001 0.3377 <.0001 <.0001 <.0001

−2 RR/MAF b <.0001 <.0001 <.0001 <.0001 <.0001 0.0001

Genetic mode 0.0113 <.0001 0.0238 0.0014 0.0002 0.0095

Sample size 0.0009 0.3698 <.0001 0.0009 0.0004 <.0001

Method 0.0016 <.0001 0.1049 <.0001 <.0001 <.0001

−3 RR/MAF b <.0001 <.0001 <.0001 0.9229 0.8859 0.9318

Genetic mode 0.6006 0.0838 0.4973 0.9315 0.9136 0.8874

Sample size 0.0004 0.3020 <.0001 0.0642 0.2527 <.0001

Method 0.0002 <.0001 0.1496 <.0001 <.0001 <.0001

a
P-values less than 0.05 are considered statistically significant.

b
RR/MAF denotes MAF effect only for scenarios 2–3 and RR otherwise.

Table 5

Adjusted P-values a of pair-wise method comparisons on Power, C and AIC by 2 scenarios 

in Step 1 simulation.

Method Comparisons

Scenario 1 (2 SNPs) Scenario 2 (6 SNPs)

Power C AIC Power C AIC

SC—OR 0.9841 0.0775 0.9781 0.6746 0.4668 0.6354

SC—DL <.0001 <.0001 0.4213 <.0001 <.0001 <.0001

SC—PG <.0001 <.0001 0.1007 <.0001 <.0001 <.0001

OR—DL <.0001 <.0001 0.2187 <.0001 <.0001 <.0001

OR—PG <.0001 <.0001 0.2296 <.0001 <.0001 <.0001

DL—PG 0.9471 <.0001 0.001 0.9244 <.0001 <.0001

a
These P-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 6

Adjusted P-values a of pair-wise method comparisons on Power, C and AIC by each scenario 

in Step 1 simulation.

Scenario Method Comparisons

Scenario 1 (2 SNPs) Scenario 2 (6 SNPs)

Power C AIC Power C AIC

−1 SC—OR 0.9989 0.9900 1.0000 0.9992 0.9914 0.9995

SC—DL 0.0339 0.0003 0.5813 <.0001 <.0001 <.0001

SC—PG 0.1613 <.0001 0.9603 <.0001 <.0001 <.0001

OR—DL 0.0485 0.0008 0.5738 <.0001 <.0001 <.0001
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Scenario Method Comparisons

Scenario 1 (2 SNPs) Scenario 2 (6 SNPs)

Power C AIC Power C AIC

OR—PG 0.2118 <.0001 0.963 <.0001 <.0001 <.0001

DL—PG 0.8981 <.0001 0.2993 0.7850 <.0001 <.0001

−2 SC—OR 0.9992 0.9877 1.0000 1.0000 0.9872 0.9989

SC—DL 0.0147 0.0001 0.7805 <.0001 <.0001 <.0001

SC—PG 0.0563 <.0001 0.4102 <.0001 <.0001 <.0001

OR—DL 0.0102 0.0003 0.7736 <.0001 <.0001 <.0001

OR—PG 0.0410 <.0001 0.4173 <.0001 <.0001 <.0001

DL—PG 0.9520 <.0001 0.071 0.9826 <.0001 <.0001

−3 SC—OR 0.8909 0.0027 0.9158 0.1127 0.1711 0.0861

SC—DL 0.0333 <.0001 0.9631 <.0001 <.0001 <.0001

SC—PG 0.0118 <.0001 0.3122 <.0001 <.0001 <.0001

OR—DL 0.0047 0.0229 0.6740 <.0001 <.0001 <.0001

OR—PG 0.0014 <.0001 0.6937 <.0001 <.0001 <.0001

DL—PG 0.9792 <.0001 0.1305 0.9910 <.0001 <.0001

a
These P-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 7

P-values a of simulation factors on Power, C and AIC in Step 2 simulation (using correct 

weight).

Scenario Effect

Scenario −1c (100–300) Scenario −2c (400–600)

Power C AIC Power C AIC

1 RR/MAF b <.0001 <.0001 <.0001

Penetrance 0.0165 <.0001 0.0142

Sample size <.0001 0.0704 <.0001

Method <.0001 <.0001 <.0001

2 RR/MAF b <.0001 <.0001 0.0001 <.0001 <.0001 <.0001

Penetrance 0.4413 0.0260 0.3613 0.0398 0.0039 0.0362

Sample size 0.0055 0.2784 <.0001 0.0015 0.9165 <.0001

Method <.0001 0.0018 0.0003 0.3532 0.9384 0.0006

3 RR/MAF b <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Penetrance 0.0084 <.0001 0.0088 <.0001 <.0001 <.0001

Sample size <.0001 0.0020 <.0001 <.0001 0.7237 <.0001

Method <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

a
P-values less than 0.05 are considered statistically significant.

b
RR/MAF denotes MAF effect only for scenario 1, RR effect for scenario 2 and both RR and MAF effect for scenario 3.

c
For scenario 1, sample size is 100–600 and for scenarios 2 and 3, sample size is 100–300.
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Table 8

Mean of Power, C and AIC in Step 2 simulation.

Scenario Weight a

Power C AIC

SC OR EV SC OR EV SC OR EV

1 Correct 37.111 46.444 46.528 0.546 0.553 0.553 485.28 483.95 483.95

100–600 Random 46.083 46.056 0.552 0.552 484.01 484.01

Overestimate 44.333 44.778 0.552 0.553 484.15 484.13

Underestimate 34.667 35.111 0.544 0.544 485.06 485.03

2 Correct 32.778 28.278 31.889 0.562 0.558 0.562 277.71 278.08 277.78

100–300 Random 28.500 31.444 0.559 0.562 278.05 277.82

Overestimate 19.056 30.667 0.553 0.560 279 277.87

Underestimate 9.611 21.056 0.533 0.547 279.83 278.9

2 Correct 54.500 54.111 53.889 0.557 0.556 0.556 689.70 689.78 689.99

400–600 Random 54.333 53.722 0.556 0.556 689.84 690.07

Overestimate 49.389 54.222 0.555 0.557 690.69 689.83

Underestimate 41.056 49.333 0.548 0.552 691.64 690.76

3 Correct 31.778 34.639 37.611 0.562 0.562 0.566 277.92 277.64 277.38

100–300 Random 34.278 37.306 0.562 0.565 277.67 277.43

Overestimate 22.472 34.917 0.555 0.564 278.8 277.65

Underestimate 10.75 21.444 0.533 0.548 279.79 278.87

3 Correct 58.278 68.417 66.667 0.557 0.563 0.562 690.33 689 689.21

400–600 Random 68.222 66.222 0.562 0.561 689.1 689.31

Overestimate 63.111 65.694 0.561 0.562 690.02 689.31

Underestimate 44.528 55.417 0.550 0.554 691.95 690.39

a
Four weight estimate methods for OR and EV: correct, random, overestimate and underestimate.

Table 9

Adjusted P-values a of pair-wise method comparisons on Power, C and AIC in Step 2 

simulation.

Power C AIC

Scenario Weighta SC-OR SC-EV OR-EV SC-OR SC-EV OR-EV SC-OR SC-EV OR-EV

1 Correct <.0001 <.0001 0.9943 <.0001 <.0001 0.9992 <.0001 <.0001 0.9999

100–600 Random <.0001 <.0001 0.9993 <.0001 <.0001 0.9998 <.0001 <.0001 0.9997

Over-est <.0001 <.0001 0.8645 <.0001 <.0001 0.9891 <.0001 <.0001 0.9876

Under-est 0.1412 0.2657 0.9352 0.1554 0.2372 0.9708 0.4293 0.3570 0.9905

2 Correct <.0001 0.6140 0.0014 0.0025 0.8339 0.0114 0.0004 0.6873 0.0038

100–300 Random <.0001 0.2776 0.0043 0.0022 0.7987 0.0119 0.0003 0.3532 0.0124

Over-est <.0001 0.6269 <.0001 <.0001 0.1932 <.0001 <.0001 0.7729 0.0002

Under-est <.0001 0.0155 0.0185 <.0001 <.0001 <.0001 <.0001 0.0100 0.0510

2 Correct 0.6310 0.3287 0.8590 0.9351 0.9691 0.9933 0.4783 0.0006 0.0137

400–600 Random 0.9462 0.3135 0.4835 0.533 0.3316 0.9306 0.1807 <.0001 0.0090

Over-est 0.0008 0.9738 0.0015 0.0014 0.8099 0.0002 0.0001 0.8115 0.0008

Che and Motsinger-Reif Page 25

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Power C AIC

Scenario Weighta SC-OR SC-EV OR-EV SC-OR SC-EV OR-EV SC-OR SC-EV OR-EV

Under-est <.0001 0.1673 0.0145 <.0001 0.0002 <.0001 <.0001 0.0046 0.0217

3 Correct 0.0103 <.0001 0.0074 0.8601 <.0001 <.0001 0.0028 <.0001 0.0060

100–300 Random 0.0224 <.0001 0.0044 0.7202 <.0001 0.0003 0.0064 <.0001 0.0110

Over-est <.0001 0.1595 <.0001 <.0001 0.1385 <.0001 <.0001 0.2138 <.0001

Under-est <.0001 0.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0001 0.0002

3 Correct <.0001 <.0001 0.3865 <.0001 <.0001 0.2557 <.0001 <.0001 0.1947

400–600 Random <.0001 <.0001 0.2933 <.0001 <.0001 0.1219 <.0001 <.0001 0.1833

Over-est 0.0015 <.0001 0.1328 <.0001 <.0001 0.3372 0.1408 <.0001 0.0001

Under-est <.0001 0.3666 <.0001 <.0001 0.0171 <.0001 <.0001 0.9713 <.0001

a
These P-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 10-1

Model specification in Step 2 scenario 1 simulation.

Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-6 Penetrance n

1 1 1.1 1.5 2 0.01 0.1 100

2 2 1.1 1.5 2 0.05 0.1 100

3 3 1.1 1.5 2 0.25 0.1 100

4 1 1.1 1.5 2 0.01 0.1 200

5 2 1.1 1.5 2 0.05 0.1 200

6 3 1.1 1.5 2 0.25 0.1 200

7 1 1.1 1.5 2 0.01 0.1 300

8 2 1.1 1.5 2 0.05 0.1 300

9 3 1.1 1.5 2 0.25 0.1 300

10 1 1.1 1.5 2 0.01 0.1 400

11 2 1.1 1.5 2 0.05 0.1 400

12 3 1.1 1.5 2 0.25 0.1 400

13 1 1.1 1.5 2 0.01 0.1 500

14 2 1.1 1.5 2 0.05 0.1 500

15 3 1.1 1.5 2 0.25 0.1 500

16 1 1.1 1.5 2 0.01 0.1 600

17 2 1.1 1.5 2 0.05 0.1 600

18 3 1.1 1.5 2 0.25 0.1 600

19 1 1.1 1.5 2 0.01 0.01 100

20 2 1.1 1.5 2 0.05 0.01 100

21 3 1.1 1.5 2 0.25 0.01 100

22 1 1.1 1.5 2 0.01 0.01 200

23 2 1.1 1.5 2 0.05 0.01 200

24 3 1.1 1.5 2 0.25 0.01 200

25 1 1.1 1.5 2 0.01 0.01 300

26 2 1.1 1.5 2 0.05 0.01 300
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Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-6 Penetrance n

27 3 1.1 1.5 2 0.25 0.01 300

28 1 1.1 1.5 2 0.01 0.01 400

29 2 1.1 1.5 2 0.05 0.01 400

30 3 1.1 1.5 2 0.25 0.01 400

31 1 1.1 1.5 2 0.01 0.01 500

32 2 1.1 1.5 2 0.05 0.01 500

33 3 1.1 1.5 2 0.25 0.01 500

34 1 1.1 1.5 2 0.01 0.01 600

35 2 1.1 1.5 2 0.05 0.01 600

36 3 1.1 1.5 2 0.25 0.01 600

Table 10-2

Power in Step 2 scenario 1 simulation.

Power

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

1 8 13 14 14 14 8 7 8 8

2 13 19 19 19 18 14 15 10 10

3 32 39 38 41 41 35 35 16 15

4 12 14 15 13 14 11 13 7 7

5 26 38 37 36 36 39 40 16 16

6 47 64 64 63 63 64 65 52 53

7 5 15 15 15 15 11 11 3 3

8 36 50 50 49 49 46 46 24 27

9 66 84 84 83 83 85 85 78 78

10 14 17 17 17 18 19 19 7 8

11 55 69 70 69 69 66 67 58 58

12 82 96 96 95 95 92 92 95 95

13 23 24 24 26 26 26 26 6 6

14 56 70 71 71 71 72 73 65 66

15 93 98 98 98 98 98 98 97 97

16 21 25 24 25 25 25 25 5 5

17 72 82 83 83 82 79 80 74 75

18 87 97 97 98 98 97 97 96 96

19 12 12 12 12 12 10 10 8 9

20 16 19 17 17 16 12 13 5 5

21 15 23 23 22 22 22 22 7 7

22 8 15 15 14 14 13 13 4 5

23 25 33 33 33 32 28 31 2 3

24 35 51 51 50 50 45 45 39 39
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Power

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

25 10 9 9 7 7 13 13 11 11

26 27 36 36 34 34 30 34 18 18

27 46 64 64 64 64 62 62 52 53

28 17 17 19 16 17 14 15 10 9

29 42 49 49 51 51 44 45 40 43

30 59 80 80 77 77 80 79 73 73

31 14 23 23 22 22 18 19 2 2

32 47 59 60 60 60 56 56 41 43

33 67 84 84 81 81 77 77 74 74

34 17 21 21 21 21 23 22 4 5

35 56 70 70 71 71 72 72 57 57

36 75 92 92 92 92 90 90 84 85

Table 10-3

C in Step 2 scenario 1 simulation.

C

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

1 0.5289 0.5261 0.5256 0.5252 0.5251 0.5271 0.5272 0.5249 0.5249

2 0.5571 0.5618 0.5605 0.5618 0.5622 0.5600 0.5624 0.5462 0.5466

3 0.5813 0.5916 0.5915 0.5925 0.5923 0.5908 0.5925 0.5636 0.5631

4 0.5235 0.5167 0.5165 0.5174 0.5173 0.5225 0.5224 0.5161 0.5159

5 0.5516 0.5582 0.5579 0.5579 0.5576 0.5579 0.5566 0.5425 0.5445

6 0.5749 0.5947 0.5946 0.5942 0.5941 0.5933 0.5933 0.5818 0.5822

7 0.5175 0.5164 0.5164 0.5164 0.5163 0.5160 0.5160 0.5143 0.5143

8 0.5477 0.5566 0.5566 0.5559 0.5560 0.5545 0.5545 0.5400 0.5410

9 0.5750 0.5922 0.5921 0.5917 0.5917 0.5914 0.5915 0.5865 0.5866

10 0.5194 0.5203 0.5202 0.5202 0.5203 0.5194 0.5195 0.5151 0.5153

11 0.5516 0.5593 0.5594 0.5588 0.5589 0.5593 0.5595 0.5528 0.5532

12 0.5760 0.5940 0.5941 0.5932 0.5932 0.5929 0.5929 0.5905 0.5906

13 0.5169 0.5160 0.5161 0.5163 0.5162 0.5166 0.5164 0.5100 0.5100

14 0.5499 0.5582 0.5583 0.5583 0.5583 0.5577 0.5578 0.5491 0.5497

15 0.5764 0.5945 0.5946 0.5942 0.5942 0.5938 0.5939 0.5919 0.5919

16 0.5177 0.5161 0.5161 0.5162 0.5162 0.5179 0.5177 0.5046 0.5046

17 0.5498 0.5574 0.5575 0.5574 0.5574 0.5570 0.5571 0.5531 0.5530

18 0.5762 0.5937 0.5937 0.5931 0.5931 0.5930 0.5931 0.5912 0.5913

19 0.5308 0.5219 0.5224 0.5216 0.5214 0.5274 0.5274 0.5252 0.5262

20 0.5552 0.5563 0.5570 0.5558 0.5567 0.5515 0.5520 0.5416 0.5437

21 0.5687 0.5775 0.5775 0.5776 0.5777 0.5753 0.5759 0.5468 0.5472
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C

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

22 0.5222 0.5200 0.5197 0.5213 0.5209 0.5209 0.5210 0.5161 0.5173

23 0.5484 0.5494 0.5504 0.5500 0.5494 0.5517 0.5515 0.5297 0.5300

24 0.5646 0.5801 0.5803 0.5785 0.5785 0.5781 0.5783 0.5658 0.5662

25 0.5186 0.5182 0.5182 0.5178 0.5178 0.5173 0.5173 0.5162 0.5161

26 0.5414 0.5466 0.5460 0.5455 0.5454 0.5459 0.5460 0.5274 0.5274

27 0.5629 0.5761 0.5761 0.5756 0.5756 0.5748 0.5750 0.5675 0.5676

28 0.5187 0.5160 0.5158 0.5158 0.5156 0.5180 0.5177 0.5151 0.5159

29 0.5440 0.5488 0.5488 0.5488 0.5488 0.5485 0.5489 0.5377 0.5377

30 0.5628 0.5796 0.5796 0.5792 0.5792 0.5784 0.5784 0.5747 0.5749

31 0.5175 0.5167 0.5167 0.5167 0.5170 0.5172 0.5168 0.5098 0.5100

32 0.5414 0.5473 0.5473 0.5478 0.5476 0.5468 0.5468 0.5405 0.5407

33 0.5594 0.5720 0.5720 0.5715 0.5715 0.5708 0.5709 0.5682 0.5682

34 0.5157 0.5148 0.5146 0.5145 0.5146 0.5159 0.5159 0.5074 0.5074

35 0.5452 0.5513 0.5512 0.5509 0.5508 0.5511 0.5511 0.5433 0.5433

36 0.5616 0.5766 0.5767 0.5762 0.5762 0.5757 0.5757 0.5735 0.5736

Table 10-4

AIC in Step 2 scenario 1 simulation.

AIC

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

1 141.497 141.268 141.257 141.244 141.230 141.435 141.421 141.551 141.537

2 140.826 140.482 140.473 140.469 140.457 140.684 140.658 141.362 141.361

3 139.701 138.791 138.791 138.834 138.832 138.974 138.964 140.702 140.683

4 279.719 279.596 279.589 279.614 279.606 279.590 279.558 280.114 280.112

5 278.581 277.748 277.743 277.777 277.776 277.937 277.908 279.324 279.258

6 276.917 274.808 274.809 274.855 274.852 275.079 275.066 276.001 275.977

7 418.776 418.157 418.156 418.175 418.176 418.565 418.547 419.050 419.042

8 416.336 415.243 415.247 415.297 415.305 415.383 415.364 417.225 417.158

9 413.593 410.832 410.832 410.984 410.979 411.145 411.127 411.821 411.803

10 556.599 556.294 556.275 556.273 556.256 556.352 556.331 557.248 557.226

11 553.149 551.335 551.339 551.457 551.465 551.560 551.518 552.539 552.467

12 550.258 546.800 546.800 546.991 546.992 547.061 547.040 547.515 547.511

13 695.081 694.451 694.452 694.398 694.397 694.880 694.841 696.060 696.048

14 691.615 689.568 689.577 689.667 689.680 689.834 689.779 690.906 690.850

15 686.813 682.601 682.602 682.787 682.784 682.920 682.892 683.546 683.545

16 833.293 833.081 833.073 833.044 833.030 833.080 833.062 834.681 834.693

17 829.084 826.743 826.740 826.819 826.818 827.036 826.979 827.702 827.662

18 823.178 818.273 818.275 818.567 818.570 818.502 818.483 819.156 819.158
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AIC

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

19 141.383 141.054 141.053 141.088 141.086 141.292 141.284 141.458 141.464

20 140.935 140.698 140.687 140.736 140.726 140.935 140.910 141.388 141.372

21 140.600 140.189 140.190 140.213 140.213 140.302 140.294 141.547 141.539

22 280.015 279.603 279.594 279.566 279.558 279.803 279.787 280.388 280.390

23 278.947 278.485 278.493 278.523 278.532 278.599 278.577 280.200 280.168

24 277.737 276.265 276.264 276.369 276.366 276.535 276.518 277.563 277.534

25 418.531 418.363 418.357 418.367 418.362 418.374 418.368 418.679 418.669

26 417.199 416.433 416.434 416.473 416.471 416.598 416.563 418.085 418.014

27 415.228 413.490 413.489 413.581 413.579 413.735 413.719 414.651 414.627

28 556.820 556.702 556.687 556.704 556.687 556.689 556.675 557.096 557.080

29 554.618 553.549 553.549 553.603 553.600 553.764 553.716 555.042 554.957

30 552.460 549.668 549.667 549.807 549.807 549.954 549.933 550.555 550.535

31 695.101 694.750 694.724 694.753 694.724 695.055 695.018 696.118 696.125

32 692.957 691.696 691.700 691.801 691.806 691.894 691.863 693.101 693.033

33 690.566 688.388 688.389 688.559 688.557 688.616 688.595 689.283 689.280

34 833.853 833.282 833.286 833.300 833.301 833.365 833.362 834.887 834.874

35 830.628 829.145 829.150 829.221 829.217 829.356 829.309 830.246 830.190

36 827.601 824.248 824.248 824.449 824.443 824.548 824.521 825.220 825.204

Table 11-1

Model specification in Step 2 scenario 2 simulation.

Model Specification

Model Type OR1-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

1 1 1.1 0.01 0.05 0.25 0.1 100

2 2 1.5 0.01 0.05 0.25 0.1 100

3 3 2 0.01 0.05 0.25 0.1 100

4 1 1.1 0.01 0.05 0.25 0.1 200

5 2 1.5 0.01 0.05 0.25 0.1 200

6 3 2 0.01 0.05 0.25 0.1 200

7 1 1.1 0.01 0.05 0.25 0.1 300

8 2 1.5 0.01 0.05 0.25 0.1 300

9 3 2 0.01 0.05 0.25 0.1 300

10 1 1.1 0.01 0.05 0.25 0.1 400

11 2 1.5 0.01 0.05 0.25 0.1 400

12 3 2 0.01 0.05 0.25 0.1 400

13 1 1.1 0.01 0.05 0.25 0.1 500

14 2 1.5 0.01 0.05 0.25 0.1 500

15 3 2 0.01 0.05 0.25 0.1 500

16 1 1.1 0.01 0.05 0.25 0.1 600
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Model Specification

Model Type OR1-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

17 2 1.5 0.01 0.05 0.25 0.1 600

18 3 2 0.01 0.05 0.25 0.1 600

19 1 1.1 0.01 0.05 0.25 0.01 100

20 2 1.5 0.01 0.05 0.25 0.01 100

21 3 2 0.01 0.05 0.25 0.01 100

22 1 1.1 0.01 0.05 0.25 0.01 200

23 2 1.5 0.01 0.05 0.25 0.01 200

24 3 2 0.01 0.05 0.25 0.01 200

25 1 1.1 0.01 0.05 0.25 0.01 300

26 2 1.5 0.01 0.05 0.25 0.01 300

27 3 2 0.01 0.05 0.25 0.01 300

28 1 1.1 0.01 0.05 0.25 0.01 400

29 2 1.5 0.01 0.05 0.25 0.01 400

30 3 2 0.01 0.05 0.25 0.01 400

31 1 1.1 0.01 0.05 0.25 0.01 500

32 2 1.5 0.01 0.05 0.25 0.01 500

33 3 2 0.01 0.05 0.25 0.01 500

34 1 1.1 0.01 0.05 0.25 0.01 600

35 2 1.5 0.01 0.05 0.25 0.01 600

36 3 2 0.01 0.05 0.25 0.01 600

Table 11-2

Power in Step 2 scenario 2 simulation.

Power

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

1 7 6 7 6 7 7 8 7 10

2 15 12 13 11 14 9 11 8 6

3 44 31 41 32 42 20 40 5 23

4 5 5 7 5 6 6 9 8 10

5 32 21 29 19 28 16 27 5 14

6 69 59 70 62 70 35 66 23 57

7 10 10 10 11 10 6 6 7 7

8 46 32 44 36 41 20 42 5 19

9 89 86 87 87 87 57 87 31 71

10 5 5 7 5 6 6 6 6 7

11 52 50 51 51 52 40 52 13 37

12 93 92 92 92 92 85 93 77 89

13 9 11 10 13 11 9 10 6 5

14 67 68 68 67 69 59 68 45 62
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Power

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

15 98 98 98 98 98 95 98 97 96

16 14 15 13 15 11 13 13 5 5

17 71 69 71 70 71 72 71 65 68

18 98 99 99 99 99 98 99 99 99

19 6 7 5 4 5 8 5 7 8

20 15 18 16 15 13 9 12 10 12

21 33 27 35 25 36 18 31 11 8

22 7 3 6 3 5 5 9 7 5

23 26 23 24 23 23 16 24 4 6

24 66 62 63 64 65 39 62 6 35

25 5 5 6 4 6 3 5 1 5

26 35 26 32 27 31 16 29 5 18

27 80 76 79 79 77 53 79 23 65

28 5 4 5 4 6 9 4 10 9

29 49 47 46 47 44 34 48 12 37

30 89 87 85 88 84 73 86 53 76

31 7 6 9 8 9 6 6 6 9

32 55 55 54 55 55 40 58 18 47

33 93 93 92 92 91 92 92 92 92

34 6 9 7 9 8 7 8 4 4

35 73 71 67 71 66 61 68 39 51

36 97 95 96 94 95 90 96 92 95

Table 11-3

C in Step 2 scenario 2 simulation.

C

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

1 0.5416 0.5286 0.5354 0.5293 0.5368 0.5367 0.5403 0.5358 0.5432

2 0.5626 0.5616 0.5641 0.5632 0.5647 0.5475 0.5587 0.5230 0.5281

3 0.6005 0.5975 0.6024 0.5979 0.6015 0.5873 0.6012 0.5461 0.5744

4 0.5325 0.5201 0.5307 0.5185 0.5299 0.5186 0.5294 0.5179 0.5237

5 0.5609 0.5574 0.5612 0.5584 0.5615 0.5496 0.5601 0.5224 0.5445

6 0.5989 0.6008 0.5997 0.5980 0.5969 0.5986 0.5988 0.5758 0.5887

7 0.5297 0.5281 0.5300 0.5285 0.5305 0.5207 0.5282 0.5169 0.5216

8 0.5579 0.5557 0.5584 0.5560 0.5581 0.5523 0.5566 0.5255 0.5465

9 0.5972 0.5982 0.5981 0.5971 0.5973 0.5937 0.5969 0.5762 0.5890

10 0.5228 0.5210 0.5236 0.5219 0.5238 0.5158 0.5216 0.5092 0.5155

11 0.5569 0.5577 0.5577 0.5574 0.5576 0.5554 0.5582 0.5366 0.5489
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C

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

12 0.5941 0.5949 0.5937 0.5936 0.5923 0.5933 0.5944 0.5808 0.5878

13 0.5222 0.5166 0.5210 0.5161 0.5213 0.5164 0.5212 0.5139 0.5176

14 0.5604 0.5603 0.5607 0.5598 0.5599 0.5594 0.5611 0.5538 0.5576

15 0.6022 0.6030 0.6022 0.6021 0.6017 0.6010 0.6028 0.5973 0.5998

16 0.5216 0.5222 0.5226 0.5221 0.5212 0.5224 0.5227 0.5135 0.5175

17 0.5580 0.5596 0.5576 0.5596 0.5572 0.5588 0.5573 0.5543 0.5551

18 0.5980 0.5992 0.5979 0.5986 0.5974 0.5982 0.5986 0.5973 0.5968

19 0.5402 0.5190 0.5354 0.5220 0.5389 0.5283 0.5367 0.5219 0.5321

20 0.5652 0.5611 0.5622 0.5627 0.5622 0.5470 0.5576 0.5239 0.5346

21 0.5866 0.5798 0.5848 0.5805 0.5846 0.5677 0.5805 0.5271 0.5512

22 0.5348 0.5329 0.5355 0.5328 0.5340 0.5290 0.5352 0.5211 0.5297

23 0.5543 0.5535 0.5539 0.5535 0.5544 0.5453 0.5546 0.5103 0.5262

24 0.5897 0.5905 0.5893 0.5889 0.5882 0.5873 0.5888 0.5447 0.5750

25 0.5275 0.5265 0.5284 0.5271 0.5291 0.5175 0.5252 0.5143 0.5211

26 0.5526 0.5520 0.5528 0.5520 0.5526 0.5482 0.5509 0.5268 0.5398

27 0.5862 0.5864 0.5857 0.5859 0.5862 0.5845 0.5872 0.5648 0.5762

28 0.5233 0.5217 0.5220 0.5212 0.5211 0.5169 0.5240 0.5160 0.5207

29 0.5538 0.5541 0.5537 0.5535 0.5533 0.5514 0.5540 0.5362 0.5482

30 0.5882 0.5874 0.5881 0.5877 0.5879 0.5867 0.5889 0.5733 0.5818

31 0.5209 0.5207 0.5213 0.5215 0.5204 0.5181 0.5204 0.5115 0.5186

32 0.5527 0.5523 0.5531 0.5528 0.5532 0.5512 0.5534 0.5389 0.5452

33 0.5847 0.5862 0.5842 0.5857 0.5841 0.5850 0.5850 0.5814 0.5808

34 0.5195 0.5196 0.5193 0.5187 0.5188 0.5195 0.5199 0.5153 0.5176

35 0.5538 0.5541 0.5531 0.5538 0.5531 0.5532 0.5538 0.5478 0.5504

36 0.5839 0.5845 0.5843 0.5845 0.5841 0.5837 0.5849 0.5776 0.5812

Table 11-4

AIC in Step 2 scenario 2 simulation.

AIC

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

1 141.623 141.49 141.547 141.504 141.565 141.476 141.488 141.457 141.452

2 140.612 140.799 140.638 140.8 140.653 141.271 140.802 141.532 141.631

3 138.467 139.457 138.515 139.366 138.523 140.26 138.696 141.374 140.196

4 280.174 280.121 280.15 280.149 280.178 279.961 279.988 279.769 279.79

5 278.084 278.727 278.052 278.657 278.075 279.345 278.249 280.272 279.625

6 273.64 275.273 273.971 275.161 274.034 277.09 274.159 278.803 275.802

7 418.641 418.529 418.621 418.542 418.63 418.668 418.663 418.671 418.64

8 415.646 416.619 415.689 416.516 415.783 417.565 415.875 418.813 417.4
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AIC

Model SC

Correct Random Overestimate Underestimate

OR EV OR EV OR EV OR EV

9 409.755 410.204 410.044 410.175 410.137 414.065 410.229 416.47 412.137

10 557.393 557.5 557.39 557.488 557.398 557.412 557.413 557.371 557.458

11 553.046 553.268 553.166 553.217 553.222 554.586 553.036 556.871 554.651

12 545.993 546.249 546.735 546.353 546.879 548.435 546.368 550.559 548.125

13 695.917 695.905 695.792 695.88 695.776 695.945 695.802 695.998 695.987

14 690.159 690.147 690.484 690.248 690.548 690.974 690.3 692.648 691.304

15 678.976 679.231 679.746 679.385 679.982 681.761 679.382 681.885 680.94

16 834.24 834.096 834.103 834.144 834.14 834.259 834.134 834.831 834.783

17 827.625 827.463 828.082 827.581 828.132 827.691 827.858 828.596 828.703

18 815.746 815.71 816.788 815.993 817.02 816.134 816.373 816.434 817.569

19 141.732 141.58 141.705 141.612 141.701 141.496 141.603 141.403 141.525

20 140.658 140.612 140.732 140.643 140.764 141.349 140.924 141.351 141.432

21 139.424 139.751 139.437 139.731 139.501 140.293 139.553 141.261 141.279

22 280 280.221 280.037 280.219 280.053 280.153 280.08 280.155 280.173

23 278.552 278.844 278.586 278.804 278.615 279.616 278.725 280.283 280.279

24 275.007 275.431 275.206 275.396 275.238 277.627 275.373 280.069 277.742

25 418.767 418.823 418.765 418.821 418.762 419.103 418.888 419.181 419.089

26 416.068 416.47 416.174 416.425 416.183 417.891 416.419 418.807 417.826

27 411.873 412.468 412.141 412.443 412.296 414.784 412.029 417.213 414.121

28 557.532 557.485 557.569 557.527 557.589 557.337 557.429 557.337 557.361

29 553.787 553.961 553.869 553.912 553.875 555.116 553.825 557.073 555.175

30 547.334 547.792 547.856 547.784 548.003 550.362 547.597 552.732 549.546

31 696.018 695.967 696.061 695.988 696.074 696.142 696.051 696.172 696.014

32 691.153 691.415 691.39 691.361 691.415 692.684 691.248 694.829 692.696

33 684.588 684.506 685.18 684.641 685.235 684.811 684.902 685.495 685.809

34 834.621 834.563 834.572 834.578 834.585 834.578 834.583 834.738 834.735

35 829.421 829.44 829.597 829.509 829.665 830.278 829.467 831.589 830.247

36 821.082 821.396 821.456 821.443 821.679 823.941 821.223 824.326 822.654

Table 12-1a

Model specification in Step 2 scenario 3 simulation with high baseline penetrance.

Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

1 1 1.1 1.5 2 0.01 0.05 0.25 0.1 100

2 2 1.1 1.5 2 0.01 0.25 0.05 0.1 100

3 3 1.1 1.5 2 0.05 0.01 0.25 0.1 100

4 4 1.1 1.5 2 0.05 0.25 0.01 0.1 100

5 5 1.1 1.5 2 0.25 0.01 0.05 0.1 100

6 6 1.1 1.5 2 0.25 0.05 0.01 0.1 100
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Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

7 1 1.1 1.5 2 0.01 0.05 0.25 0.1 200

8 2 1.1 1.5 2 0.01 0.25 0.05 0.1 200

9 3 1.1 1.5 2 0.05 0.01 0.25 0.1 200

10 4 1.1 1.5 2 0.05 0.25 0.01 0.1 200

11 5 1.1 1.5 2 0.25 0.01 0.05 0.1 200

12 6 1.1 1.5 2 0.25 0.05 0.01 0.1 200

13 1 1.1 1.5 2 0.01 0.05 0.25 0.1 300

14 2 1.1 1.5 2 0.01 0.25 0.05 0.1 300

15 3 1.1 1.5 2 0.05 0.01 0.25 0.1 300

16 4 1.1 1.5 2 0.05 0.25 0.01 0.1 300

17 5 1.1 1.5 2 0.25 0.01 0.05 0.1 300

18 6 1.1 1.5 2 0.25 0.05 0.01 0.1 300

19 1 1.1 1.5 2 0.01 0.05 0.25 0.1 400

20 2 1.1 1.5 2 0.01 0.25 0.05 0.1 400

21 3 1.1 1.5 2 0.05 0.01 0.25 0.1 400

22 4 1.1 1.5 2 0.05 0.25 0.01 0.1 400

23 5 1.1 1.5 2 0.25 0.01 0.05 0.1 400

24 6 1.1 1.5 2 0.25 0.05 0.01 0.1 400

25 1 1.1 1.5 2 0.01 0.05 0.25 0.1 500

26 2 1.1 1.5 2 0.01 0.25 0.05 0.1 500

27 3 1.1 1.5 2 0.05 0.01 0.25 0.1 500

28 4 1.1 1.5 2 0.05 0.25 0.01 0.1 500

29 5 1.1 1.5 2 0.25 0.01 0.05 0.1 500

30 6 1.1 1.5 2 0.25 0.05 0.01 0.1 500

31 1 1.1 1.5 2 0.01 0.05 0.25 0.1 600

32 2 1.1 1.5 2 0.01 0.25 0.05 0.1 600

33 3 1.1 1.5 2 0.05 0.01 0.25 0.1 600

34 4 1.1 1.5 2 0.05 0.25 0.01 0.1 600

35 5 1.1 1.5 2 0.25 0.01 0.05 0.1 600

36 6 1.1 1.5 2 0.25 0.05 0.01 0.1 600

Table 12-1b

Model specification in Step 2 scenario 3 simulation with low baseline penetrance.

Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

37 1 1.1 1.5 2 0.01 0.05 0.25 0.01 100

38 2 1.1 1.5 2 0.01 0.25 0.05 0.01 100

39 3 1.1 1.5 2 0.05 0.01 0.25 0.01 100

40 4 1.1 1.5 2 0.05 0.25 0.01 0.01 100

41 5 1.1 1.5 2 0.25 0.01 0.05 0.01 100
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Model Specification

Model Type OR1-2 OR3-4 OR5-6 MAF1-2 MAF3-4 MAF5-6 Penetrance n

42 6 1.1 1.5 2 0.25 0.05 0.01 0.01 100

43 1 1.1 1.5 2 0.01 0.05 0.25 0.01 200

44 2 1.1 1.5 2 0.01 0.25 0.05 0.01 200

45 3 1.1 1.5 2 0.05 0.01 0.25 0.01 200

46 4 1.1 1.5 2 0.05 0.25 0.01 0.01 200

47 5 1.1 1.5 2 0.25 0.01 0.05 0.01 200

48 6 1.1 1.5 2 0.25 0.05 0.01 0.01 200

49 1 1.1 1.5 2 0.01 0.05 0.25 0.01 300

50 2 1.1 1.5 2 0.01 0.25 0.05 0.01 300

51 3 1.1 1.5 2 0.05 0.01 0.25 0.01 300

52 4 1.1 1.5 2 0.05 0.25 0.01 0.01 300

53 5 1.1 1.5 2 0.25 0.01 0.05 0.01 300

54 6 1.1 1.5 2 0.25 0.05 0.01 0.01 300

55 1 1.1 1.5 2 0.01 0.05 0.25 0.01 400

56 2 1.1 1.5 2 0.01 0.25 0.05 0.01 400

57 3 1.1 1.5 2 0.05 0.01 0.25 0.01 400

58 4 1.1 1.5 2 0.05 0.25 0.01 0.01 400

59 5 1.1 1.5 2 0.25 0.01 0.05 0.01 400

60 6 1.1 1.5 2 0.25 0.05 0.01 0.01 400

61 1 1.1 1.5 2 0.01 0.05 0.25 0.01 500

62 2 1.1 1.5 2 0.01 0.25 0.05 0.01 500

63 3 1.1 1.5 2 0.05 0.01 0.25 0.01 500

64 4 1.1 1.5 2 0.05 0.25 0.01 0.01 500

65 5 1.1 1.5 2 0.25 0.01 0.05 0.01 500

66 6 1.1 1.5 2 0.25 0.05 0.01 0.01 500

67 1 1.1 1.5 2 0.01 0.05 0.25 0.01 600

68 2 1.1 1.5 2 0.01 0.25 0.05 0.01 600

69 3 1.1 1.5 2 0.05 0.01 0.25 0.01 600

70 4 1.1 1.5 2 0.05 0.25 0.01 0.01 600

71 5 1.1 1.5 2 0.25 0.01 0.05 0.01 600

72 6 1.1 1.5 2 0.25 0.05 0.01 0.01 600

Table 12-2a

Power in Step 2 scenario 3 simulation with high baseline penetrance.

Power

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

1 38 39 43 36 41 18 33 6 15

2 23 22 26 23 25 14 27 9 7

3 35 38 37 35 40 11 31 10 18
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Power

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

4 26 18 29 17 26 13 26 10 6

5 9 14 14 13 15 14 12 12 4

6 7 10 9 10 10 8 9 7 10

7 61 61 61 58 62 30 58 11 52

8 41 42 43 44 44 25 38 6 12

9 54 53 61 50 60 30 54 8 40

10 27 28 35 30 34 25 34 6 13

11 15 34 36 33 33 20 24 3 6

12 13 14 20 16 18 17 21 13 12

13 83 86 87 85 85 53 85 37 79

14 55 48 56 48 58 50 57 17 34

15 78 74 84 75 84 44 81 26 71

16 43 43 48 42 46 36 46 9 30

17 18 39 38 38 40 20 37 3 10

18 16 28 27 26 27 28 27 7 8

19 90 92 92 93 93 83 93 52 90

20 61 67 65 69 64 56 62 18 49

21 86 93 94 93 93 81 93 70 89

22 53 62 57 62 58 54 59 40 54

23 31 58 55 55 57 36 51 7 20

24 19 31 30 34 32 27 30 11 10

25 89 97 97 96 97 92 97 88 97

26 78 76 76 77 77 77 78 54 69

27 95 96 96 97 97 88 97 85 95

28 56 62 61 63 63 59 62 31 49

29 34 59 62 62 58 58 53 44 43

30 22 41 34 42 33 38 30 6 6

31 99 100 99 99 98 99 99 92 96

32 79 90 84 88 83 84 84 71 85

33 97 98 98 98 98 98 98 97 98

34 72 75 76 76 75 65 82 49 66

35 45 72 72 72 70 70 66 60 59

36 19 37 31 36 32 35 23 20 10
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Table 12-2b

Power in Step 2 scenario 3 simulation with low baseline penetrance.

Power

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

37 23 19 24 18 25 13 26 8 9

38 11 12 14 15 13 11 14 10 9

39 23 20 24 21 25 15 23 4 4

40 16 10 18 9 19 10 17 7 5

41 11 18 17 19 16 11 14 8 6

42 11 17 14 18 14 19 14 16 11

43 42 39 47 39 44 20 39 10 25

44 40 36 40 39 42 21 39 6 15

45 50 51 54 49 54 20 50 11 33

46 23 23 29 24 29 23 24 5 15

47 10 28 26 26 22 8 14 4 8

48 12 19 19 17 19 18 19 14 20

49 70 70 71 72 70 43 70 17 57

50 39 46 41 45 40 19 37 10 27

51 65 77 75 76 76 47 75 29 61

52 26 23 35 26 34 20 35 3 14

53 21 34 39 28 40 20 34 11 11

54 9 14 13 14 13 15 13 14 15

55 71 79 81 77 77 67 79 43 75

56 63 70 63 70 62 70 64 34 54

57 75 83 87 83 84 75 85 62 80

58 46 45 48 46 47 39 52 8 23

59 28 46 48 41 48 39 42 7 11

60 11 18 21 19 20 19 20 12 9

61 79 82 77 79 75 79 80 75 75

62 61 72 65 69 59 63 66 38 57

63 81 92 91 93 92 84 91 54 86

64 42 52 50 55 49 44 50 17 39

65 21 58 56 59 54 49 48 15 27

66 22 35 30 35 29 34 28 18 9

67 95 97 96 95 95 95 97 88 95

68 73 79 73 75 74 71 73 57 75

69 89 93 92 95 93 94 93 84 90

70 60 60 54 59 53 55 59 20 44

71 30 58 56 55 57 56 50 54 50

72 26 38 33 39 38 39 31 22 11
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Table 12-3a

C in Step 2 scenario 3 simulation with high baseline penetrance.

C

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

1 0.5973 0.5983 0.6018 0.5978 0.6002 0.5765 0.5948 0.5356 0.5652

2 0.5757 0.5725 0.5764 0.5735 0.5758 0.5597 0.5724 0.5216 0.5276

3 0.5854 0.5905 0.5930 0.5904 0.5922 0.5636 0.5809 0.5522 0.5707

4 0.5744 0.5659 0.5738 0.5668 0.5750 0.5608 0.5710 0.5185 0.5402

5 0.5551 0.5448 0.5588 0.5461 0.5574 0.5364 0.5565 0.5237 0.5422

6 0.5498 0.5476 0.5522 0.5477 0.5506 0.5441 0.5483 0.5312 0.5392

7 0.5882 0.5892 0.5918 0.5902 0.5918 0.5802 0.5880 0.5608 0.5768

8 0.5687 0.5694 0.5670 0.5690 0.5675 0.5653 0.5683 0.5199 0.5479

9 0.5802 0.5827 0.5857 0.5830 0.5857 0.5760 0.5846 0.5439 0.5744

10 0.5565 0.5570 0.5633 0.5545 0.5618 0.5508 0.5610 0.5226 0.5384

11 0.5384 0.5503 0.5523 0.5497 0.5518 0.5420 0.5480 0.5160 0.5260

12 0.5382 0.5347 0.5401 0.5370 0.5413 0.5360 0.5396 0.5273 0.5329

13 0.5917 0.5956 0.5962 0.5952 0.5959 0.5906 0.5941 0.5777 0.5867

14 0.5674 0.5706 0.5695 0.5691 0.5653 0.5678 0.5697 0.5409 0.5630

15 0.5829 0.5875 0.5901 0.5874 0.5892 0.5845 0.5886 0.5643 0.5805

16 0.5576 0.5627 0.5613 0.5620 0.5607 0.5584 0.5622 0.5313 0.5474

17 0.5379 0.5521 0.5532 0.5524 0.5532 0.5479 0.5500 0.5244 0.5335

18 0.5341 0.5390 0.5404 0.5395 0.5402 0.5373 0.5392 0.5149 0.5245

19 0.5908 0.5941 0.5945 0.5944 0.5938 0.5912 0.5948 0.5824 0.5890

20 0.5617 0.5639 0.5602 0.5641 0.5584 0.5625 0.5605 0.5494 0.5548

21 0.5857 0.5922 0.5937 0.5924 0.5935 0.5901 0.5930 0.5810 0.5886

22 0.5558 0.5608 0.5583 0.5599 0.5575 0.5599 0.5588 0.5486 0.5544

23 0.5407 0.5516 0.5522 0.5514 0.5520 0.5508 0.5514 0.5289 0.5312

24 0.5343 0.5370 0.5383 0.5372 0.5384 0.5371 0.5373 0.5147 0.5251

25 0.5870 0.5915 0.5911 0.5922 0.5913 0.5903 0.5920 0.5837 0.5895

26 0.5628 0.5671 0.5657 0.5664 0.5624 0.5647 0.5653 0.5572 0.5632

27 0.5820 0.5892 0.5895 0.5889 0.5893 0.5860 0.5894 0.5823 0.5863

28 0.5553 0.5590 0.5568 0.5588 0.5571 0.5584 0.5592 0.5403 0.5485

29 0.5369 0.5496 0.5485 0.5491 0.5484 0.5490 0.5484 0.5298 0.5297

30 0.5307 0.5349 0.5352 0.5355 0.5352 0.5349 0.5339 0.5154 0.5198

31 0.5904 0.5953 0.5949 0.5952 0.5943 0.5928 0.5949 0.5895 0.5946

32 0.5639 0.5719 0.5693 0.5707 0.5652 0.5696 0.5688 0.5678 0.5682

33 0.5814 0.5901 0.5901 0.5896 0.5897 0.5874 0.5898 0.5841 0.5869

34 0.5579 0.5632 0.5623 0.5629 0.5618 0.5628 0.5631 0.5489 0.5550

35 0.5383 0.5521 0.5514 0.5522 0.5516 0.5516 0.5505 0.5314 0.5327

36 0.5261 0.5308 0.5307 0.5302 0.5310 0.5307 0.5297 0.5244 0.5213
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Table 12-3b

C in Step 2 scenario 3 simulation with low baseline penetrance.

C

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

37 0.5739 0.5708 0.5788 0.5728 0.5773 0.5615 0.5749 0.5344 0.5483

38 0.5650 0.5589 0.5618 0.5601 0.5613 0.5401 0.5589 0.5146 0.5206

39 0.5768 0.5732 0.5783 0.5736 0.5792 0.5616 0.5796 0.5261 0.5430

40 0.5625 0.5560 0.5619 0.5569 0.5612 0.5493 0.5623 0.5230 0.5276

41 0.5563 0.5481 0.5581 0.5479 0.5572 0.5461 0.5558 0.5241 0.5389

42 0.5465 0.5385 0.5465 0.5379 0.5472 0.5398 0.5450 0.5372 0.5453

43 0.5728 0.5722 0.5766 0.5728 0.5757 0.5628 0.5745 0.5422 0.5612

44 0.5643 0.5674 0.5685 0.5671 0.5675 0.5598 0.5649 0.5217 0.5501

45 0.5733 0.5761 0.5790 0.5751 0.5781 0.5622 0.5774 0.5364 0.5681

46 0.5523 0.5504 0.5573 0.5493 0.5569 0.5489 0.5564 0.5240 0.5416

47 0.5389 0.5436 0.5421 0.5427 0.5422 0.5375 0.5434 0.5172 0.5233

48 0.5372 0.5335 0.5360 0.5348 0.5368 0.5330 0.5368 0.5315 0.5392

49 0.5792 0.5818 0.5820 0.5819 0.5808 0.5754 0.5806 0.5592 0.5725

50 0.5560 0.5603 0.5593 0.5602 0.5590 0.5504 0.5579 0.5351 0.5521

51 0.5716 0.5792 0.5797 0.5785 0.5797 0.5742 0.5782 0.5600 0.5745

52 0.5461 0.5409 0.5483 0.5446 0.5493 0.5355 0.5483 0.5191 0.5326

53 0.5382 0.5447 0.5479 0.5444 0.5472 0.5436 0.5464 0.5246 0.5332

54 0.5313 0.5299 0.5336 0.5300 0.5340 0.5295 0.5336 0.5278 0.5293

55 0.5728 0.5773 0.5774 0.5764 0.5761 0.5731 0.5774 0.5636 0.5703

56 0.5655 0.5685 0.5674 0.5689 0.5645 0.5649 0.5662 0.5579 0.5625

57 0.5710 0.5780 0.5779 0.5776 0.5778 0.5738 0.5781 0.5676 0.5756

58 0.5474 0.5520 0.5501 0.5521 0.5504 0.5511 0.5522 0.5215 0.5407

59 0.5381 0.5477 0.5478 0.5473 0.5478 0.5467 0.5470 0.5239 0.5261

60 0.5271 0.5284 0.5294 0.5284 0.5304 0.5275 0.5291 0.5151 0.5202

61 0.5747 0.5779 0.5778 0.5769 0.5766 0.5763 0.5778 0.5742 0.5758

62 0.5566 0.5607 0.5565 0.5603 0.5544 0.5581 0.5560 0.5569 0.5561

63 0.5733 0.5804 0.5807 0.5781 0.5786 0.5776 0.5810 0.5708 0.5764

64 0.5487 0.5543 0.5513 0.5539 0.5502 0.5537 0.5532 0.5325 0.5423

65 0.5338 0.5456 0.5445 0.5453 0.5451 0.5438 0.5436 0.5249 0.5294

66 0.5275 0.5346 0.5345 0.5350 0.5345 0.5346 0.5320 0.5253 0.5218

67 0.5738 0.5790 0.5785 0.5774 0.5771 0.5778 0.5784 0.5742 0.5765

68 0.5611 0.5654 0.5603 0.5654 0.5605 0.5617 0.5616 0.5586 0.5587

69 0.5689 0.5777 0.5781 0.5776 0.5778 0.5747 0.5766 0.5731 0.5765

70 0.5482 0.5509 0.5504 0.5504 0.5500 0.5510 0.5509 0.5382 0.5440

71 0.5329 0.5438 0.5429 0.5431 0.5433 0.5431 0.5426 0.5266 0.5279

72 0.5311 0.5341 0.5345 0.5337 0.5344 0.5338 0.5338 0.5231 0.5220

Che and Motsinger-Reif Page 40

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 12-4a

AIC in Step 2 scenario 3 simulation with high baseline penetrance.

AIC

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

1 138.734 138.733 138.512 138.83 138.588 140.681 139.054 141.57 140.754

2 140.014 140.26 139.974 140.169 139.982 140.683 140.027 141.265 141.437

3 139.413 139.112 138.766 139.147 138.797 140.966 139.532 141.463 140.522

4 140.101 140.608 140.055 140.584 140.067 140.832 140.233 141.474 141.633

5 141.117 141.022 140.827 141.041 140.839 141.135 141.062 141.395 141.59

6 141.312 141.134 141.133 141.138 141.125 141.166 141.19 141.195 141.357

7 275.117 275.143 274.79 275.18 274.922 278.281 275.21 279.751 276.695

8 277.152 277.245 277.254 277.231 277.29 278.777 277.343 280.103 279.606

9 276.058 276.061 275.459 276.201 275.525 278.278 275.704 279.983 277.574

10 278.497 278.436 277.848 278.36 277.848 278.927 278 280.176 279.786

11 279.493 277.811 277.746 277.878 277.773 279.22 278.64 280.3 280.278

12 279.745 279.502 279.277 279.464 279.224 279.486 279.284 279.575 279.66

13 410.583 410.137 410.106 410.301 410.299 414.217 410.297 416.542 411.64

14 414.396 414.642 414.293 414.555 414.418 415.273 414.314 418.014 416.056

15 412.111 412.065 410.813 412.222 410.96 415.122 411.232 416.761 412.484

16 415.837 415.585 415.313 415.588 415.371 416.566 415.212 418.645 416.973

17 417.547 415.687 415.66 415.722 415.656 417.261 416.443 418.801 418.42

18 418.124 417.304 416.998 417.312 417.011 417.5 417.25 418.569 418.782

19 546.584 546.09 546.049 546.293 546.287 548.035 545.847 553.282 547.581

20 552.328 552.131 552.39 552.144 552.521 553.219 552.36 556.153 553.742

21 547.676 546.134 545.916 546.394 546.11 549.663 545.932 551.671 547.199

22 553.538 552.672 553.099 552.698 553.129 553.015 553.002 554.552 553.797

23 555.538 553.162 553.085 553.284 553.071 554.942 553.899 557.196 555.997

24 556.101 555.414 555.324 555.348 555.283 555.613 555.432 556.932 557.083

25 683.715 682.578 682.662 682.83 682.897 683.41 682.519 686.138 683.322

26 689.419 688.406 689.178 688.527 689.409 689.578 689.241 692.089 689.815

27 685.336 683.377 683.252 683.654 683.541 686.023 683.372 686.084 683.765

28 691.224 690.423 690.61 690.474 690.673 691.565 690.374 694.024 692.03

29 693.853 691.22 691.437 691.307 691.448 691.543 692.029 692.657 692.551

30 694.864 693.49 693.8 693.444 693.803 693.733 694.05 696.09 696.107

31 818.498 817.238 817.478 817.537 817.73 818.3 817.386 820.93 818.05

32 826.532 825.057 825.923 825.148 826.171 825.852 826.141 828.293 826.094

33 821.831 819.047 819.098 819.353 819.372 820.763 819.077 821.329 819.671

34 828.212 827.075 827.134 826.953 827.197 828.608 826.902 830.605 828.492

35 831.909 828.213 828.392 828.333 828.452 828.566 829.184 829.798 830.08

36 833.61 832.397 832.933 832.382 832.832 832.471 833.195 833.411 834.309
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Table 12-4b

AIC in Step 2 scenario 3 simulation with low baseline penetrance.

AIC

Correct Random Overestimate Underestimate

Model SC OR EV OR EV OR EV OR EV

37 139.986 140.332 139.786 140.34 139.826 141.022 140.02 141.476 141.337

38 140.846 141.054 140.878 141.044 140.915 141.245 141.013 141.329 141.439

39 140.01 140.133 139.961 140.123 139.959 140.633 139.921 141.534 141.642

40 140.75 141.097 140.756 141.128 140.779 141.202 140.841 141.379 141.502

41 140.986 140.868 140.691 140.857 140.681 141.223 140.905 141.414 141.374

42 141.31 140.725 140.836 140.718 140.824 140.728 140.883 140.834 141.153

43 276.862 277.33 276.709 277.286 276.797 278.953 276.988 279.939 278.31

44 277.626 277.39 277.428 277.379 277.516 279.044 277.774 280.236 279.603

45 276.831 276.497 276.194 276.67 276.311 279.031 276.743 279.68 277.913

46 278.571 278.698 278.088 278.706 278.119 278.977 278.169 280.282 279.696

47 279.878 278.718 278.684 278.79 278.733 279.877 279.54 280.33 280.263

48 279.76 279.408 279.316 279.426 279.306 279.431 279.307 279.586 279.432

49 412.905 412.546 412.631 412.642 412.732 415.641 412.857 417.841 414.424

50 415.917 415.544 415.747 415.556 415.872 417.298 416.066 418.359 417.282

51 414.198 413.001 412.864 413.148 413.002 415.66 413.13 417.072 413.857

52 417.083 417.071 416.66 416.972 416.701 417.418 416.665 418.942 418.331

53 417.685 416.211 415.834 416.34 415.882 417.188 416.593 418.666 418.368

54 418.44 417.934 417.929 417.962 417.919 417.943 417.954 417.996 418.148

55 550.719 549.954 550.016 550.072 550.125 551.682 550.046 554.255 550.866

56 551.83 551.159 551.766 551.209 551.915 552.367 551.765 554.903 552.64

57 550.897 549.508 549.446 549.692 549.602 551.241 549.497 552.36 550.067

58 554.31 553.708 553.913 553.665 553.971 554.467 553.649 557.288 555.889

59 555.728 554.292 554.407 554.404 554.416 554.796 554.728 557.125 556.519

60 556.951 556.369 556.375 556.34 556.322 556.455 556.456 556.995 557.188

61 686.737 686.295 686.474 686.434 686.587 686.702 686.327 687.505 687.023

62 691.113 690.503 690.95 690.552 691.089 691.215 691.014 693.444 691.394

63 687.472 685.886 685.74 686.124 685.932 687.944 685.789 690.733 686.604

64 692.338 691.613 691.866 691.594 691.962 692.392 691.607 695.2 693.447

65 694.415 692.099 692.346 692.129 692.305 692.908 692.851 695.557 694.63

66 695.012 693.602 693.965 693.628 693.926 693.666 694.339 694.913 695.794

67 824.34 823.257 823.445 823.406 823.547 823.844 823.351 824.803 823.938

68 827.389 826.62 827.279 826.68 827.482 828.356 827.33 830.209 827.958

69 825.966 823.167 823.111 823.44 823.335 824.946 823.224 825.456 823.533

70 830 829.441 829.731 829.495 829.752 830.141 829.529 833.36 830.987

71 832.764 830.199 830.515 830.272 830.489 830.427 831.074 831.187 831.392

72 833.081 832.18 832.441 832.234 832.443 832.179 832.702 833.674 834.329
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Figure 1. 
Relative risk and minor allele frequency specifications in the simulation design.
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Figure 2. Model comparisons in Step 2 Scenario 1
(different relative risk and same minor allele frequency, baseline penetrance=0.1, n=200).
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Figure 3. Model comparisons in Step 2 Scenario 2
(same relative risk and different minor allele frequency, baseline penetrance=0.1, n=200).
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Figure 4. Model comparisons in Step 2 Scenario 2
(same relative risk and different minor allele frequency, baseline penetrance=0.1, n=500).
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Figure 5. Model comparisons in Step 2 Scenario 3
(different relative risk and different minor allele frequency, baseline penetrance=0.1, n=200).
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Figure 6. Model comparisons in Step 2 Scenario 3
(different relative risk and different minor allele frequency, baseline penetrance=0.1, n=500).
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Table 1

Penetrance patterns under three genetic modes for 2-locus main effect model.

Mode Genotype BB Bb bb

Recessive

AA k k θbk

Aa k k θbk

aa θak θak (θa+θb–1)k

Additive

AA k θbk

Aa

aa θak (θa + θb −1)k

Dominant

AA k θbk θbk

Aa θak (θa +θb −1)k (θa + θb −1)k

aa θak (θa +θb −1)k (θa + θb −1)k
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