

HHS Public Access

Author manuscript *Stat Appl Genet Mol Biol.* Author manuscript; available in PMC 2017 May 28.

Published in final edited form as: Stat Appl Genet Mol Biol.; 11(4): Article–15. doi:10.1515/1544-6115.1796.

A New Explained-Variance Based Genetic Risk Score for Predictive Modeling of Disease Risk

Ronglin Che and North Carolina State University

Alison A. Motsinger-Reif North Carolina State University

Abstract

The goal of association mapping is to identify genetic variants that predict disease, and as the field of human genetics matures, the number of successful association studies is increasing. Many such studies have shown that for many diseases, risk is explained by a reasonably large number of variants that each explains a very small amount of disease risk. This is prompting the use of genetic risk scores in building predictive models, where information across several variants is combined for predictive modeling. In the current study, we compare the performance of four previously proposed genetic risk score methods and present a new method for constructing genetic risk score that incorporates explained variance information. The methods compared include: a simple count Genetic Risk Score, an odds ratio weighted Genetic Risk Score, a direct logistic regression Genetic Risk Score, a polygenic Genetic Risk Score, and the new explained variance weighted Genetic Risk Score. We compare the methods using a wide range of simulations in two steps, with a range of the number of deleterious single nucleotide polymorphisms (SNPs) explaining disease risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and minor allele frequencies (MAF). Several measures of model performance were compared including overall power, C-statistic and Akaike's Information Criterion. Our results show the relative performance of methods differs significantly, with the new explained variance weighted GRS (EV-GRS) generally performing favorably to the other methods.

Keywords

explained variance; polygenic; predictive modeling; simple count genetic risk score; weighted genetic risk score

1 INTRODUCTION

An important priority in the area of genetic epidemiology is the identification of susceptible variants for the common disease. These genetic variants could further be incorporated in a feasible model to predict the disease risk, so that the environmental or therapeutic interventions could be introduced earlier to prevent the diseases or improve personalized treatment. In recent years, Genome-Wide Association Studies (GWAS) and candidate polymorphism investigations have identified a large number of variants that are consistently associated with the risk of complex diseases (Manolio 2010). However, most of the currently

identified genetic variants convey a relatively modest effect, and the predictive value is limited. Anticipating the discovery of a large number of novel genetic variants in the near future, we need to prepare an appropriate framework to translate the emerging genomic knowledge into clinical utility, including the construction of genetic risk scores, the measurement of the predictive value, and the validation of the prediction models (Janssens and van Duijn 2009).

To address these issues, many analytical methods and models have been developed to better predict the disease risk using these low-effect risk variants. Recent studies have suggested possible risk models incorporating previously consistent genetic and conventional (clinical, demographic, etc.) risk factors (Meigs, et al. 2008; Talmud, et al. 2010). These genetic variants are included on the basis of consistent GWAS signals or meta-analysis results of association studies (De Jager, et al. 2009; Talmud, et al. 2010; Taylor, et al. 2011). Such improvements have had mixed results in predicting the risk of several common diseases, such as Type II diabetes (Meigs, et al. 2008; Talmud, et al. 2010), multiple sclerosis (De Jager, et al. 2009), systemic lupus erythematosus (Taylor, et al. 2011), breast cancer (Zheng, et al. 2010), lung cancer (Young, et al. 2009) and cardiovascular diseases (Paynter, et al. 2010), etc. Among these models, unweighted and weighted genetic risk score functions were used to construct genetic risk score profiles (De Jager, et al. 2009; Karlson, et al. 2010; Lin, et al. 2009; Meigs, et al. 2008; Paynter, et al. 2010; Seddon, et al. 2009; Talmud, et al. 2010; Taylor, et al. 2011; Young, et al. 2009; Zheng, et al. 2010). While these approaches have shown anecdotal success in real data analyses, these risk score functions have not been rigorously evaluated and compared. The assessment and comparison of the statistical properties of these functions in a range of scenarios is crucial for the proper application and interpretation of these methods.

In the current study, we try to compare the performance of four previously proposed methods: a simple count Genetic Risk Score (SC-GRS) (Talmud, et al. 2010), an odds ratio weighted Genetic Risk Score (OR-GRS) (De Jager, et al. 2009; Karlson, et al. 2010; Talmud, et al. 2010), a direct logistic regression Genetic Risk Score (DL-GRS) (Carayol, et al. 2010) and a polygenic Genetic Risk Score (PG-GRS) (Carayol, et al. 2010), and present a new method using an explained variance weighted Genetic Risk Score (EV-GRS). In a two-step simulation study, we used a wide range of simulated genetic models with a range of the number of deleterious single nucleotide polymorphisms (SNPs) in the etiology of disease risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and minor allele frequencies (MAF) of the SNPs. We applied the risk score methods to the simulated data, and compared their performance based on power, C-statistic and Akaike's Information Criteria (AIC) metrics.

2 METHODS

2.1 EXISTING GENETIC RISK SCORE MODELS

To simplify the analysis, we assume that one SNP per susceptibility gene has been selected, assuming these SNPs are uncorrelated and in turn contribute to the disease in an additive way. As described above, a very simple model is assumed. Let D denote the disease status where D = 1 if the subject has the disease (case) and D = 0 if healthy (control). Let G denote

a vector of all genotype combinations and G_i denote the number of risk alleles of the subject at i-th SNP. We assume all genotypes are available for all SNPs and individuals and therefore no data is missing. All parameters are estimated by fitting the logistic regression model (Carayol, et al. 2010; Cordell and Clayton 2002).

2.1.1 Simple count GRS (SC-GRS)

logit
$$P(D=1|\mathbf{G}) = \alpha + \beta (SC - GRS) = \alpha + \beta \sum_{i=1}^{l} G_i$$
 (1)

$$SC_{-} GRS = \sum_{i=1}^{I} G_i$$
 (2)

This simple count model involves only two parameters. The risk score profile utilized the sum of all risk alleles for all SNPs. No prior information about the effect size of associated SNP is required. It is relatively simple and thus has a wide application for current research, especially when current literature is insufficient to provide stable estimates for each SNP's effect (Paynter, et al. 2010). However, the presumed assumption of equal contributions of all SNPs may not be plausible.

2.1.2 Odds ratio weighted GRS (OR-GRS)

$$\operatorname{logit} P\left(D=1 \middle| \mathbf{G}\right) = \alpha + \beta \left(OR_{-} GRS\right) = \alpha + \beta \sum_{i=1}^{I} w_{OR_{-}i} G_{i}$$
(3)

$$w_{OR_{-i}} = \log(OR_i)$$
 (4)

$$OR_{-} GRS = \sum_{i=1}^{I} w_{OR_{-}i} G_i$$
(5)

rescaled:
$$OR_{-} GRS = I(\sum_{i=1}^{I} w_{OR_{-}i} G_i) / (\sum_{i=1}^{I} w_{OR_{-}i})$$
 (6)

This model also needs two parameters. Here, the unequal effect size of SNPs is taken into account. The risk score is constructed as the weighted sum of all SNPs. The w_{OR} is a pre-

determined fixed weight. Practically, it is usually the log per-allele OR from meta-analysis for this SNP (Talmud, et al. 2010). It is easy to derive that SNP(s) with larger OR tends to contribute more to disease risk. This method requires external determinants, but in some cases they are unavailable if no studies were done before or inaccurate prior determinants were provided. This requirement makes this type of risk score unavailable for some studies, where previous estimates are not available. To make the weighted genetic risk score more directly comparable to the simple count genetic risk score, we used the rescaled version of

the OR-GRS by multiplying by the rescaling factor $I/(\sum_{i=1}^{I} w_{_{OR_{-}i}})$.

2.1.3 Direct logistic regression GRS (DL-GRS)

logit
$$P(D=1|\mathbf{G}) = \alpha + DL_{-} GRS = \alpha + \sum_{i=1}^{l} \beta_{i}G_{i}$$
 (7)

$$DL_{-} GRS = \sum_{i=1}^{I} \beta_i G_i$$
(8)

This alternative weighted method directly fits a logistic regression model. The risk coefficient is the log(OR) for SNP i using the original dataset. The number of risk alleles is counted and multiplied by the risk coefficient to derive the risk score. No external information (i.e. an effect estimate from previous studies) is needed but *I*+1 parameters are estimated (Carayol, et al. 2010). Because this score is developed from the data at hand, the question of external validation inevitably arises. It can be assumed that if this score is applied in independent data, its fit will be substantially worse than the fit when applied in the first data in which it was built. The underlying goal of this risk score is essentially the same as with the OR-GRS, except that it is applied when external estimates of effect size are not available.

2.1.4 Polygenic GRS (PG-GRS)

logit
$$P(D=1|\mathbf{G}) = \alpha + PG_{-} GRS = \alpha + \sum_{i=1}^{I} \beta_{i1} x_{i1} + \sum_{i=1}^{I} \beta_{i2} x_{i2}$$
 (9)

$$PG_{-} GRS = \sum_{i=1}^{I} \beta_{i1} x_{i1} + \sum_{i=1}^{I} \beta_{i2} x_{i2}$$
(10)

For the PG model, two dummy variables are considered per SNP. Let x_{i1} be an indicator function of homozygous status and x_{i2} be an indicator of homozygous for risk allele at SNP

i. Suppose a is the risk allele. Then, genotype AA is coded as 00, Aa as 10 and aa as 01. If we set AA as the baseline genotype, β_1 is the risk coefficient for Aa and β_2 is the risk coefficient for aa. In this aspect, the PG model is more flexible if the underlying genetic mode is unknown. The other methods discussed above make an additive genetic model assumption in adding the number of risk alleles. This assumption of additivity will decrease performance if there is dominance deviation in the actual underlying risk etiologies. While the ability to not be limited to genetic assumptions is appealing, the clear drawback is that the number of parameters 2I+1 is dramatically increasing as usually many SNPs were involved in reality (Carayol, et al. 2010). Additionally, as with the DL-GRS, this GRS relied exclusively on information derived from the original dataset, so the same concerns about external validation hold here.

2.2 NEW GENETIC RISK SCORE MODEL

2.2.1 Explained variance weighted GRS (EV-GRS)

logit
$$P(D=1|\mathbf{G}) = \alpha + \beta (EV - GRS) = \alpha + \beta \sum_{i=1}^{I} w_{EV-i} G_i$$
 (11)

$$w_{EV_{-i}} = \log\left(OR_{i}\right) \sqrt{2MAF_{i}\left(1 - MAF_{i}\right)} \quad (12)$$

$$EV_GRS = \sum_{i=1}^{I} w_{EV_i} G_i$$
(13)

$$rescaled: EV_{-} GRS = I(\sum_{i=1}^{I} w_{EV_{-}i}G_i) / (\sum_{i=1}^{I} w_{EV_{-}i})$$
(14)

Motivated by the effect size definition by Park and colleagues (Park, et al. 2010), we propose a new weighted method incorporating both OR and minor allele frequency (MAF) for SNP i, where the MAF estimate could be obtained from http://www.ncbi.nlm.nih.gov/projects/SNP/ or from published data, and OR estimate comes from the log per-allele odds ratio from external meta-analysis results. For individual SNP, we believe both OR and MAF are reasonable factors to define the explained variance and in turn to construct the prior contribution to the disease risk. It is expected that within the same OR, the disease risk will increase with increases of the MAF. This motivation is linked to the idea of Bayesian methods that we have already obtained *priori* knowledge of these variants and we could make use of the knowledge to improve our prediction. Similarly, the rescaled version of EV-GRS was used to make the genetic risk score more comparable to SC- and OR-GRS.

2.3 TWO-STEP SIMULATION DESIGN

We evaluated and tested the GRS methods in a two-step simulation study. In Step one, methods were compared for general performance in a range of simulations with similar minor allele frequencies and relative risks (in which case our EV-GRS method is equivalent to previous methods), and the relative performance of each approach was demonstrated. In Step two, methods that performed well in the first step of analysis and that have comparable numbers of parameters, and our new EV-GRS method are compared in a range of simulations where minor allele frequencies vary.

2.3.1 Step one simulation—Our primary goal in the Step 1 simulation was to detect general differences in performance among the four current genetic risk score models in a range of genetic models.

Factors of interest in the simulations included: the number of deleterious single nucleotide polymorphisms (SNP) that convey disease risk, the minor allele frequencies (MAF) of those SNPs, the relative risks (RR) of the associations, the underlying genetic modes, and the sample sizes of the datasets. We consider true disease risk models involving 2 and 6 deleterious SNPs, assuming Hardy-Weinberg Equilibrium (HWE). To simplify, we assume these SNPs contribute to the disease in an additive way with no interaction, and assume no linkage disequilibrium between them. We understand that these simplifications limit dissection of how these models perform in some cases, but do make the simulations manageable within the scope of the current study. Minor allele frequencies (MAF) for the SNPs were set to either 0.25 or 0.5 to represent common variants. Relative risks (RR) considered for our model were 1.5, 2 and 3 for 2 SNPs combination and 1.25, 1.5 and 1.75 for 6 SNPs combination (Figure 1). This range varies since high relative risks could lead to disease prevalence out of bounds for the large number of SNPs. This scenario represented realistic situations that the small number of causal variants with larger effect may lead to susceptibility to common diseases, while large number of variants influencing diseases usually may convey minor effects. The baseline penetrance was fixed at 0.1 to ensure a realistic population prevalence rate for common, complex diseases.

Simulated models are represented as penetrance functions. Penetrance functions define the probability of disease given a particular genotype combination at the disease risk locus. Penetrance functions under three genetic modes (recessive, additive and dominant modes) were explicitly determined, and the summary measures of effect size were calculated as described previously (Culverhouse, et al. 2002). Table 1 illustrates the two-locus penetrance patterns used in the current study as an example, where *k* was the baseline penetrance and θ was defined as the specified relative risk of having a disease between different genotypes for each SNP. Using a similar strategy, 6 SNP combinations models were also generated (details not shown). Balanced (equal allocation) case-control data was simulated with a total sample size of 250 and 500.

All combinations of MAF, RR, genetic modes, and sample sizes were generated, resulting in a total of 102 models in Step 1 simulation study (detailed in Appendix Table 1). For each model, 100 replicate datasets were simulated. Since only models 7–9 represent different

MAF and models 16–17 represent different RR settings, the new EV-GRS method was not applied here.

2.3.2 Step two simulation—After analyzing the results from Step 1, we decided to choose SC- and OR-GRS (which perform better than the other approaches, as discussed in the results) and compared them to our new explained variance weighted GRS. These three methods include only 2 parameters in the statistical model and it is fair to compare them in respect of same number of parameters (and degrees of freedom). In this step, the impacts of RR and MAF were our primary interests, and the specific values chosen are detailed in Appendix Table 2. Three scenarios of interest are considered, including scenario 1 with different RR and same MAF, scenario 2 with same RR and different MAF, and scenario 3 with different RR and different MAF. The scenario with both the same RR and same MAF was considered in Step 1 of the simulations study and thus not included in Step 2.

A total of six risk SNPs were simulated to allow for a wide range for both RR and MAF to be varied across the simulated models. A range of MAF for the risk models was simulated, including 0.01, 0.05 and 0.25, while RR ranges from 1.1, 1.5 to 2 (Figure 1). The impact of varying sample size was extensively investigated, and datasets were simulated with a wide range of sample sizes, ranging from small (100, 200 and 300) to large (400, 500 and 600). Additionally, sample sizes of 250, 700, 800, 900 and 1000 were evaluated, and the results and conclusions were similar to those discussed below (details not included). The baseline penetrance was also varied (0.01 and 0.1). Since the PG-GRS method was not applied to the Step 2 simulations, only additive genetic modes are considered. All combinations of these factors were simulated, resulting in 144 models for Step two simulations. For each model, 100 replicate datasets were simulated.

For both steps of the simulation, datasets were generated using R software (www.r-project.org). A summary of the models simulated in Steps 1 and 2 is shown in Figure 1.

2.4 PERFORMANCE MEASUREMENT

The performance of the genetic risk score methods was measured through power, C-statistic (area under curves) and AIC.

2.4.1 Power—The main focus of our analysis is to find the best method to predict disease status. Since we generated the datasets using pre-defined settings, the "true" model was known. For this simulation study, power was defined as the number of times the model was statistically significant at *P*-value<0.05 across the 100 replicates (Motsinger-Reif, et al. 2008). We used the likelihood ratio test as global measures of model fit. Higher power value indicates better overall performance of the method to detect the risk models using disease-predicting SNPs.

2.4.2 C-statistic (Area under the curve)—Receiver Operating Characteristic (ROC) analysis was performed such that the true positive rate (sensitivity) is plotted in function of the false positive rate (1-specificity) for different cut-off points. The C-statistic, that is area under ROC curves (AUC), was used to estimate the discriminatory capability of each model to distinguish case subjects from control subjects. This statistic is commonly used for model

comparison from the perspective of predictive performance, and we compared the performance of each of the methods using this summary. The larger the C-statistic, the higher the overall accuracy of the model (Janssens and van Duijn 2009).

2.4.3 Akaike information criterion (AIC)—The Akaike information criterion is a measure of the goodness of fit of a statistical model with fewest free parameters. It provides a tool for comparison among different models where the model with minimum AIC value is preferred.

$$AIC = 2I - 2\log\left(L\right) \quad (15)$$

Where *L* is maximized likelihood function for the estimated model and *I* is the number of independently adjusted parameters in the model.

2.5 DATA ANALYSIS

All 100 replicates for all models were analyzed by the current four methods: SC-GRS, OR-GRS, DL-GRS and PG-GRS in Step 1, and SC-GRS, OR-GRS, EV-GRS in Step 2. For SC-GRS, we construct individual risk score profile by counting the number of risk alleles associated with disease. For OR-GRS, to mimic the process of using an estimate from previous meta-analyses, we combine 100 datasets for each model and average the log OR for i-th SNP to generate the weight used in the OR-GRS. For DL-GRS, we use internal weights (from the dataset being analyzed) for each individual SNP. For the PG-GRS, we use two dummy variables for each SNP to indicate the three possible genotypes. For the EV-GRS, we use the same log OR as used in the OR-GRS. Similarly, we combine 100 datasets for each model and estimate the risk allele frequency for i-th SNP as our estimate of the MAF. In practice, the MAF estimate could alternatively refer to external sources such as http://www.ncbi.nlm.nih.gov/projects/SNP/, or http://hapmap.ncbi.nlm.nih.gov/.

Because several of these genetic risk scores incorporate external estimates of the effect sizes of risk SNPs, we incorporated errors in these estimates into the analysis of the Step 2 simulations. While ideally external weight would be well-estimated, we recognize that this may not always be the case, and we did not want to be over-optimistic about the performance of the methods that use these external weights by only assuming accurate estimates. In this analysis, we considered three types of misspecification for the external estimates used to construct the weights: random, overestimated and underestimated. In the random misspecifications, for SNP i, a random error e_i was generated using a uniform distribution ranging from -0.2 to 0.2. The weight with random error for SNP i was calculated as $w_i \pm 0.5$ $SD(w_i)$, where the variance of the weight estimate was taken into account here. To make the weighted genetic risk score more comparable to unweighted risk score, the rescaled versions were used for all OR- and EV-GRS.

Logistic regression modeling was used to fit these data sets using each of the GRS methods, and C statistics, AIC and *P*-value for likelihood ratio test were recorded. For each model, C

statistics and AIC were averaged across the 100 replicates and power was calculated as the times a true model was identified (*P*-value less than 0.05) across 100 replicates. All the results were statistically evaluated for differences in performance under a general linear

results were statistically evaluated for differences in performance under a general linear mixed model and pair-wise contrasts between methods, similarly to the approach described previously (Winham, et al. 2010). Each model was treated as an observation, while the final results for power, C and AIC as response variables separately. In Step 1, RR, MAF, genetic modes, sample sizes and four methods were treated as fixed explanatory variables. In Step 2, RR, MAF, baseline penetrance, sample sizes and three methods were treated as fixed explanatory variables. For a given model, all methods were performed on the same dataset replicates, and therefore methods could be treated as repeated measurements on the same model. A random effect for model was included to account for this dependence. Analysis was performed separately for each scenario in Step 1 and Step 2. Tukey's method was used to make all pairwise comparisons between methods. It is suitable for multiple comparisons since it controls for the experiment-wise error rate (Hsu 1996). These results allow us to identify which factors contribute to the response significantly and further whether or not these methods differ.

All data analyses were performed using SAS v9.2 software.

3 RESULTS

3.1 STEP ONE SIMULATION RESULTS

Appendix Tables 3 and 4 describe the details of the linear mixed model analysis of the analysis results for Step 1 of the simulation. All the simulation factors except the number of SNPs were incorporated into the mixed model. The results of the 2-SNP and 6-SNP models were analyzed separately. Because the trends are clear, details of the results can be found in the Appendix, and the results are summarized here.

First the significance of the simulation factors on the overall results was considered. Details of the analyses can be found in Appendix Tables 3 and 4 and Appendix Figures 1 through 6. The results show that genetic mode and MAF were not statistically significant factors for all three performance metrics (power, C and AIC). As expected, the sample size was a significant factor for each simulation scenario and performance metric except for the C-statistic in the 2 SNPs simulation scenarios. As expected, after accounting for other factors, the fixed effect of RR was statistically significant for all three performance metrics. For the models with the same MAF and RR, genetic mode was also a significant factor. As expected, the power, C and AIC continue to improve as relative risk increases across all simulations and methods.

Most importantly, to compare the results of the four GRS methods, pairwise comparisons were performed, for a total of six comparisons. Separating by the number of deleterious SNPs, SC- and OR-GRS do not differ significantly after adjusting for other simulation factors by all performance metrics, as shown in Appendix Table 5. DL- and PG-GRS differ significantly in terms of C and AIC but not in terms of power. In terms of C, PG-GRS is dramatically larger than DL-GRS and SC- and OR-GRS are smaller. In terms of AIC, these methods differ significantly in 6 SNPs scenarios (*P*-value<0.0001) but not in 2 SNPs

scenarios. In addition, as presented in the simulation design Figure 1 a–b, two SNPs have different MAF settings (0.25 and 0.5) in models 7–9, while SNPs have different RR settings (1.25, 1.5 and 1.75) in models 16–17. Therefore the major difference between SC- and OR-GRS methods could be attributed to these models 7-9 (Appendix Figure 3) and models 16-17 (Appendix Figure 6). It is clear that OR-outperforms SC-GRS by all performance metrics, but the difference is significant only for C (P-value=0.0027) in models 7-9 (Appendix Table 6). Also, we compare SC- and OR-GRS by genetic modes. In models 7–9 with different MAF (Appendix Figure 3 a and d recessive modes), OR-GRS shows superior performance compared to SC-GRS in all performance metrics (larger power and C and smaller AIC). For dominant modes, C is higher for OR- than SC-GRS. No difference was detected between these two methods otherwise. In models 16-17 (different RR), 6 SNPs have different relative risk combinations varying from 1.25, 1.5 to 1.75. The performance of OR-GRS become more comparable to SC-GRS by all three performance metrics across all sample size and genetic modes (Appendix Figure 6), but the difference is not statistically significant (Appendix Table 6). In regards to the impact of MAF, the performance improves for recessive modes but decreases for dominant modes when MAF increases from 0.25 to 0.5 (Appendix Figure 6).

3.2 STEP TWO SIMULATION RESULTS

In Step 2, the results of the mixed model analysis indicated several important trends, and the most important results are summarized in Table 2. In this table, the results of pair-wise contrasts for each of the methods are shown, with significant differences indicated by the inclusion of the "best" method listed in the body of the table. The method with the significantly better performance for a particular performance metric is listed in the body of the table (*P*-value<0.05 for the difference). If no method is indicated, there is no significant difference. The details of the mixed model analysis, including results for the simulation factors themselves, are detailed in Appendix Table 7. The important trends from these analyses are discussed below. The mean performance metrics and the associated Tukey adjusted *P*-values were given in Appendix Tables 8 and 9 respectively.

These results demonstrate that both RR and MAF were significant simulation factors for all three performance measurement metrics (*P*-value<0.0001). The baseline penetrance of the simulated model was a significant factor for all performance metrics in both scenarios 1 and 3, and for the C metric in scenario 2 with small sample sizes, while it is important overall in the large sample sizes. Sample size was a significant factor for power and AIC, but not significant for C in most cases. Methods were significantly different in scenarios 1 and 3, and scenario 2 with small sample, but not for power and C in scenario 2 when the sample size was large.

The results for each of the methods for the simulation scenario 1 (different relative risks and same minor allele frequencies, baseline penetrance=0.1) for the sample size of 200 are shown in Figure 2. The trends for other sample sizes are similar, as detailed in Appendix Table 10. The results of the analyses for simulation scenario 2 for the sample size of 200 are shown in Figure 3, and the results from scenario 2 for the sample size of 500 are shown in Figure 4. The details of the results across all sample sizes are listed in Appendix Table 11.

Similarly, the results of the analyses for simulation scenario 3 for the sample size of 200 are shown in Figure 5. Additionally, the results from scenario 3 for larger sample size of 500 are shown in Figure 6. The details of the results across all sample sizes are listed in Appendix Table 12. For each of these scenarios, the analysis was repeated with no error in the external weight estimate, random error in the weight estimate, and systematic over- or under-estimates in the external weight estimates, and the results are shown across these different conditions in each of the figures. Details of the results across all sample sizes and scenarios are listed in Appendix Tables 10–12.

In scenario 1, the 6 disease risk SNPs have different RR but the same MAF combination. In this case, with the same allele frequencies for each SNP, only OR matters in the weight, and hence OR- and EV-GRS are equivalent. In Figure 2 (scenario 1 with baseline penetrance=0.1 and sample size n=200), we observe that the weighted methods outperform the simple count method, but no difference is detected between OR- and EV-GRS (Table 2). This is true for the correct weight estimate case, as well as when weights had random or overestimated error. When the underestimated weight construction was used, there was no significant difference among all three methods by all performance metrics. In the case of different RR combinations among SNPs, weighted methods using OR significantly outperform the methods that do not use a weighted measure. As expected, with MAF or sample size increasing, the performance of all methods improves overall. In addition, it seems that the performance improves sharply when MAF changes from 0.01 to 0.05, while the improvement speed decreases from 0.05 to 0.25. This pattern was consistent for all baseline penetrance and sample size, and the detailed results were given in Appendix Table 10.

In scenario 2, the 6 disease-risk SNPs have the same RR but different MAF. When the sample size is relatively small (Figure 3), SC- and EV-GRS outperform OR-GRS significantly (Table 2), for correct, random and overestimated weights. No significant difference was detected between SC- and EV-GRS. If the underestimated weight was applied instead, SC-GRS is the best overall and EV-GRS is still preferable than OR-GRS.

However, with large sample size and correct or random weight (Figure 4), no significant differences were detected among weighted and simple summary methods, except that AIC of the EV-GRS method is larger (Table 2). If the weight was overestimated, SC- and EV-GRS would be favorable (Table 2). If the weight was underestimated, SC-GRS would be the best choice and EV- is better than OR-GRS (Table 2). These results demonstrate that in the case of different MAF combinations among SNPs, a weighted method that incorporates allele frequency (EV-GRS) is consistently better than that only involves OR (OR-GRS). Also, the results show that the simple count method (SC-GRS) is preferable than OR-GRS.

Scenario 3 was meant to represent a more realistic complicated situation, where the SNPs involved have different RR and different MAF combinations. Our results show that in the case when the sample size is relatively small (Figure 5), our new weighted method (EV-GRS) outperforms the other methods using all three performance assessment metrics (Table 2). This is consistently true for correct, random and overestimated weights. For underestimated weights, SC-GRS is the best and EV- is better than OR-GRS.

When the sample size is large (Figure 6), it is clear that the weighted methods (OR- and EV-GRS) are significantly preferable than simple count method (SC-GRS) overall, but no significant difference was observed between two weighted methods (Table 2). This is true for correct, random and overestimated weights generally. For underestimated weight, SC- and EV-GRS are favorable.

4 DISCUSSION

In the current study, we evaluated the performance of four existing genetic risk score construction methods: a simple count Genetic Risk Score (SC-GRS), an odds ratio weighted Genetic Risk Score (OR-GRS), a direct logistic regression Genetic Risk Score (DL-GRS), a polygenic Genetic Risk Score (PG-GRS), and then introduced our new weighted method an explained variance weighted Genetic Risk Score (EV-GRS). Three performance metrics (power, C and AIC) were investigated in our data analysis. These risk score methods represent some commonly used approaches in the literature, but it is certainly not an exhaustive list of all genetic risk score models proposed. For instance, Lin et al. (2009) suggest a weighted genetic score using log lower bound odds ratio as weights, to penalize SNPs with less reliable OR estimates (Lin, et al. 2009), and future studies should consider a more comprehensive list of potential methods.

The results of the simulation experiments show several important trends. As expected, in general, sample size and relative risk are important simulation factors for all methods performance in our investigation. As sample size increases, the risk predication becomes more accurate. Similarly, as the relative risk becomes larger, the predication ability improves. However, in respect to the impacts of MAF and genetic mode as simulation factors, the trends are not so clear and straightforward, which merits further investigation. Step 2 results indicate the performance improves sharply when MAF increases for low effect sizes, and then the improvement speed decreases when MAF grows bigger. This pattern also corresponds to the assumption of explained variance (effect size) weight construction that MAF and odds ratio may dominate the overall direction of effect size. Further refinement of the effect estimate may be a promising future direction.

The primary interest of our study is to compare the relative performance of the GRS methods. Power (global model fit) is an important criterion for methods comparisons. In Step 1, SC- and OR-GRS have higher power than DL- and PG-GRS in most of cases, especially for 6 SNPs scenarios (though exceptions to this general trend do exist for some recessive modes). For instance, the power is nearly the same among SC-, OR- and PG-GRS (Appendix Figures 2–4). It is not surprising to observe PG-GRS has the highest C-statistic (discrimination) for all model types, since it has larger number of parameters and therefore better accuracy of discrimination. We also introduce AIC for further evaluation to penalize the large number of parameters. To illustrate the influence of the number of free parameters, 2 SNPs and 6 SNP disease-risk scenarios were simulated and evaluated. For the 2 SNPs scenarios, both SC- and OR-GRS have 2 fixed parameters, while DL-GRS has 3(I+1) and PG-GRS has 5(2I+1) parameters. The difference among the number of parameters is large enough for the sample sizes generated (representing realistic sample sizes in genetic studies) to separate the performance for all model types. Therefore, PG-GRS has higher AIC (worse

performance) than other methods in many cases. For 6 SNPs scenarios, the number of parameters of SC- and OR-GRS remains constant at 2, but DL-GRS has 7 and PG-GRS has 13 parameters. Consistently, the AIC of DL- and PG-GRS are larger than SC- and OR-GRS for all model types, since they were given more penalization. Therefore, for DL- and PG-GRS methods, as the number of SNPs involved in the profile or the corresponding free parameters increases, the influence on the AIC increases dramatically and therefore the performance decreases. In contrast, SC- and OR-GRS methods are not influenced by the number of SNPs involved in terms of AIC. In real data analysis, the number of SNPs used for genetic risk profile is likely to be large, and even much larger than 6 SNPs in our example. From this perspective, SC- and OR-GRS are preferred than DL- and PG-GRS methods.

Since SC- and OR-GRS methods are clearly preferred in terms of power and AIC, we then compare these two methods under scenarios 1–3 (different MAF among SNPs) and 2–3 (different RR). Our results indicate that the OR-GRS method outperforms the SC-GRS.

To further investigate these two methods of interest and the effect of MAF in the weight construction, we introduce explained variance weighted method and compare these three methods in Step 2 under scenarios with a wider range of RR and MAF settings. Results in scenario 1 with different RR indicate that the weighted methods are preferred to the simple count method when relative risks vary among SNPs. When MAF are the same, the odds ratio and explained variance weighted methods are equivalent. When the weight is underestimated, the three methods do not significantly differ (Table 2). Scenario 2 with different MAF is our primary interest to compare OR- and EV-GRS. In the case that all RR among SNPs are similar but the MAF vary greatly, the simple count and explained variance weighted methods significantly outperform the odds ratio weighted method (Table 2), when the sample size is relatively small with correct, random or overestimated weights (Figure 3). When the weights are underestimated, the SC-GRS is best. This is reasonable since in case of small sample sizes that estimates of the odds ratio may not be accurate and precise and it could introduce bias. Therefore, SC- or EV-GRS is preferred to the OR-GRS. When the sample size is large with correct or random weight, no significant differences were detected among three methods except that the AIC of the EV-GRS is large. In scenario 3, different RR and different MAF settings were simulated, and several trends were seen. When the sample size is small, the EV-GRS consistently yielded better performance than the OR-GRS. With large samples, the weighted methods significantly outperformed the simple count methods except in the case of underestimated weights.

In summary, the Step 2 results suggest that when MAF are similar but RR differ, OR- and EV-GRS are the best. When RR are similar but MAF vary, SC-and EV-GRS are preferred in case of small sample size. EV-GRS is unfavorable only in reference to the AIC in large sample sizes and no difference was observed among these three methods otherwise. When effect sizes (both MAF and RR) vary, OR- and EV-GRS are recommended in larger sample, and the EV-GRS is clearly the best in smaller sample size. This pattern is generally consistent if the weight is constructed correctly, or with error of small magnitude, or overestimated. However, if the weight is underestimated, SC-GRS is the best choice overall and EV-GRS is also a good alternative. Therefore, the performance of EV-GRS is fairly

good and robust across the majority of situations simulated and the performance of weight construction, particularly for the more complex situations with relatively small sample sizes.

In conclusion, this study represents the first empirical comparison of genetic risk score models that have been anecdotally used in the literature, and provides some guidance for researchers in selecting a genetic risk score model under a series of different scenarios. The main points are outlined below. First, if the number of available SNPs involved in disease-risk is limited, and main goal of a study is discrimination ability between case and control status, the DL- or PG-GRS may be preferred. Second, when many SNPs were reported to contribute to the disease risk, and the importance of detecting and replicating risk models (power) is main focus, the SC- or the weighted GRS are preferred. Third, in real data analysis when the odds ratio estimates may not be available or may not be very reliable, the SC-GRS is an appropriate choice to avoid bias. The results from the SC-GRS in these situations may not differ drastically since many odds ratio estimates for SNPs are in small magnitude and may be similar across the disease-risk SNPs. Fourth, in another extreme, if previous study(s) provide decently reliable OR estimates and the estimates are very different across SNPs, the weighted GRS methods are preferable.

Lastly but most importantly, our study presents a new genetic risk score method, EV-GRS, that performs very well overall compared to previously introduced methods, both in extreme and general cases. The EV-GRS is highly recommended for several reasons. First, while there were a few situations where the EV-GRS was not clearly the best method, the EV-GRS was the most generally robust method. The EV-GRS should be applied as compared to the other methods so that AIC is not drastically lost when sample size is relatively large and power or discriminatory capability is maximized. It should also be noted that when we choose the odds ratio estimates from meta-analysis and combine the results across different studies, it is possible that different studies may have a wide range of sample and effect sizes. In this case, the OR- or SC-GRS methods may perform better slightly in some scenarios. Generally though, the EV-GRS is the best choice to be used across all scenarios. Second, with respect to the error of weight construction, we may not know whether the weight is correctly constructed or not in reality. The EV-GRS performs well when the weight is correct, or with some minor random error, or overestimated. Furthermore, its performance is still good compared with SC-GRS, even if the weight is underestimated. Without a priori knowledge of potential sample sizes and performance of weight construction, it is desirable to rely on a fairly robust method that tends to offer sufficient power and discriminatory capability for a variety of scenarios.

In considering the interpretation of the results of the simulation study, a few questions arose that we explored with smaller-scale simulation experiments, and include in the discussion here to frame the results of the current study. To test if the overall patterns were susceptible to the number of simulations used, we randomly picked one model and generated 500 replicates. As we did for the other simulations, the three methods (SC-, OR- and EV-GRS) were compared in terms of power, C-statistics and AIC, with different sources of error in constructing the weight (results not shown). The results show that running more simulations would give a very similar pattern to smaller simulation replicates, and the relative performance among these methods is still the same. Hence, the simulation with 100

replicates, which has been extensively applied in the current study, is sufficient to support our conclusion.

Due to the importance of validation in the discovery, development and validation of such risk score modeling, we also incorporated an independent validation step to simulations to obtain the external weight, using the similar strategy as above. One model was randomly replicated, and two weighted methods (OR- and EV-GRS) were compared. The SC-GRS does not require any external weight, and so we did not include it in this comparison. Moreover, we did not include the DL- and PG-GRS in the with-validation simulation because they could only apply the internal datasets for constructing the weights. Rather than using the internal weights (without-validation), another 100 independent datasets were generated to calculate the external weights (with-validation), with different sources of error. Results show that there is no significant difference in the performance metrics between with-and without-validation weights (results not shown). Furthermore, the pattern of relative performance is similar that leads to the same conclusion. Therefore, the without-validation weights could be sufficient to demonstrate the relative performance of these methods.

Understanding that the current simulations included simple genetic model, we also wanted to consider the case where there is dependency between SNPs. We considered true risk models involving two disease-causing SNPs (SNP1 and SNP2). We assume SNP1 is under Hardy-Weinberg Equilibrium (HWE), and there is linkage disequilibrium (LD) between SNP2 and SNP3. Two models are considered: (1) a genetic risk score model with the true disease-causing SNPs: SNP1+SNP2, and (2) a genetic risk score model with the true SNPs plus the additional SNP in LD: SNP1+SNP2+SNP3. Data were simulated under different settings of genotype frequencies and relative risks among these SNPs. We then evaluated the relative performance of the SC-, OR- and EV-GRS methods using these two different risk score formulations, to see if the methods were robust to such dependence between SNPs (data not shown). Consistently, the results show that SC-GRS performs much better under the true model (with only the disease-causing SNPs) than the model that includes the true SNPs plus additional SNP in LD, by all performance metrics. However, there was no significant difference for OR- and EV-GRS under these two models (with or without the third SNP in LD). Also, both the OR- and EV-GRS outperform SC-GRS, and these results strengthen the recommendation to use one of the weighted approaches. It is clear that SC-GRS may be sensitive to the true model. However, it is impractical to include the exact true causative SNPs in the risk model. More often, we may involve the potential "tagging" SNPs that may be in LD with the true disease-causing variants. It may be not of primary interest to dissect the "tagging" SNP from the true disease-causing SNPs for the purpose of prediction. In this case, weighted methods (OR- and EV-GRS) are more robust and preferable.

While the current extensive study shows the promise of the EV-GRS method, future studies should explore its performance in a broader range of realistic and complex scenarios, for example, with more true causal variants involved in the evaluation of the methods for both methodological comparisons and evaluations of the new EV-GRS model. In existing genetic risk models that have been built for human diseases, a wide range of the number of risk SNPs have been incorporated, such as 6 SNPs for age-related macular degeneration (Seddon, et al. 2009), 15 SNPs for Type 2 diabetes (Lin, et al. 2009), and 12 or 101 SNPs for

cardiovascular disease (Paynter, et al. 2010). It seems that the number of SNPs involved in the risk model may depend on the disease etiology. Given this broad range, it is expected that incorporating a large number of SNPs into genetic risk models could be one of the important future directions. Apart from the genetic factors, clinical information could also be included in the prediction model, as a summary "clinical risk score" or a set of covariates, to make the application more practical. In the future, as the unparalleled development of technologies, more precise and stable effect size estimates for susceptibility SNPs will be obtained. Appropriate analytical strategies, combined with environmental risk factors and clinical information, will be imperative to predict the disease risk and to translate associations to clinical utility. More suitable and comprehensive weight construction strategies may be one of the solutions.

Acknowledgments

We would like to thank Howard McLeod for helpful discussions on risk score modeling, and the anonymous reviewers for comments and suggestions.

APPENDIX

Figure 1. Model comparisons in Step 1 Scenario 1-1 (SNP=2, MAF=0.25).

Figure 2. Model comparisons in Step 1 Scenario 1-2 (SNP=2, MAF=0.5).

Figure 4. Model comparisons in Step 1 Scenario 2-1 (SNP=6, MAF=0.25).

Figure 5. Model comparisons in Step 1 Scenario 2-2 (SNP=6, MAF=0.5).

Figure 6. Model comparisons in Step 1 Scenario 2-3 (SNP=6, RR=1.25/1.5/1.75).

Table 1

Relative Risk (RR) and Minor Allele Frequency (MAF) specifications in Step 1 simulation.

				RR			MAF		
Scenario		Model	1/1-2 ^a	2/3-4 ^b	5–6	1/1-2 ^a	2/3–4 ^b	5–6	Prevalence
1 (2SNPs)	1-1	1	1.5	1.5		0.25	0.25		0.125
		2	2	2		0.25	0.25		0.15
		3	3	3		0.25	0.25		0.2
	1-2	4	1.5	1.5		0.5	0.5		0.15
		5	2	2		0.5	0.5		0.2
		6	3	3		0.5	0.5		0.3
	1-3	7	1.5	1.5		0.25	0.5		0.1375
		8	2	2		0.25	0.5		0.175
		9	3	3		0.25	0.5		0.25
2 (6 SNPs)	2-1	10	1.25	1.25	1.25	0.25	0.25	0.25	0.1375
		11	1.5	1.5	1.5	0.25	0.25	0.25	0.175
		12	1.75	1.75	1.75	0.25	0.25	0.25	0.2125
	2-2	13	1.25	1.25	1.25	0.5	0.5	0.5	0.175
		14	1.5	1.5	1.5	0.5	0.5	0.5	0.25

				RR			MAF		
Scenario		Model	1/1-2 ^a	2/3-4 ^b	5–6	1/1-2 ^a	2/3-4 ^b	5–6	Prevalence
		15	1.75	1.75	1.75	0.5	0.5	0.5	0.325
	2-3	16	1.25	1.5	1.75	0.25	0.25	0.25	0.175
		17	1.25	1.5	1.75	0.5	0.5	0.5	0.25

^a1 denotes SNP1 for scenario 1 (2 disease-causing SNPs), and 1–2 denotes SNP1 and SNP2 for scenario 2 (6 disease-causing SNPs).

^b2 denotes SNP2 for scenario 1 (2 disease-causing SNPs), and 3–4 denotes SNP3 and SNP4 for scenario 2 (6 disease-causing SNPs).

Table 2	
---------	--

Relative Risk (RR) and Minor Allele Frequency (MAF) specifications in Step 2 simulation.

			RR			MAF		
Scenario	Model	1–2	3–4	5–6	1–2	3–4	5–6	Prevalenced
1^a	1	1.1	1.5	2	0.01	0.01	0.01	0.1032
	2	1.1	1.5	2	0.05	0.05	0.05	0.116
	3	1.1	1.5	2	0.25	0.25	0.25	0.18
2^b	4	1.1	1.1	1.1	0.01	0.05	0.25	0.1062
	5	1.5	1.5	1.5	0.01	0.05	0.25	0.131
	6	2	2	2	0.01	0.05	0.25	0.162
3 ^c	7	1.1	1.5	2	0.01	0.05	0.25	0.1552
	8	1.1	1.5	2	0.01	0.25	0.05	0.1352
	9	1.1	1.5	2	0.05	0.01	0.25	0.152
	10	1.1	1.5	2	0.05	0.25	0.01	0.128
	11	1.1	1.5	2	0.25	0.01	0.05	0.116
	12	1.1	1.5	2	0.25	0.05	0.01	0.112

^aScenario 1 is different RR and same MAF among 6 SNPs.

^bScenario 2 is same RR and different MAF among 6 SNPs.

^cScenario 3 is different RR and different MAF among 6 SNPs.

^d Prevalence is based on the baseline penetrance 0.1.

Table 3

P-values ^a of simulation factors on Power, C and AIC by 2 scenarios in Step 1 simulation.

	Scen	ario 1 (2 S	NPs)	Scenario 2 (6 SNPs)				
Effect	Power	С	AIC	Power	С	AIC		
RR	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001		
MAF	0.4030	0.6824	0.9948	0.7168	0.8848	0.6516		
Genetic mode	0.1639	0.2344	0.3627	0.6138	0.5871	0.5286		
Sample size	<.0001	0.4931	<.0001	<.0001	0.0008	<.0001		
Method	<.0001	<.0001	0.0025	<.0001	<.0001	<.0001		

^aP-values less than 0.05 are considered statistically significant.

Table 4

P-values ^{*a*} of simulation factors on Power, C and AIC by each scenario in Step 1 simulation.

		Scena	ario 1 (2 S	NPs)	Scen	ario 2 (6 S	NPs)
Scenario	Effect	Power	С	AIC	Power	С	AIC
-1	RR/MAF b	<.0001	<.0001	0.0004	<.0001	<.0001	<.0001
	Genetic mode	0.0005	<.0001	0.0130	<.0001	<.0001	0.0015
	Sample size	0.0305	0.3909	<.0001	0.0002	<.0001	<.0001
	Method	0.0126	<.0001	0.3377	<.0001	<.0001	<.0001
-2	RR/MAF ^b	<.0001	<.0001	<.0001	<.0001	<.0001	0.0001
	Genetic mode	0.0113	<.0001	0.0238	0.0014	0.0002	0.0095
	Sample size	0.0009	0.3698	<.0001	0.0009	0.0004	<.0001
	Method	0.0016	<.0001	0.1049	<.0001	<.0001	<.0001
-3	RR/MAF b	<.0001	<.0001	<.0001	0.9229	0.8859	0.9318
	Genetic mode	0.6006	0.0838	0.4973	0.9315	0.9136	0.8874
	Sample size	0.0004	0.3020	<.0001	0.0642	0.2527	<.0001
	Method	0.0002	<.0001	0.1496	<.0001	<.0001	<.0001

 ^{a}P -values less than 0.05 are considered statistically significant.

^bRR/MAF denotes MAF effect only for scenarios 2–3 and RR otherwise.

Table 5

Adjusted *P*-values ^a of pair-wise method comparisons on Power, C and AIC by 2 scenarios in Step 1 simulation.

	Scen	ario 1 (2 S	SNPs)	Scenario 2 (6 SNPs)			
Method Comparisons	Power	С	AIC	Power	С	AIC	
SC—OR	0.9841	0.0775	0.9781	0.6746	0.4668	0.6354	
SC—DL	<.0001	<.0001	0.4213	<.0001	<.0001	<.0001	
SC—PG	<.0001	<.0001	0.1007	<.0001	<.0001	<.0001	
OR—DL	<.0001	<.0001	0.2187	<.0001	<.0001	<.0001	
OR—PG	<.0001	<.0001	0.2296	<.0001	<.0001	<.0001	
DL—PG	0.9471	<.0001	0.001	0.9244	<.0001	<.0001	

 a These *P*-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 6

Adjusted *P*-values ^a of pair-wise method comparisons on Power, C and AIC by each scenario in Step 1 simulation.

		Scenario 1 (2 SNPs)			Scenario 2 (6 SNPs)		
Scenario	Method Comparisons	Power	С	AIC	Power	С	AIC
-1	SC—OR	0.9989	0.9900	1.0000	0.9992	0.9914	0.9995
	SC—DL	0.0339	0.0003	0.5813	<.0001	<.0001	<.0001
	SC—PG	0.1613	<.0001	0.9603	<.0001	<.0001	<.0001
	OR—DL	0.0485	0.0008	0.5738	<.0001	<.0001	<.0001

		Scen	ario 1 (2 S	SNPs)	Scen	ario 2 (6 S	SNPs)
Scenario	Method Comparisons	Power	С	AIC	Power	С	AIC
	OR—PG	0.2118	<.0001	0.963	<.0001	<.0001	<.0001
	DL—PG	0.8981	<.0001	0.2993	0.7850	<.0001	<.0001
-2	SC—OR	0.9992	0.9877	1.0000	1.0000	0.9872	0.9989
	SC—DL	0.0147	0.0001	0.7805	<.0001	<.0001	<.0001
	SC—PG	0.0563	<.0001	0.4102	<.0001	<.0001	<.0001
	OR—DL	0.0102	0.0003	0.7736	<.0001	<.0001	<.0001
	OR—PG	0.0410	<.0001	0.4173	<.0001	<.0001	<.0001
	DL—PG	0.9520	<.0001	0.071	0.9826	<.0001	<.0001
-3	SC—OR	0.8909	0.0027	0.9158	0.1127	0.1711	0.0861
	SC—DL	0.0333	<.0001	0.9631	<.0001	<.0001	<.0001
	SC—PG	0.0118	<.0001	0.3122	<.0001	<.0001	<.0001
	OR—DL	0.0047	0.0229	0.6740	<.0001	<.0001	<.0001
	OR—PG	0.0014	<.0001	0.6937	<.0001	<.0001	<.0001
	DL—PG	0.9792	<.0001	0.1305	0.9910	<.0001	<.0001

^aThese *P*-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 7

P-values ^{*a*} of simulation factors on Power, C and AIC in Step 2 simulation (using correct weight).

		Scenar	rio -1 ^c (10	0-300)	Scenar	Scenario -2 ^c (400-600)				
Scenario	Effect	Power	С	AIC	Power	С	AIC			
1	RR/MAF b	<.0001	<.0001	<.0001						
	Penetrance	0.0165	<.0001	0.0142						
	Sample size	<.0001	0.0704	<.0001						
	Method	<.0001	<.0001	<.0001						
2	RR/MAF b	<.0001	<.0001	0.0001	<.0001	<.0001	<.0001			
	Penetrance	0.4413	0.0260	0.3613	0.0398	0.0039	0.0362			
	Sample size	0.0055	0.2784	<.0001	0.0015	0.9165	<.0001			
	Method	<.0001	0.0018	0.0003	0.3532	0.9384	0.0006			
3	RR/MAF b	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001			
	Penetrance	0.0084	<.0001	0.0088	<.0001	<.0001	<.0001			
	Sample size	<.0001	0.0020	<.0001	<.0001	0.7237	<.0001			
	Method	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001			

 ^{a}P -values less than 0.05 are considered statistically significant.

^bRR/MAF denotes MAF effect only for scenario 1, RR effect for scenario 2 and both RR and MAF effect for scenario 3. ^cFor scenario 1, sample size is 100–600 and for scenarios 2 and 3, sample size is 100–300.

Table 8

Mean of Power, C and AIC in Step 2 simulation.

			Power			С			AIC	
Scenario	Weight <i>a</i>	SC	OR	EV	SC	OR	EV	SC	OR	EV
1	Correct	37.111	46.444	46.528	0.546	0.553	0.553	485.28	483.95	483.95
100-600	Random		46.083	46.056		0.552	0.552		484.01	484.01
	Overestimate		44.333	44.778		0.552	0.553		484.15	484.13
	Underestimate		34.667	35.111		0.544	0.544		485.06	485.03
2	Correct	32.778	28.278	31.889	0.562	0.558	0.562	277.71	278.08	277.78
100-300	Random		28.500	31.444		0.559	0.562		278.05	277.82
	Overestimate		19.056	30.667		0.553	0.560		279	277.87
	Underestimate		9.611	21.056		0.533	0.547		279.83	278.9
2	Correct	54.500	54.111	53.889	0.557	0.556	0.556	689.70	689.78	689.99
400-600	Random		54.333	53.722		0.556	0.556		689.84	690.07
	Overestimate		49.389	54.222		0.555	0.557		690.69	689.83
	Underestimate		41.056	49.333		0.548	0.552		691.64	690.76
3	Correct	31.778	34.639	37.611	0.562	0.562	0.566	277.92	277.64	277.38
100-300	Random		34.278	37.306		0.562	0.565		277.67	277.43
	Overestimate		22.472	34.917		0.555	0.564		278.8	277.65
	Underestimate		10.75	21.444		0.533	0.548		279.79	278.87
3	Correct	58.278	68.417	66.667	0.557	0.563	0.562	690.33	689	689.21
400-600	Random		68.222	66.222		0.562	0.561		689.1	689.31
	Overestimate		63.111	65.694		0.561	0.562		690.02	689.31
	Underestimate		44.528	55.417		0.550	0.554		691.95	690.39

 a Four weight estimate methods for OR and EV: correct, random, overestimate and underestimate.

Table 9

Adjusted *P*-values ^{*a*} of pair-wise method comparisons on Power, C and AIC in Step 2 simulation.

			Power			С			AIC	
Scenario	Weight ^a	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV
1	Correct	<.0001	<.0001	0.9943	<.0001	<.0001	0.9992	<.0001	<.0001	0.9999
100-600	Random	<.0001	<.0001	0.9993	<.0001	<.0001	0.9998	<.0001	<.0001	0.9997
	Over-est	<.0001	<.0001	0.8645	<.0001	<.0001	0.9891	<.0001	<.0001	0.9876
	Under-est	0.1412	0.2657	0.9352	0.1554	0.2372	0.9708	0.4293	0.3570	0.9905
2	Correct	<.0001	0.6140	0.0014	0.0025	0.8339	0.0114	0.0004	0.6873	0.0038
100-300	Random	<.0001	0.2776	0.0043	0.0022	0.7987	0.0119	0.0003	0.3532	0.0124
	Over-est	<.0001	0.6269	<.0001	<.0001	0.1932	<.0001	<.0001	0.7729	0.0002
	Under-est	<.0001	0.0155	0.0185	<.0001	<.0001	<.0001	<.0001	0.0100	0.0510
2	Correct	0.6310	0.3287	0.8590	0.9351	0.9691	0.9933	0.4783	0.0006	0.0137
400-600	Random	0.9462	0.3135	0.4835	0.533	0.3316	0.9306	0.1807	<.0001	0.0090
	Over-est	0.0008	0.9738	0.0015	0.0014	0.8099	0.0002	0.0001	0.8115	0.0008

		· · · · · · · · · · · · · · · · · · ·	Power			С		· · · · · · · · · · · · · · · · · · ·	AIC	
Scenario	Weight ^a	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV
	Under-est	<.0001	0.1673	0.0145	<.0001	0.0002	<.0001	<.0001	0.0046	0.0217
3	Correct	0.0103	<.0001	0.0074	0.8601	<.0001	<.0001	0.0028	<.0001	0.0060
100-300	Random	0.0224	<.0001	0.0044	0.7202	<.0001	0.0003	0.0064	<.0001	0.0110
	Over-est	<.0001	0.1595	<.0001	<.0001	0.1385	<.0001	<.0001	0.2138	<.0001
	Under-est	<.0001	0.0001	<.0001	<.0001	<.0001	<.0001	<.0001	0.0001	0.0002
3	Correct	<.0001	<.0001	0.3865	<.0001	<.0001	0.2557	<.0001	<.0001	0.1947
400-600	Random	<.0001	<.0001	0.2933	<.0001	<.0001	0.1219	<.0001	<.0001	0.1833
	Over-est	0.0015	<.0001	0.1328	<.0001	<.0001	0.3372	0.1408	<.0001	0.0001
	Under-est	<.0001	0.3666	<.0001	<.0001	0.0171	<.0001	<.0001	0.9713	<.0001

 a These *P*-values are adjusted by Tukey method and less than 0.05 are considered statistically significant.

Table 10-1

Model specification in Step 2 scenario 1 simulation.

			Model	Specificat	ion		
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-6	Penetrance	n
1	1	1.1	1.5	2	0.01	0.1	100
2	2	1.1	1.5	2	0.05	0.1	100
3	3	1.1	1.5	2	0.25	0.1	100
4	1	1.1	1.5	2	0.01	0.1	200
5	2	1.1	1.5	2	0.05	0.1	200
6	3	1.1	1.5	2	0.25	0.1	200
7	1	1.1	1.5	2	0.01	0.1	300
8	2	1.1	1.5	2	0.05	0.1	300
9	3	1.1	1.5	2	0.25	0.1	300
10	1	1.1	1.5	2	0.01	0.1	400
11	2	1.1	1.5	2	0.05	0.1	400
12	3	1.1	1.5	2	0.25	0.1	400
13	1	1.1	1.5	2	0.01	0.1	500
14	2	1.1	1.5	2	0.05	0.1	500
15	3	1.1	1.5	2	0.25	0.1	500
16	1	1.1	1.5	2	0.01	0.1	600
17	2	1.1	1.5	2	0.05	0.1	600
18	3	1.1	1.5	2	0.25	0.1	600
19	1	1.1	1.5	2	0.01	0.01	100
20	2	1.1	1.5	2	0.05	0.01	100
21	3	1.1	1.5	2	0.25	0.01	100
22	1	1.1	1.5	2	0.01	0.01	200
23	2	1.1	1.5	2	0.05	0.01	200
24	3	1.1	1.5	2	0.25	0.01	200
25	1	1.1	1.5	2	0.01	0.01	300
26	2	1.1	1.5	2	0.05	0.01	300

			Model	Specificati	ion		
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-6	Penetrance	n
27	3	1.1	1.5	2	0.25	0.01	300
28	1	1.1	1.5	2	0.01	0.01	400
29	2	1.1	1.5	2	0.05	0.01	400
30	3	1.1	1.5	2	0.25	0.01	400
31	1	1.1	1.5	2	0.01	0.01	500
32	2	1.1	1.5	2	0.05	0.01	500
33	3	1.1	1.5	2	0.25	0.01	500
34	1	1.1	1.5	2	0.01	0.01	600
35	2	1.1	1.5	2	0.05	0.01	600
36	3	1.1	1.5	2	0.25	0.01	600

Table '	10-2
---------	------

Power in Step 2 scenario 1 simulation.

	Power										
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
1	8	13	14	14	14	8	7	8	8		
2	13	19	19	19	18	14	15	10	10		
3	32	39	38	41	41	35	35	16	15		
4	12	14	15	13	14	11	13	7	7		
5	26	38	37	36	36	39	40	16	16		
6	47	64	64	63	63	64	65	52	53		
7	5	15	15	15	15	11	11	3	3		
8	36	50	50	49	49	46	46	24	27		
9	66	84	84	83	83	85	85	78	78		
10	14	17	17	17	18	19	19	7	8		
11	55	69	70	69	69	66	67	58	58		
12	82	96	96	95	95	92	92	95	95		
13	23	24	24	26	26	26	26	6	6		
14	56	70	71	71	71	72	73	65	66		
15	93	98	98	98	98	98	98	97	97		
16	21	25	24	25	25	25	25	5	5		
17	72	82	83	83	82	79	80	74	75		
18	87	97	97	98	98	97	97	96	96		
19	12	12	12	12	12	10	10	8	9		
20	16	19	17	17	16	12	13	5	5		
21	15	23	23	22	22	22	22	7	7		
22	8	15	15	14	14	13	13	4	5		
23	25	33	33	33	32	28	31	2	3		
24	35	51	51	50	50	45	45	39	39		

				1	Power				
		Correct Rar			dom	Overes	stimate	Undere	estimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
25	10	9	9	7	7	13	13	11	11
26	27	36	36	34	34	30	34	18	18
27	46	64	64	64	64	62	62	52	53
28	17	17	19	16	17	14	15	10	9
29	42	49	49	51	51	44	45	40	43
30	59	80	80	77	77	80	79	73	73
31	14	23	23	22	22	18	19	2	2
32	47	59	60	60	60	56	56	41	43
33	67	84	84	81	81	77	77	74	74
34	17	21	21	21	21	23	22	4	5
35	56	70	70	71	71	72	72	57	57
36	75	92	92	92	92	90	90	84	85

Table 10-3

C in Step 2 scenario 1 simulation.

	С									
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate	
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV	
1	0.5289	0.5261	0.5256	0.5252	0.5251	0.5271	0.5272	0.5249	0.5249	
2	0.5571	0.5618	0.5605	0.5618	0.5622	0.5600	0.5624	0.5462	0.5466	
3	0.5813	0.5916	0.5915	0.5925	0.5923	0.5908	0.5925	0.5636	0.5631	
4	0.5235	0.5167	0.5165	0.5174	0.5173	0.5225	0.5224	0.5161	0.5159	
5	0.5516	0.5582	0.5579	0.5579	0.5576	0.5579	0.5566	0.5425	0.5445	
6	0.5749	0.5947	0.5946	0.5942	0.5941	0.5933	0.5933	0.5818	0.5822	
7	0.5175	0.5164	0.5164	0.5164	0.5163	0.5160	0.5160	0.5143	0.5143	
8	0.5477	0.5566	0.5566	0.5559	0.5560	0.5545	0.5545	0.5400	0.5410	
9	0.5750	0.5922	0.5921	0.5917	0.5917	0.5914	0.5915	0.5865	0.5866	
10	0.5194	0.5203	0.5202	0.5202	0.5203	0.5194	0.5195	0.5151	0.5153	
11	0.5516	0.5593	0.5594	0.5588	0.5589	0.5593	0.5595	0.5528	0.5532	
12	0.5760	0.5940	0.5941	0.5932	0.5932	0.5929	0.5929	0.5905	0.5906	
13	0.5169	0.5160	0.5161	0.5163	0.5162	0.5166	0.5164	0.5100	0.5100	
14	0.5499	0.5582	0.5583	0.5583	0.5583	0.5577	0.5578	0.5491	0.5497	
15	0.5764	0.5945	0.5946	0.5942	0.5942	0.5938	0.5939	0.5919	0.5919	
16	0.5177	0.5161	0.5161	0.5162	0.5162	0.5179	0.5177	0.5046	0.5046	
17	0.5498	0.5574	0.5575	0.5574	0.5574	0.5570	0.5571	0.5531	0.5530	
18	0.5762	0.5937	0.5937	0.5931	0.5931	0.5930	0.5931	0.5912	0.5913	
19	0.5308	0.5219	0.5224	0.5216	0.5214	0.5274	0.5274	0.5252	0.5262	
20	0.5552	0.5563	0.5570	0.5558	0.5567	0.5515	0.5520	0.5416	0.5437	
21	0.5687	0.5775	0.5775	0.5776	0.5777	0.5753	0.5759	0.5468	0.5472	

				(С				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
22	0.5222	0.5200	0.5197	0.5213	0.5209	0.5209	0.5210	0.5161	0.5173
23	0.5484	0.5494	0.5504	0.5500	0.5494	0.5517	0.5515	0.5297	0.5300
24	0.5646	0.5801	0.5803	0.5785	0.5785	0.5781	0.5783	0.5658	0.5662
25	0.5186	0.5182	0.5182	0.5178	0.5178	0.5173	0.5173	0.5162	0.5161
26	0.5414	0.5466	0.5460	0.5455	0.5454	0.5459	0.5460	0.5274	0.5274
27	0.5629	0.5761	0.5761	0.5756	0.5756	0.5748	0.5750	0.5675	0.5676
28	0.5187	0.5160	0.5158	0.5158	0.5156	0.5180	0.5177	0.5151	0.5159
29	0.5440	0.5488	0.5488	0.5488	0.5488	0.5485	0.5489	0.5377	0.5377
30	0.5628	0.5796	0.5796	0.5792	0.5792	0.5784	0.5784	0.5747	0.5749
31	0.5175	0.5167	0.5167	0.5167	0.5170	0.5172	0.5168	0.5098	0.5100
32	0.5414	0.5473	0.5473	0.5478	0.5476	0.5468	0.5468	0.5405	0.5407
33	0.5594	0.5720	0.5720	0.5715	0.5715	0.5708	0.5709	0.5682	0.5682
34	0.5157	0.5148	0.5146	0.5145	0.5146	0.5159	0.5159	0.5074	0.5074
35	0.5452	0.5513	0.5512	0.5509	0.5508	0.5511	0.5511	0.5433	0.5433
36	0.5616	0.5766	0.5767	0.5762	0.5762	0.5757	0.5757	0.5735	0.5736

Table 10-4

AIC in Step 2 scenario 1 simulation.

AIC										
		Cor	rect	Ran	dom	Overes	timate	Undere	stimate	
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV	
1	141.497	141.268	141.257	141.244	141.230	141.435	141.421	141.551	141.537	
2	140.826	140.482	140.473	140.469	140.457	140.684	140.658	141.362	141.361	
3	139.701	138.791	138.791	138.834	138.832	138.974	138.964	140.702	140.683	
4	279.719	279.596	279.589	279.614	279.606	279.590	279.558	280.114	280.112	
5	278.581	277.748	277.743	277.777	277.776	277.937	277.908	279.324	279.258	
6	276.917	274.808	274.809	274.855	274.852	275.079	275.066	276.001	275.977	
7	418.776	418.157	418.156	418.175	418.176	418.565	418.547	419.050	419.042	
8	416.336	415.243	415.247	415.297	415.305	415.383	415.364	417.225	417.158	
9	413.593	410.832	410.832	410.984	410.979	411.145	411.127	411.821	411.803	
10	556.599	556.294	556.275	556.273	556.256	556.352	556.331	557.248	557.226	
11	553.149	551.335	551.339	551.457	551.465	551.560	551.518	552.539	552.467	
12	550.258	546.800	546.800	546.991	546.992	547.061	547.040	547.515	547.511	
13	695.081	694.451	694.452	694.398	694.397	694.880	694.841	696.060	696.048	
14	691.615	689.568	689.577	689.667	689.680	689.834	689.779	690.906	690.850	
15	686.813	682.601	682.602	682.787	682.784	682.920	682.892	683.546	683.545	
16	833.293	833.081	833.073	833.044	833.030	833.080	833.062	834.681	834.693	
17	829.084	826.743	826.740	826.819	826.818	827.036	826.979	827.702	827.662	
18	823.178	818.273	818.275	818.567	818.570	818.502	818.483	819.156	819.158	

	AIC									
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate	
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV	
19	141.383	141.054	141.053	141.088	141.086	141.292	141.284	141.458	141.464	
20	140.935	140.698	140.687	140.736	140.726	140.935	140.910	141.388	141.372	
21	140.600	140.189	140.190	140.213	140.213	140.302	140.294	141.547	141.539	
22	280.015	279.603	279.594	279.566	279.558	279.803	279.787	280.388	280.390	
23	278.947	278.485	278.493	278.523	278.532	278.599	278.577	280.200	280.168	
24	277.737	276.265	276.264	276.369	276.366	276.535	276.518	277.563	277.534	
25	418.531	418.363	418.357	418.367	418.362	418.374	418.368	418.679	418.669	
26	417.199	416.433	416.434	416.473	416.471	416.598	416.563	418.085	418.014	
27	415.228	413.490	413.489	413.581	413.579	413.735	413.719	414.651	414.627	
28	556.820	556.702	556.687	556.704	556.687	556.689	556.675	557.096	557.080	
29	554.618	553.549	553.549	553.603	553.600	553.764	553.716	555.042	554.957	
30	552.460	549.668	549.667	549.807	549.807	549.954	549.933	550.555	550.535	
31	695.101	694.750	694.724	694.753	694.724	695.055	695.018	696.118	696.125	
32	692.957	691.696	691.700	691.801	691.806	691.894	691.863	693.101	693.033	
33	690.566	688.388	688.389	688.559	688.557	688.616	688.595	689.283	689.280	
34	833.853	833.282	833.286	833.300	833.301	833.365	833.362	834.887	834.874	
35	830.628	829.145	829.150	829.221	829.217	829.356	829.309	830.246	830.190	
36	827.601	824.248	824.248	824.449	824.443	824.548	824.521	825.220	825.204	

Model specification in Step 2 scenario 2 simulation.

			Model	Specification	n		
Model	Туре	OR1-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n
1	1	1.1	0.01	0.05	0.25	0.1	100
2	2	1.5	0.01	0.05	0.25	0.1	100
3	3	2	0.01	0.05	0.25	0.1	100
4	1	1.1	0.01	0.05	0.25	0.1	200
5	2	1.5	0.01	0.05	0.25	0.1	200
6	3	2	0.01	0.05	0.25	0.1	200
7	1	1.1	0.01	0.05	0.25	0.1	300
8	2	1.5	0.01	0.05	0.25	0.1	300
9	3	2	0.01	0.05	0.25	0.1	300
10	1	1.1	0.01	0.05	0.25	0.1	400
11	2	1.5	0.01	0.05	0.25	0.1	400
12	3	2	0.01	0.05	0.25	0.1	400
13	1	1.1	0.01	0.05	0.25	0.1	500
14	2	1.5	0.01	0.05	0.25	0.1	500
15	3	2	0.01	0.05	0.25	0.1	500
16	1	1.1	0.01	0.05	0.25	0.1	600

	Model Specification											
Model	Туре	OR1-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n					
17	2	1.5	0.01	0.05	0.25	0.1	600					
18	3	2	0.01	0.05	0.25	0.1	600					
19	1	1.1	0.01	0.05	0.25	0.01	100					
20	2	1.5	0.01	0.05	0.25	0.01	100					
21	3	2	0.01	0.05	0.25	0.01	100					
22	1	1.1	0.01	0.05	0.25	0.01	200					
23	2	1.5	0.01	0.05	0.25	0.01	200					
24	3	2	0.01	0.05	0.25	0.01	200					
25	1	1.1	0.01	0.05	0.25	0.01	300					
26	2	1.5	0.01	0.05	0.25	0.01	300					
27	3	2	0.01	0.05	0.25	0.01	300					
28	1	1.1	0.01	0.05	0.25	0.01	400					
29	2	1.5	0.01	0.05	0.25	0.01	400					
30	3	2	0.01	0.05	0.25	0.01	400					
31	1	1.1	0.01	0.05	0.25	0.01	500					
32	2	1.5	0.01	0.05	0.25	0.01	500					
33	3	2	0.01	0.05	0.25	0.01	500					
34	1	1.1	0.01	0.05	0.25	0.01	600					
35	2	1.5	0.01	0.05	0.25	0.01	600					
36	3	2	0.01	0.05	0.25	0.01	600					

Power in Step 2 scenario 2 simulation.

	Power										
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
1	7	6	7	6	7	7	8	7	10		
2	15	12	13	11	14	9	11	8	6		
3	44	31	41	32	42	20	40	5	23		
4	5	5	7	5	6	6	9	8	10		
5	32	21	29	19	28	16	27	5	14		
6	69	59	70	62	70	35	66	23	57		
7	10	10	10	11	10	6	6	7	7		
8	46	32	44	36	41	20	42	5	19		
9	89	86	87	87	87	57	87	31	71		
10	5	5	7	5	6	6	6	6	7		
11	52	50	51	51	52	40	52	13	37		
12	93	92	92	92	92	85	93	77	89		
13	9	11	10	13	11	9	10	6	5		
14	67	68	68	67	69	59	68	45	62		

				I	Power				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
15	98	98	98	98	98	95	98	97	96
16	14	15	13	15	11	13	13	5	5
17	71	69	71	70	71	72	71	65	68
18	98	99	99	99	99	98	99	99	99
19	6	7	5	4	5	8	5	7	8
20	15	18	16	15	13	9	12	10	12
21	33	27	35	25	36	18	31	11	8
22	7	3	6	3	5	5	9	7	5
23	26	23	24	23	23	16	24	4	6
24	66	62	63	64	65	39	62	6	35
25	5	5	6	4	6	3	5	1	5
26	35	26	32	27	31	16	29	5	18
27	80	76	79	79	77	53	79	23	65
28	5	4	5	4	6	9	4	10	9
29	49	47	46	47	44	34	48	12	37
30	89	87	85	88	84	73	86	53	76
31	7	6	9	8	9	6	6	6	9
32	55	55	54	55	55	40	58	18	47
33	93	93	92	92	91	92	92	92	92
34	6	9	7	9	8	7	8	4	4
35	73	71	67	71	66	61	68	39	51
36	97	95	96	94	95	90	96	92	95

C in Step 2 scenario 2 simulation.

	с											
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate			
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV			
1	0.5416	0.5286	0.5354	0.5293	0.5368	0.5367	0.5403	0.5358	0.5432			
2	0.5626	0.5616	0.5641	0.5632	0.5647	0.5475	0.5587	0.5230	0.5281			
3	0.6005	0.5975	0.6024	0.5979	0.6015	0.5873	0.6012	0.5461	0.5744			
4	0.5325	0.5201	0.5307	0.5185	0.5299	0.5186	0.5294	0.5179	0.5237			
5	0.5609	0.5574	0.5612	0.5584	0.5615	0.5496	0.5601	0.5224	0.5445			
6	0.5989	0.6008	0.5997	0.5980	0.5969	0.5986	0.5988	0.5758	0.5887			
7	0.5297	0.5281	0.5300	0.5285	0.5305	0.5207	0.5282	0.5169	0.5216			
8	0.5579	0.5557	0.5584	0.5560	0.5581	0.5523	0.5566	0.5255	0.5465			
9	0.5972	0.5982	0.5981	0.5971	0.5973	0.5937	0.5969	0.5762	0.5890			
10	0.5228	0.5210	0.5236	0.5219	0.5238	0.5158	0.5216	0.5092	0.5155			
11	0.5569	0.5577	0.5577	0.5574	0.5576	0.5554	0.5582	0.5366	0.5489			

с											
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
12	0.5941	0.5949	0.5937	0.5936	0.5923	0.5933	0.5944	0.5808	0.5878		
13	0.5222	0.5166	0.5210	0.5161	0.5213	0.5164	0.5212	0.5139	0.5176		
14	0.5604	0.5603	0.5607	0.5598	0.5599	0.5594	0.5611	0.5538	0.5576		
15	0.6022	0.6030	0.6022	0.6021	0.6017	0.6010	0.6028	0.5973	0.5998		
16	0.5216	0.5222	0.5226	0.5221	0.5212	0.5224	0.5227	0.5135	0.5175		
17	0.5580	0.5596	0.5576	0.5596	0.5572	0.5588	0.5573	0.5543	0.5551		
18	0.5980	0.5992	0.5979	0.5986	0.5974	0.5982	0.5986	0.5973	0.5968		
19	0.5402	0.5190	0.5354	0.5220	0.5389	0.5283	0.5367	0.5219	0.5321		
20	0.5652	0.5611	0.5622	0.5627	0.5622	0.5470	0.5576	0.5239	0.5346		
21	0.5866	0.5798	0.5848	0.5805	0.5846	0.5677	0.5805	0.5271	0.5512		
22	0.5348	0.5329	0.5355	0.5328	0.5340	0.5290	0.5352	0.5211	0.5297		
23	0.5543	0.5535	0.5539	0.5535	0.5544	0.5453	0.5546	0.5103	0.5262		
24	0.5897	0.5905	0.5893	0.5889	0.5882	0.5873	0.5888	0.5447	0.5750		
25	0.5275	0.5265	0.5284	0.5271	0.5291	0.5175	0.5252	0.5143	0.5211		
26	0.5526	0.5520	0.5528	0.5520	0.5526	0.5482	0.5509	0.5268	0.5398		
27	0.5862	0.5864	0.5857	0.5859	0.5862	0.5845	0.5872	0.5648	0.5762		
28	0.5233	0.5217	0.5220	0.5212	0.5211	0.5169	0.5240	0.5160	0.5207		
29	0.5538	0.5541	0.5537	0.5535	0.5533	0.5514	0.5540	0.5362	0.5482		
30	0.5882	0.5874	0.5881	0.5877	0.5879	0.5867	0.5889	0.5733	0.5818		
31	0.5209	0.5207	0.5213	0.5215	0.5204	0.5181	0.5204	0.5115	0.5186		
32	0.5527	0.5523	0.5531	0.5528	0.5532	0.5512	0.5534	0.5389	0.5452		
33	0.5847	0.5862	0.5842	0.5857	0.5841	0.5850	0.5850	0.5814	0.5808		
34	0.5195	0.5196	0.5193	0.5187	0.5188	0.5195	0.5199	0.5153	0.5176		
35	0.5538	0.5541	0.5531	0.5538	0.5531	0.5532	0.5538	0.5478	0.5504		
36	0.5839	0.5845	0.5843	0.5845	0.5841	0.5837	0.5849	0.5776	0.5812		

AIC in Step 2 scenario 2 simulation.

AIC											
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
1	141.623	141.49	141.547	141.504	141.565	141.476	141.488	141.457	141.452		
2	140.612	140.799	140.638	140.8	140.653	141.271	140.802	141.532	141.631		
3	138.467	139.457	138.515	139.366	138.523	140.26	138.696	141.374	140.196		
4	280.174	280.121	280.15	280.149	280.178	279.961	279.988	279.769	279.79		
5	278.084	278.727	278.052	278.657	278.075	279.345	278.249	280.272	279.625		
6	273.64	275.273	273.971	275.161	274.034	277.09	274.159	278.803	275.802		
7	418.641	418.529	418.621	418.542	418.63	418.668	418.663	418.671	418.64		
8	415.646	416.619	415.689	416.516	415.783	417.565	415.875	418.813	417.4		

AIC											
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
9	409.755	410.204	410.044	410.175	410.137	414.065	410.229	416.47	412.137		
10	557.393	557.5	557.39	557.488	557.398	557.412	557.413	557.371	557.458		
11	553.046	553.268	553.166	553.217	553.222	554.586	553.036	556.871	554.651		
12	545.993	546.249	546.735	546.353	546.879	548.435	546.368	550.559	548.125		
13	695.917	695.905	695.792	695.88	695.776	695.945	695.802	695.998	695.987		
14	690.159	690.147	690.484	690.248	690.548	690.974	690.3	692.648	691.304		
15	678.976	679.231	679.746	679.385	679.982	681.761	679.382	681.885	680.94		
16	834.24	834.096	834.103	834.144	834.14	834.259	834.134	834.831	834.783		
17	827.625	827.463	828.082	827.581	828.132	827.691	827.858	828.596	828.703		
18	815.746	815.71	816.788	815.993	817.02	816.134	816.373	816.434	817.569		
19	141.732	141.58	141.705	141.612	141.701	141.496	141.603	141.403	141.525		
20	140.658	140.612	140.732	140.643	140.764	141.349	140.924	141.351	141.432		
21	139.424	139.751	139.437	139.731	139.501	140.293	139.553	141.261	141.279		
22	280	280.221	280.037	280.219	280.053	280.153	280.08	280.155	280.173		
23	278.552	278.844	278.586	278.804	278.615	279.616	278.725	280.283	280.279		
24	275.007	275.431	275.206	275.396	275.238	277.627	275.373	280.069	277.742		
25	418.767	418.823	418.765	418.821	418.762	419.103	418.888	419.181	419.089		
26	416.068	416.47	416.174	416.425	416.183	417.891	416.419	418.807	417.826		
27	411.873	412.468	412.141	412.443	412.296	414.784	412.029	417.213	414.121		
28	557.532	557.485	557.569	557.527	557.589	557.337	557.429	557.337	557.361		
29	553.787	553.961	553.869	553.912	553.875	555.116	553.825	557.073	555.175		
30	547.334	547.792	547.856	547.784	548.003	550.362	547.597	552.732	549.546		
31	696.018	695.967	696.061	695.988	696.074	696.142	696.051	696.172	696.014		
32	691.153	691.415	691.39	691.361	691.415	692.684	691.248	694.829	692.696		
33	684.588	684.506	685.18	684.641	685.235	684.811	684.902	685.495	685.809		
34	834.621	834.563	834.572	834.578	834.585	834.578	834.583	834.738	834.735		
35	829.421	829.44	829.597	829.509	829.665	830.278	829.467	831.589	830.247		
36	821.082	821.396	821.456	821.443	821.679	823.941	821.223	824.326	822.654		

Table 12-1a

Model specification in Step 2 scenario 3 simulation with high baseline penetrance.

Model Specification												
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n			
1	1	1.1	1.5	2	0.01	0.05	0.25	0.1	100			
2	2	1.1	1.5	2	0.01	0.25	0.05	0.1	100			
3	3	1.1	1.5	2	0.05	0.01	0.25	0.1	100			
4	4	1.1	1.5	2	0.05	0.25	0.01	0.1	100			
5	5	1.1	1.5	2	0.25	0.01	0.05	0.1	100			
6	6	1.1	1.5	2	0.25	0.05	0.01	0.1	100			

Model Specification											
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n		
7	1	1.1	1.5	2	0.01	0.05	0.25	0.1	200		
8	2	1.1	1.5	2	0.01	0.25	0.05	0.1	200		
9	3	1.1	1.5	2	0.05	0.01	0.25	0.1	200		
10	4	1.1	1.5	2	0.05	0.25	0.01	0.1	200		
11	5	1.1	1.5	2	0.25	0.01	0.05	0.1	200		
12	6	1.1	1.5	2	0.25	0.05	0.01	0.1	200		
13	1	1.1	1.5	2	0.01	0.05	0.25	0.1	300		
14	2	1.1	1.5	2	0.01	0.25	0.05	0.1	300		
15	3	1.1	1.5	2	0.05	0.01	0.25	0.1	300		
16	4	1.1	1.5	2	0.05	0.25	0.01	0.1	300		
17	5	1.1	1.5	2	0.25	0.01	0.05	0.1	300		
18	6	1.1	1.5	2	0.25	0.05	0.01	0.1	300		
19	1	1.1	1.5	2	0.01	0.05	0.25	0.1	400		
20	2	1.1	1.5	2	0.01	0.25	0.05	0.1	400		
21	3	1.1	1.5	2	0.05	0.01	0.25	0.1	400		
22	4	1.1	1.5	2	0.05	0.25	0.01	0.1	400		
23	5	1.1	1.5	2	0.25	0.01	0.05	0.1	400		
24	6	1.1	1.5	2	0.25	0.05	0.01	0.1	400		
25	1	1.1	1.5	2	0.01	0.05	0.25	0.1	500		
26	2	1.1	1.5	2	0.01	0.25	0.05	0.1	500		
27	3	1.1	1.5	2	0.05	0.01	0.25	0.1	500		
28	4	1.1	1.5	2	0.05	0.25	0.01	0.1	500		
29	5	1.1	1.5	2	0.25	0.01	0.05	0.1	500		
30	6	1.1	1.5	2	0.25	0.05	0.01	0.1	500		
31	1	1.1	1.5	2	0.01	0.05	0.25	0.1	600		
32	2	1.1	1.5	2	0.01	0.25	0.05	0.1	600		
33	3	1.1	1.5	2	0.05	0.01	0.25	0.1	600		
34	4	1.1	1.5	2	0.05	0.25	0.01	0.1	600		
35	5	1.1	1.5	2	0.25	0.01	0.05	0.1	600		
36	6	1.1	1.5	2	0.25	0.05	0.01	0.1	600		

Table 12-1b

Model specification in Step 2 scenario 3 simulation with low baseline penetrance.

				Mode	el Specificat	ion			
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n
37	1	1.1	1.5	2	0.01	0.05	0.25	0.01	100
38	2	1.1	1.5	2	0.01	0.25	0.05	0.01	100
39	3	1.1	1.5	2	0.05	0.01	0.25	0.01	100
40	4	1.1	1.5	2	0.05	0.25	0.01	0.01	100
41	5	1.1	1.5	2	0.25	0.01	0.05	0.01	100

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 May 28.

				Mode	el Specificat	ion			
Model	Туре	OR1-2	OR3-4	OR5-6	MAF1-2	MAF3-4	MAF5-6	Penetrance	n
42	6	1.1	1.5	2	0.25	0.05	0.01	0.01	100
43	1	1.1	1.5	2	0.01	0.05	0.25	0.01	200
44	2	1.1	1.5	2	0.01	0.25	0.05	0.01	200
45	3	1.1	1.5	2	0.05	0.01	0.25	0.01	200
46	4	1.1	1.5	2	0.05	0.25	0.01	0.01	200
47	5	1.1	1.5	2	0.25	0.01	0.05	0.01	200
48	6	1.1	1.5	2	0.25	0.05	0.01	0.01	200
49	1	1.1	1.5	2	0.01	0.05	0.25	0.01	300
50	2	1.1	1.5	2	0.01	0.25	0.05	0.01	300
51	3	1.1	1.5	2	0.05	0.01	0.25	0.01	300
52	4	1.1	1.5	2	0.05	0.25	0.01	0.01	300
53	5	1.1	1.5	2	0.25	0.01	0.05	0.01	300
54	6	1.1	1.5	2	0.25	0.05	0.01	0.01	300
55	1	1.1	1.5	2	0.01	0.05	0.25	0.01	400
56	2	1.1	1.5	2	0.01	0.25	0.05	0.01	400
57	3	1.1	1.5	2	0.05	0.01	0.25	0.01	400
58	4	1.1	1.5	2	0.05	0.25	0.01	0.01	400
59	5	1.1	1.5	2	0.25	0.01	0.05	0.01	400
60	6	1.1	1.5	2	0.25	0.05	0.01	0.01	400
61	1	1.1	1.5	2	0.01	0.05	0.25	0.01	500
62	2	1.1	1.5	2	0.01	0.25	0.05	0.01	500
63	3	1.1	1.5	2	0.05	0.01	0.25	0.01	500
64	4	1.1	1.5	2	0.05	0.25	0.01	0.01	500
65	5	1.1	1.5	2	0.25	0.01	0.05	0.01	500
66	6	1.1	1.5	2	0.25	0.05	0.01	0.01	500
67	1	1.1	1.5	2	0.01	0.05	0.25	0.01	600
68	2	1.1	1.5	2	0.01	0.25	0.05	0.01	600
69	3	1.1	1.5	2	0.05	0.01	0.25	0.01	600
70	4	1.1	1.5	2	0.05	0.25	0.01	0.01	600
71	5	1.1	1.5	2	0.25	0.01	0.05	0.01	600
72	6	1.1	1.5	2	0.25	0.05	0.01	0.01	600

Table 12-2a

Power in Step 2 scenario 3 simulation with high baseline penetrance.

]	Power				
		Cor	rect	Ran	dom	Overes	timate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
1	38	39	43	36	41	18	33	6	15
2	23	22	26	23	25	14	27	9	7
3	35	38	37	35	40	11	31	10	18

	Power										
		Cor	rect	Ran	dom	Overes	timate	Undere	stimate		
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV		
4	26	18	29	17	26	13	26	10	6		
5	9	14	14	13	15	14	12	12	4		
6	7	10	9	10	10	8	9	7	10		
7	61	61	61	58	62	30	58	11	52		
8	41	42	43	44	44	25	38	6	12		
9	54	53	61	50	60	30	54	8	40		
10	27	28	35	30	34	25	34	6	13		
11	15	34	36	33	33	20	24	3	6		
12	13	14	20	16	18	17	21	13	12		
13	83	86	87	85	85	53	85	37	79		
14	55	48	56	48	58	50	57	17	34		
15	78	74	84	75	84	44	81	26	71		
16	43	43	48	42	46	36	46	9	30		
17	18	39	38	38	40	20	37	3	10		
18	16	28	27	26	27	28	27	7	8		
19	90	92	92	93	93	83	93	52	90		
20	61	67	65	69	64	56	62	18	49		
21	86	93	94	93	93	81	93	70	89		
22	53	62	57	62	58	54	59	40	54		
23	31	58	55	55	57	36	51	7	20		
24	19	31	30	34	32	27	30	11	10		
25	89	97	97	96	97	92	97	88	97		
26	78	76	76	77	77	77	78	54	69		
27	95	96	96	97	97	88	97	85	95		
28	56	62	61	63	63	59	62	31	49		
29	34	59	62	62	58	58	53	44	43		
30	22	41	34	42	33	38	30	6	6		
31	99	100	99	99	98	99	99	92	96		
32	79	90	84	88	83	84	84	71	85		
33	97	98	98	98	98	98	98	97	98		
34	72	75	76	76	75	65	82	49	66		
35	45	72	72	72	70	70	66	60	59		
36	19	37	31	36	32	35	23	20	10		

Table 12-2b

Power in Step 2 scenario 3 simulation with low baseline penetrance.

]	Power				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
37	23	19	24	18	25	13	26	8	9
38	11	12	14	15	13	11	14	10	9
39	23	20	24	21	25	15	23	4	4
40	16	10	18	9	19	10	17	7	5
41	11	18	17	19	16	11	14	8	6
42	11	17	14	18	14	19	14	16	11
43	42	39	47	39	44	20	39	10	25
44	40	36	40	39	42	21	39	6	15
45	50	51	54	49	54	20	50	11	33
46	23	23	29	24	29	23	24	5	15
47	10	28	26	26	22	8	14	4	8
48	12	19	19	17	19	18	19	14	20
49	70	70	71	72	70	43	70	17	57
50	39	46	41	45	40	19	37	10	27
51	65	77	75	76	76	47	75	29	61
52	26	23	35	26	34	20	35	3	14
53	21	34	39	28	40	20	34	11	11
54	9	14	13	14	13	15	13	14	15
55	71	79	81	77	77	67	79	43	75
56	63	70	63	70	62	70	64	34	54
57	75	83	87	83	84	75	85	62	80
58	46	45	48	46	47	39	52	8	23
59	28	46	48	41	48	39	42	7	11
60	11	18	21	19	20	19	20	12	9
61	79	82	77	79	75	79	80	75	75
62	61	72	65	69	59	63	66	38	57
63	81	92	91	93	92	84	91	54	86
64	42	52	50	55	49	44	50	17	39
65	21	58	56	59	54	49	48	15	27
66	22	35	30	35	29	34	28	18	9
67	95	97	96	95	95	95	97	88	95
68	73	79	73	75	74	71	73	57	75
69	89	93	92	95	93	94	93	84	90
70	60	60	54	59	53	55	59	20	44
71	30	58	56	55	57	56	50	54	50
72	26	38	33	39	38	39	31	22	11

Table 12-3a

C in Step 2 scenario 3 simulation with high baseline penetrance.

				(С				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
1	0.5973	0.5983	0.6018	0.5978	0.6002	0.5765	0.5948	0.5356	0.5652
2	0.5757	0.5725	0.5764	0.5735	0.5758	0.5597	0.5724	0.5216	0.5276
3	0.5854	0.5905	0.5930	0.5904	0.5922	0.5636	0.5809	0.5522	0.5707
4	0.5744	0.5659	0.5738	0.5668	0.5750	0.5608	0.5710	0.5185	0.5402
5	0.5551	0.5448	0.5588	0.5461	0.5574	0.5364	0.5565	0.5237	0.5422
6	0.5498	0.5476	0.5522	0.5477	0.5506	0.5441	0.5483	0.5312	0.5392
7	0.5882	0.5892	0.5918	0.5902	0.5918	0.5802	0.5880	0.5608	0.5768
8	0.5687	0.5694	0.5670	0.5690	0.5675	0.5653	0.5683	0.5199	0.5479
9	0.5802	0.5827	0.5857	0.5830	0.5857	0.5760	0.5846	0.5439	0.5744
10	0.5565	0.5570	0.5633	0.5545	0.5618	0.5508	0.5610	0.5226	0.5384
11	0.5384	0.5503	0.5523	0.5497	0.5518	0.5420	0.5480	0.5160	0.5260
12	0.5382	0.5347	0.5401	0.5370	0.5413	0.5360	0.5396	0.5273	0.5329
13	0.5917	0.5956	0.5962	0.5952	0.5959	0.5906	0.5941	0.5777	0.5867
14	0.5674	0.5706	0.5695	0.5691	0.5653	0.5678	0.5697	0.5409	0.5630
15	0.5829	0.5875	0.5901	0.5874	0.5892	0.5845	0.5886	0.5643	0.5805
16	0.5576	0.5627	0.5613	0.5620	0.5607	0.5584	0.5622	0.5313	0.5474
17	0.5379	0.5521	0.5532	0.5524	0.5532	0.5479	0.5500	0.5244	0.5335
18	0.5341	0.5390	0.5404	0.5395	0.5402	0.5373	0.5392	0.5149	0.5245
19	0.5908	0.5941	0.5945	0.5944	0.5938	0.5912	0.5948	0.5824	0.5890
20	0.5617	0.5639	0.5602	0.5641	0.5584	0.5625	0.5605	0.5494	0.5548
21	0.5857	0.5922	0.5937	0.5924	0.5935	0.5901	0.5930	0.5810	0.5886
22	0.5558	0.5608	0.5583	0.5599	0.5575	0.5599	0.5588	0.5486	0.5544
23	0.5407	0.5516	0.5522	0.5514	0.5520	0.5508	0.5514	0.5289	0.5312
24	0.5343	0.5370	0.5383	0.5372	0.5384	0.5371	0.5373	0.5147	0.5251
25	0.5870	0.5915	0.5911	0.5922	0.5913	0.5903	0.5920	0.5837	0.5895
26	0.5628	0.5671	0.5657	0.5664	0.5624	0.5647	0.5653	0.5572	0.5632
27	0.5820	0.5892	0.5895	0.5889	0.5893	0.5860	0.5894	0.5823	0.5863
28	0.5553	0.5590	0.5568	0.5588	0.5571	0.5584	0.5592	0.5403	0.5485
29	0.5369	0.5496	0.5485	0.5491	0.5484	0.5490	0.5484	0.5298	0.5297
30	0.5307	0.5349	0.5352	0.5355	0.5352	0.5349	0.5339	0.5154	0.5198
31	0.5904	0.5953	0.5949	0.5952	0.5943	0.5928	0.5949	0.5895	0.5946
32	0.5639	0.5719	0.5693	0.5707	0.5652	0.5696	0.5688	0.5678	0.5682
33	0.5814	0.5901	0.5901	0.5896	0.5897	0.5874	0.5898	0.5841	0.5869
34	0.5579	0.5632	0.5623	0.5629	0.5618	0.5628	0.5631	0.5489	0.5550
35	0.5383	0.5521	0.5514	0.5522	0.5516	0.5516	0.5505	0.5314	0.5327
36	0.5261	0.5308	0.5307	0.5302	0.5310	0.5307	0.5297	0.5244	0.5213

Table 12-3b

C in Step 2 scenario 3 simulation with low baseline penetrance.

				(С				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
37	0.5739	0.5708	0.5788	0.5728	0.5773	0.5615	0.5749	0.5344	0.5483
38	0.5650	0.5589	0.5618	0.5601	0.5613	0.5401	0.5589	0.5146	0.5206
39	0.5768	0.5732	0.5783	0.5736	0.5792	0.5616	0.5796	0.5261	0.5430
40	0.5625	0.5560	0.5619	0.5569	0.5612	0.5493	0.5623	0.5230	0.5276
41	0.5563	0.5481	0.5581	0.5479	0.5572	0.5461	0.5558	0.5241	0.5389
42	0.5465	0.5385	0.5465	0.5379	0.5472	0.5398	0.5450	0.5372	0.5453
43	0.5728	0.5722	0.5766	0.5728	0.5757	0.5628	0.5745	0.5422	0.5612
44	0.5643	0.5674	0.5685	0.5671	0.5675	0.5598	0.5649	0.5217	0.5501
45	0.5733	0.5761	0.5790	0.5751	0.5781	0.5622	0.5774	0.5364	0.5681
46	0.5523	0.5504	0.5573	0.5493	0.5569	0.5489	0.5564	0.5240	0.5416
47	0.5389	0.5436	0.5421	0.5427	0.5422	0.5375	0.5434	0.5172	0.5233
48	0.5372	0.5335	0.5360	0.5348	0.5368	0.5330	0.5368	0.5315	0.5392
49	0.5792	0.5818	0.5820	0.5819	0.5808	0.5754	0.5806	0.5592	0.5725
50	0.5560	0.5603	0.5593	0.5602	0.5590	0.5504	0.5579	0.5351	0.5521
51	0.5716	0.5792	0.5797	0.5785	0.5797	0.5742	0.5782	0.5600	0.5745
52	0.5461	0.5409	0.5483	0.5446	0.5493	0.5355	0.5483	0.5191	0.5326
53	0.5382	0.5447	0.5479	0.5444	0.5472	0.5436	0.5464	0.5246	0.5332
54	0.5313	0.5299	0.5336	0.5300	0.5340	0.5295	0.5336	0.5278	0.5293
55	0.5728	0.5773	0.5774	0.5764	0.5761	0.5731	0.5774	0.5636	0.5703
56	0.5655	0.5685	0.5674	0.5689	0.5645	0.5649	0.5662	0.5579	0.5625
57	0.5710	0.5780	0.5779	0.5776	0.5778	0.5738	0.5781	0.5676	0.5756
58	0.5474	0.5520	0.5501	0.5521	0.5504	0.5511	0.5522	0.5215	0.5407
59	0.5381	0.5477	0.5478	0.5473	0.5478	0.5467	0.5470	0.5239	0.5261
60	0.5271	0.5284	0.5294	0.5284	0.5304	0.5275	0.5291	0.5151	0.5202
61	0.5747	0.5779	0.5778	0.5769	0.5766	0.5763	0.5778	0.5742	0.5758
62	0.5566	0.5607	0.5565	0.5603	0.5544	0.5581	0.5560	0.5569	0.5561
63	0.5733	0.5804	0.5807	0.5781	0.5786	0.5776	0.5810	0.5708	0.5764
64	0.5487	0.5543	0.5513	0.5539	0.5502	0.5537	0.5532	0.5325	0.5423
65	0.5338	0.5456	0.5445	0.5453	0.5451	0.5438	0.5436	0.5249	0.5294
66	0.5275	0.5346	0.5345	0.5350	0.5345	0.5346	0.5320	0.5253	0.5218
67	0.5738	0.5790	0.5785	0.5774	0.5771	0.5778	0.5784	0.5742	0.5765
68	0.5611	0.5654	0.5603	0.5654	0.5605	0.5617	0.5616	0.5586	0.5587
69	0.5689	0.5777	0.5781	0.5776	0.5778	0.5747	0.5766	0.5731	0.5765
70	0.5482	0.5509	0.5504	0.5504	0.5500	0.5510	0.5509	0.5382	0.5440
71	0.5329	0.5438	0.5429	0.5431	0.5433	0.5431	0.5426	0.5266	0.5279
72	0.5311	0.5341	0.5345	0.5337	0.5344	0.5338	0.5338	0.5231	0.5220

Table 12-4a

AIC in Step 2 scenario 3 simulation with high baseline penetrance.

				А	IC				
		Cor	rect	Ran	dom	Overes	timate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
1	138.734	138.733	138.512	138.83	138.588	140.681	139.054	141.57	140.754
2	140.014	140.26	139.974	140.169	139.982	140.683	140.027	141.265	141.437
3	139.413	139.112	138.766	139.147	138.797	140.966	139.532	141.463	140.522
4	140.101	140.608	140.055	140.584	140.067	140.832	140.233	141.474	141.633
5	141.117	141.022	140.827	141.041	140.839	141.135	141.062	141.395	141.59
6	141.312	141.134	141.133	141.138	141.125	141.166	141.19	141.195	141.357
7	275.117	275.143	274.79	275.18	274.922	278.281	275.21	279.751	276.695
8	277.152	277.245	277.254	277.231	277.29	278.777	277.343	280.103	279.606
9	276.058	276.061	275.459	276.201	275.525	278.278	275.704	279.983	277.574
10	278.497	278.436	277.848	278.36	277.848	278.927	278	280.176	279.786
11	279.493	277.811	277.746	277.878	277.773	279.22	278.64	280.3	280.278
12	279.745	279.502	279.277	279.464	279.224	279.486	279.284	279.575	279.66
13	410.583	410.137	410.106	410.301	410.299	414.217	410.297	416.542	411.64
14	414.396	414.642	414.293	414.555	414.418	415.273	414.314	418.014	416.056
15	412.111	412.065	410.813	412.222	410.96	415.122	411.232	416.761	412.484
16	415.837	415.585	415.313	415.588	415.371	416.566	415.212	418.645	416.973
17	417.547	415.687	415.66	415.722	415.656	417.261	416.443	418.801	418.42
18	418.124	417.304	416.998	417.312	417.011	417.5	417.25	418.569	418.782
19	546.584	546.09	546.049	546.293	546.287	548.035	545.847	553.282	547.581
20	552.328	552.131	552.39	552.144	552.521	553.219	552.36	556.153	553.742
21	547.676	546.134	545.916	546.394	546.11	549.663	545.932	551.671	547.199
22	553.538	552.672	553.099	552.698	553.129	553.015	553.002	554.552	553.797
23	555.538	553.162	553.085	553.284	553.071	554.942	553.899	557.196	555.997
24	556.101	555.414	555.324	555.348	555.283	555.613	555.432	556.932	557.083
25	683.715	682.578	682.662	682.83	682.897	683.41	682.519	686.138	683.322
26	689.419	688.406	689.178	688.527	689.409	689.578	689.241	692.089	689.815
27	685.336	683.377	683.252	683.654	683.541	686.023	683.372	686.084	683.765
28	691.224	690.423	690.61	690.474	690.673	691.565	690.374	694.024	692.03
29	693.853	691.22	691.437	691.307	691.448	691.543	692.029	692.657	692.551
30	694.864	693.49	693.8	693.444	693.803	693.733	694.05	696.09	696.107
31	818.498	817.238	817.478	817.537	817.73	818.3	817.386	820.93	818.05
32	826.532	825.057	825.923	825.148	826.171	825.852	826.141	828.293	826.094
33	821.831	819.047	819.098	819.353	819.372	820.763	819.077	821.329	819.671
34	828.212	827.075	827.134	826.953	827.197	828.608	826.902	830.605	828.492
35	831.909	828.213	828.392	828.333	828.452	828.566	829.184	829.798	830.08
36	833.61	832.397	832.933	832.382	832.832	832.471	833.195	833.411	834.309

Table 12-4b

AIC in Step 2 scenario 3 simulation with low baseline penetrance.

				А	IC				
		Cor	rect	Ran	dom	Overes	stimate	Undere	stimate
Model	SC	OR	EV	OR	EV	OR	EV	OR	EV
37	139.986	140.332	139.786	140.34	139.826	141.022	140.02	141.476	141.337
38	140.846	141.054	140.878	141.044	140.915	141.245	141.013	141.329	141.439
39	140.01	140.133	139.961	140.123	139.959	140.633	139.921	141.534	141.642
40	140.75	141.097	140.756	141.128	140.779	141.202	140.841	141.379	141.502
41	140.986	140.868	140.691	140.857	140.681	141.223	140.905	141.414	141.374
42	141.31	140.725	140.836	140.718	140.824	140.728	140.883	140.834	141.153
43	276.862	277.33	276.709	277.286	276.797	278.953	276.988	279.939	278.31
44	277.626	277.39	277.428	277.379	277.516	279.044	277.774	280.236	279.603
45	276.831	276.497	276.194	276.67	276.311	279.031	276.743	279.68	277.913
46	278.571	278.698	278.088	278.706	278.119	278.977	278.169	280.282	279.696
47	279.878	278.718	278.684	278.79	278.733	279.877	279.54	280.33	280.263
48	279.76	279.408	279.316	279.426	279.306	279.431	279.307	279.586	279.432
49	412.905	412.546	412.631	412.642	412.732	415.641	412.857	417.841	414.424
50	415.917	415.544	415.747	415.556	415.872	417.298	416.066	418.359	417.282
51	414.198	413.001	412.864	413.148	413.002	415.66	413.13	417.072	413.857
52	417.083	417.071	416.66	416.972	416.701	417.418	416.665	418.942	418.331
53	417.685	416.211	415.834	416.34	415.882	417.188	416.593	418.666	418.368
54	418.44	417.934	417.929	417.962	417.919	417.943	417.954	417.996	418.148
55	550.719	549.954	550.016	550.072	550.125	551.682	550.046	554.255	550.866
56	551.83	551.159	551.766	551.209	551.915	552.367	551.765	554.903	552.64
57	550.897	549.508	549.446	549.692	549.602	551.241	549.497	552.36	550.067
58	554.31	553.708	553.913	553.665	553.971	554.467	553.649	557.288	555.889
59	555.728	554.292	554.407	554.404	554.416	554.796	554.728	557.125	556.519
60	556.951	556.369	556.375	556.34	556.322	556.455	556.456	556.995	557.188
61	686.737	686.295	686.474	686.434	686.587	686.702	686.327	687.505	687.023
62	691.113	690.503	690.95	690.552	691.089	691.215	691.014	693.444	691.394
63	687.472	685.886	685.74	686.124	685.932	687.944	685.789	690.733	686.604
64	692.338	691.613	691.866	691.594	691.962	692.392	691.607	695.2	693.447
65	694.415	692.099	692.346	692.129	692.305	692.908	692.851	695.557	694.63
66	695.012	693.602	693.965	693.628	693.926	693.666	694.339	694.913	695.794
67	824.34	823.257	823.445	823.406	823.547	823.844	823.351	824.803	823.938
68	827.389	826.62	827.279	826.68	827.482	828.356	827.33	830.209	827.958
69	825.966	823.167	823.111	823.44	823.335	824.946	823.224	825.456	823.533
70	830	829.441	829.731	829.495	829.752	830.141	829.529	833.36	830.987
71	832.764	830.199	830.515	830.272	830.489	830.427	831.074	831.187	831.392
72	833.081	832.18	832.441	832.234	832.443	832.179	832.702	833.674	834.329

References

- Carayol J, Tores F, Konig IR, Hager J, Ziegler A. Evaluating diagnostic accuracy of genetic profiles in affected offspring families. Stat Med. 2010; 29(22):2359–68. [PubMed: 20623818]
- Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet. 2002; 70(1):124–41. [PubMed: 11719900]
- Culverhouse R, Suarez BK, Lin J, Reich T. A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet. 2002; 70(2):461–71. [PubMed: 11791213]
- De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC, Aubin C, Bauer D, Heubach JF, Sandbrink R, et al. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol. 2009; 8(12):1111–9. [PubMed: 19879194]
- Hsu, J. Multiple Comparisons: Theory and methods. Chapman & Hall; 1996.
- Janssens AC, van Duijn CM. Genome-based prediction of common diseases: methodological considerations for future research. Genome Med. 2009; 1(2):20. [PubMed: 19341491]
- Karlson EW, Chibnik LB, Kraft P, Cui J, Keenan BT, Ding B, Raychaudhuri S, Klareskog L, Alfredsson L, Plenge RM. Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. Ann Rheum Dis. 2010; 69(6):1077–85. [PubMed: 20233754]
- Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, Vollenweider P, Stirnadel H, Sundseth SS, Lai E, et al. Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score–the CoLaus Study. Diabetologia. 2009; 52(4):600–8. [PubMed: 19139842]
- Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010; 363(2):166–76. [PubMed: 20647212]
- Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D'Agostino RB Sr, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008; 359(21):2208–19. [PubMed: 19020323]
- Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD. A comparison of analytical methods for genetic association studies. Genet Epidemiol. 2008; 32(8):767–78. [PubMed: 18561203]
- Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010; 42(7):570–5. [PubMed: 20562874]
- Paynter NP, Chasman DI, Pare G, Buring JE, Cook NR, Miletich JP, Ridker PM. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010; 303(7): 631–7. [PubMed: 20159871]
- Seddon JM, Reynolds R, Maller J, Fagerness JA, Daly MJ, Rosner B. Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Invest Ophthalmol Vis Sci. 2009; 50(5):2044–53. [PubMed: 19117936]
- Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M, Kivimaki M, Humphries SE. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ. 2010; 340:b4838. [PubMed: 20075150]
- Taylor KE, Chung SA, Graham RR, Ortmann WA, Lee AT, Langefeld CD, Jacob CO, Kamboh MI, Alarcon-Riquelme ME, Tsao BP, et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 2011; 7(2):e1001311. [PubMed: 21379322]
- Winham SJ, Slater AJ, Motsinger-Reif AA. A comparison of internal validation techniques for multifactor dimensionality reduction. BMC Bioinformatics. 2010; 11:394. [PubMed: 20650002]
- Young RP, Hopkins RJ, Hay BA, Epton MJ, Mills GD, Black PN, Gardner HD, Sullivan R, Gamble GD. A gene-based risk score for lung cancer susceptibility in smokers and ex-smokers. Postgrad Med J. 2009; 85(1008):515–24. [PubMed: 19789190]
- Zheng W, Wen W, Gao YT, Shyr Y, Zheng Y, Long J, Li G, Li C, Gu K, Cai Q, et al. Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women. J Natl Cancer Inst. 2010; 102(13):972–81. [PubMed: 20484103]

Figure 1.

Relative risk and minor allele frequency specifications in the simulation design.

Figure 2. Model comparisons in Step 2 Scenario 1 (different relative risk and same minor allele frequency, baseline penetrance=0.1, n=200).

Figure 3. Model comparisons in Step 2 Scenario 2 (same relative risk and different minor allele frequency, baseline penetrance=0.1, n=200).

Figure 4. Model comparisons in Step 2 Scenario 2 (same relative risk and different minor allele frequency, baseline penetrance=0.1, n=500).

Figure 5. Model comparisons in Step 2 Scenario 3 (different relative risk and different minor allele frequency, baseline penetrance=0.1, n=200).

Figure 6. Model comparisons in Step 2 Scenario 3 (different relative risk and different minor allele frequency, baseline penetrance=0.1, n=500).

Table 1

Penetrance patterns under three genetic modes for 2-locus main effect model.

Mode	Genotype	BB	Bb	bb
	AA	k	k	$\theta_b k$
Recessive	Aa	k	k	$\theta_b k$
	aa	$\theta_a k$	$ heta_a k$	$(\theta_a + \theta_b - 1)k$
	АА	k	$\frac{\left(\theta_{b}+1\right)k}{2}$	$ heta_b k$
Additive	Aa	$\frac{\left(\theta_{a}+1\right)k}{2}$	$\frac{\left(\theta_a + \theta_b\right)k}{2}$	$\frac{\left(\theta_a + \theta_b - 1\right)k}{2}$
	aa	$\theta_a k$	$\frac{\left(2\theta_a + \theta_b - 1\right)k}{2}$	$(\theta_a + \theta_b - 1)k$
	AA	k	$\theta_b k$	$\theta_b k$
Dominant	Aa	$\theta_a k$	$(\theta_a + \theta_b - 1)k$	$(\theta_a + \theta_b - 1)k$
	aa	$\theta_a k$	$(\theta_a + \theta_b - 1)k$	$(\theta_a + \theta_b - 1)k$

Table 2

outperforms in the pair-wise method comparisons with larger power and C, and smaller AIC, and Tukey adjusted P-value is smaller than 0.05. The blank Significant winner in pair-wise method comparisons on Power, C and AIC in Step 2 simulation (Significant winner denotes the method significantly means no significant difference was detected in this pair).

	P		Power			С			AIC	
cenario	Weight"	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV	SC-OR	SC-EV	OR-EV
1^{a}	Correct	OR	EV		OR	EV		OR	EV	
100-600	Random	OR	EV		OR	EV		OR	EV	
	Overestimate	OR	ΕV		OR	EV		OR	EV	
	Underestimate									
2^b	Correct	SC		EV	SC		EV	SC		EV
100-300	Random	SC		EV	SC		EV	SC		EV
	Overestimate	SC		EV	SC		EV	SC		EV
	Underestimate	SC	SC	EV	SC	SC	EV	SC	SC	
2^b	Correct								SC	OR
400-600	Random								SC	OR
	Overestimate	SC		EV	SC		EV	SC		EV
	Underestimate	SC		EV	SC	SC	EV	SC	SC	EV
30	Correct	OR	EV	EV		EV	EV	OR	EV	EV
100–300	Random	OR	EV	EV		EV	EV	OR	EV	EV
	Overestimate	SC	ΕV	EV	SC		EV	SC		ΕV
	Underestimate	SC	SC	EV	SC	SC	EV	SC	SC	EV
30	Correct	OR	EV		OR	EV		OR	EV	
400-600	Random	OR	ΕV		OR	EV		OR	EV	
	Overestimate	OR	ΕV		OR	EV			EV	EV
	Underestimate	SC		EV	SC	SC	EV	SC		EV

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2017 May 28.

bScenario 2 is same RR and different MAF among 6 SNPs. cScenario 3 is different RR and different MAF among 6 SNPs.

Author Manuscript

tdiJostimate methods for OR- and EV-GRS: correct, random, overestimate and underestimate.